

FREEWAY SURVEILLANCE CONTROL CENTER

65-1234

JOHN C. LODGE

FREEWAY TRAFFIC SURVEILLANCE AND CONTROL RESEARCH PROJECT

A Project of the Michigan State Highway Department Jointly With The Wayne County Road Commission City of Detroit, Department of Streets and Traffic In Cooperation With the U.S. Bureau of Public Roads

LANE CHANGES ON AN URBAN FREEWAY

없

A Report of the Project Technical Committee

LIBRARY michigan department of state highways LANSING

By

Jean W. Clinton Wayne County Road Commission

August, 1962

FREEWAY TRAFFIC SURVEILLANCE AND CONTROL RESEARCH PROJECT

Policy Committee

Harold H. Cooper, Michigan State Highway Department, Chairman Oscar M. Gunderson, Wayne County Road Commission Alger F. Malo, Department of Streets and Traffic, City of Detroit Harry Krashen, U.S. Bureau of Public Roads

Project Manager

Edward Gervais, Michigan State Highway Department

Project Engineer

Frank DeRose, Jr., Michigan State Highway Department

Technical Committee

Frank DeRose, Jr., Michigan State Highway Department, Chairman Jean W. Clinton, Wayne County Road Commission Seymour E. Bergsman, Dept. of Streets and Traffic, City of Detroit A. Taragin (C. L. Shufflebarger, Alternate) U.S. Bureau of Public Roads Keith Bushnell, Michigan State Highway Department (on military leave)

Other Project Personnel Michigan State Highway Department

Conrad Dudek Charles Richard Robert Traill Walter Roth Herbert Schoepke

Dept. of Streets and Traffic, City of Detroit

Ross Bremer Richard Folkers

Technical Assistance Provided By Dr. Theodore W. Forbes, Michigan State University Robert Larson, Wayne County Road Commission Holden M. LeRoy, Dept. of Streets and Traffic, City of Detroit Frank A. Ronan, Dept. of Streets and Traffic, City of Detroit This project consists of the establishment of a comprehensive system of surveillance and control on an urban freeway. The purposes of the project are to evaluate the use of surveillance, traffic control and sensing equipment; to investigate the characteristics of the freeway traffic flow which may be determined and treated by such equipment; to improve freeway traffic operation and safety by these means, as well as to conduct basic research into freeway operations by making use of this specialized equipment. For the first time, it has become possible to assemble the specialized equipment required to carry on a project of this scope.

The project is sponsored jointly by the Michigan State Highway Department, Wayne County Road Commission, and City of Detroit, Department of Streets and Traffic, in cooperation with the United Stated Bureau of Public Roads. The following report pertains to one of a number of individual studies to be performed. Each of the studies will be reported separately as it is completed and each will contribute to the overall objective of this study.

INDEX OF TABULATIONS AND FIGURES

. •	Page	4	Figure I - Freeway study area plan (to be furnished by MSHD)
	Page	5	Figure II - Camera field plan
•	Page '	7	Table I - Number of lane changes per hour
	Page	8	Table II - Lane changes per mile per hour
	Page	10	Table IIIA - Southbound lane changes in three lane sections
	Page	11	Table IIIB - Southbound lane changes in four lane sections
	Page	12	Table IVA - Northbound lane changes in three lane sections
	Page	13	Table IVB - Northbound lane changes in four lane sections
	Page	15	Figure IIIA - Percent of total lane changes in three lane sections by lane
-	Page	16	Figure IIIB - Percent of total lane changes in four lane sections by lane
	Page .	17	Figure IV - Direction of percent of lane changes by groups of sections.
	Page	19	Table VA - Total southbound lane changes by type of vehicle
	Page	20	Table VB - Total northbound lane changes by type of vehicle
	Page	21	Table VI - Percent of total lane changes by type of vehicle
	Page	22	Table VII - Hourly volumes by location
	Page	23	Table VIII - Number of lane changes per vehicle mile
	Page	24	Figure V - Off peak hour percent of combined two hour number of lane changes per vehicle mile
' .	Page	26	Figure VI - Number of lane changes per vehicle mile in three lane sections.
	Page	27	Figure VII - Number of lane changes per vehicle mile in four lane sections
	Page	28	Figure VIII - Number of lane changes per vehicle mile by groups of sections.
:	Page	30	Figure IX - Comparison of combined rate of lane changes per vehicle mile to geometric features
	Page	31	Table IX - Total volumes by type of vehicle
	Page	33	Table X - Percent of total volumes by type of vehicle
	Page	34	Figure X - Comparison of percent of total lane changes by passenger vehicle to percent of total volume by
			Dassenger venicies

Alternation of the second s

FREEWAY TRAFFIC SURVEILLANCE AND CONTROL RESEARCH PROJECT

LANE CHANGES ON AN URBAN FREEWAY

Introduction

Lane change is defined as the transfer of a vehicle from one traffic lane to another traffic lane. Lane change movements are either forced or optional. Forced lane change is caused by a stopped or slower moving vehicle ahead. Other lane changes are optional.¹ The purpose of this study is to determine and analyze vehicle lane changes on an urban freeway.

The efficiency of any traffic facility, particularly a freeway, depends in part on the amount of lane changing. The proper location of entrance and exit ramps and adequate weaving distance between ramps can minimize the conflict between vehicles changing lanes on a freeway. Findings in this report should be of value in freeway traffic control operations and design of future freeways and other traffic facilities.

Study Analysis

The purpose of this study is to determine and analyze vehicle lane changes by section in the 3.2 mile length of the John C. Lodge Freeway between the Davison Freeway Interchange and the Edsel B. Ford Freeway Interchange in the City of Detroit. The John C. Lodge Freeway is an urban freeway with an ADT at the midpoint of the 3.2 mile length of 145,000 vehicles. Another study, "Freeway Volume Characteristics", will give more detailed volume information. This 3.2 mile length of the John C. Lodge Freeway has been placed under television surveillance and divided into fourteen sections which coincide with the visual areas of fourteen television cameras. The cameras were installed on bridge structures

¹Matson, Smith and Hurd: Traffic Engineering, McGraw-Hill Book Company, Inc., New York, 1955, Pg. 136.

- 1 -

and connected to a central control room where traffic is observed on television monitors. Traffic is under observation by trained observers during critical periods. Present schedule is from 6:00AM to 8:00PM weekdays.

Lane changes were observed in thirteen of the fourteen camera sections on television monitors. The fourteenth camera, located at the south end of the study area immediately north of the Edsel B. Ford Freeway Interchange, is situated at a point where traffic interchanges between the two freeways and was not used in this study. Most of the camera sections for both the northbound and southbound directions were divided into two fields of observation to view adequately the section. The telephoto camera lens (designated T on Figure II) was used to view the farthest field and the regular camera lens (designated R on Figure II) was used to view the field close to the camera.

All lane changes, by type of vehicle, were observed in each field by trained observers for two 1-hour periods. Observations were made during week days for an off-peak hour and a peak hour. Morning peak hours were observed in the southbound (inbound to the central business district) direction and the afternoon peak hours were observed in the northbound (outbound from the central business district) direction. Volumes of traffic, by type of vehicle, were also viewed on the television monitors by trained observers and recorded manually for each field on a comparable week day for the same 1-hour periods

- 2 -

(-4

圕

Although the same traffic generally uses the freeway going to and returning from work and other places, the northbound direction will be considered as a separate road from the southbound direction for analysis. The beginnings and ends of the 3.2 mile length are basically the same since right entrance and exit ramps and left entrance and exit ramps are located at the interchanges at each end. Excluding the end interchanges, the northbound roadway has four entrance ramps and five exit ramps, and the southbound roadway has five entrance ramps and four exit ramps.

The John C. Lodge Freeway is primarily a six lane freeway with three lanes in each direction. There are eight lane sections in this study area as shown on Figure 1. Shown on Camera Field Plan (Figure II) are camera locations, section designation, entrance and exit ramps, horizontal and vertical curve locations, and the portion of the freeway study area which is not visible on television monitors. The elimination of camera section 14 from this study because of traffic interchange activity and blind spots, including curve view obstructions in sections 5 and 7, reduce the visible length of the study area to 2.5 miles in the southbound direction and 2.4 miles in the northbound direction. Analysis of the study area reveals that 66% of both directions of the length of the study area is three lane, and 34% is four lane. Inasmuch as the lane changing characteristics in three lane and four lane sections vary, the three lane and four lane sections are analyzed separately. There are six types of lane changing movements possible in a three lane section and twelve types of lane changing movements possible in a four lane section.

3 -

 (\mathbb{C})

 (\mathbb{C})

Inasmuch as the length of roadway required for a lane change depends upon several factors, lane change movements were recorded in the field in which they were started. The length of roadway required for lane change and location of the end of the lane change was not considered in this study.

Location of the lane change movement depends in part upon the location of the directional signs. Standard Interstate System overhead white on green directional signs are provided in this study area. Three directional signs are provided for each exit ramp. At each exit ramp, two signs are provided, one sign with the ramp name and a directional slant arrow and the other sign has the name of the exit with "Next Exit" message under the name. The third sign which gives the name of next exit and "Keep Right" message under the name is provided about 1000 feet in advance of the exit. Additional ground level signs are installed at ramps. White on green "Exit" sign with slant arrow is provided at gore of exit ramps and standard black on yellow diamond warning "Merging Traffic" signs are provided at the entrance ramps.

Table I shows the number of lane changes per hour. 10, 148 total vehicles changed lanes in two one-hour periods in the southbound direction of which 54.7% changed lanes during the off-peak hour. 8.780 vehicles changed lanes in two one-hour periods in the northbound direction. There were only two northbound lane change movements more in the off-peak hour than there were in the peak hour. Table I also shows the length of the camera fields. From this information, lane changes per mile per hour are determined and shown on Table II for comparison purposes. The lane changes per mile per field will also be evaluated with respect to volume

- 6 -

So	uthbound	Direction		Northbound Direction						
Camera Field	Field In Ft.	Peak Hour	Off-Peak Hour	Camera Field	Field <u>In Ft</u> .	Peak Hour	Off-Peak Hour			
1R	400	103	243	1R	500	49	82			
$2\mathrm{T}$	1450	524	826	2 T	1400	252	374			
2R	300	153	126	2 R	350	298	153			
3T	915	204	27 3	3 T	865	184	2 13			
3R	250	5 2	48	3R	225	71	91			
4T	500	119	154	4T	1120	221	259			
4R	820	42	94	4R	300	65	131			
5 T	350	122	164	5T	500	71	172			
5R	800	104	131	5R	425	61	93			
6Т	550	62	217	6T .	595	40	135			
6R	300	88	107	6R	200	49	77			
7R*	200	216	177	7 T	250	1 2 5	73			
8T*	860	409	363	7R*	150	516	45			
8R*	200	146	15 2	8T*	810	436	2 57			
9T*	800	605	495	9R*	200	113	133			
9R*	450	132	245	9T*	805	534	377			
10T*	625	32 3	197	8R*	450	138	123			
10R*	200	153	137	10T*	625	300	346			
11T*	505	358	35 2	10R*	200	84	174			
11R*	200	86	186	11R*	775	178	29 3			
1 2 T	500	184	255	12T	450	74	244			
1 2 R	400	. 92	133	12R	300	98	99			
13T	1120	207	27 3	13 T	950	166	307			
13R*	200	108	208	13R*	2 50	266	140			
One Hour	Totals	4,592	5,556			4,389	4,391			
Directio	n Totals	10,	148			8,7	80			
Study Ar	ea Totals	3 .		18,928						

NUMBER OF LANE CHANGES PER HOUR

TABLE I

R = Near Camera Field T = Far Camera Field * = 4 Lane Section

.

LANE CHANGES PER MILE PER HOUR

All and American State

an the state of the second sec

TABLE II

Sou	thbound	Direction		North	bound Dir	rection
Camera Field	Peak <u>Hour</u>	Off-Peak Hour		Camera Field	Peak Hour	Off-Peak <u>Hour</u>
1R	1360	3215		1R	5 20	866
2T	1905	3010	·	2T	950	1410
2 R	2690	222 0		2R	4500	2320
ЗТ	1180	1580		3T	11 2 0	1300
3R	1100	1015		3R	1670	2140
4 T	1255	1630		4 T	1040	1 24 0
4R	270	606		4R	1150	2310
5T	1840	2480		5 T	750	1760
5R	686	868		5R	760	1160
6 T	5 82	2085		6T	354	1200
6R	1545	1875		6R	1300	2040
7R	5700	4675		71	264 0	1540
8T	2 550	22 30		7R	18200	1580
8R	3855	4020		8T ²	2850	1660
9 T	3985	3250	·	8R ⁻	2980	3510
9 R	1550	2560		9T	3500	2480
10T	2680	1665		9R*	1620	1450
10R	4040	3620		10T	2540	2930
11T ′	3759	3696		10R	222 0	428 0
11 R	2270	4910		11R	1220	2 000
12T	1940	2695		12T	865	2855
12R	1 2 10	1755		12R	1730	1740
13 T	976	1290		13T	925	1710
13R -	28 50	5500		13R	5615	2950

- 8 -

to determine the average number of lane changes per vehicle-mile (Table VIII).

Tables IIIA and IIIB show the lane changes by lane for southbound direction in three lane and four lane sections respectively. Tables IVA and IVB show the lane changes by lane for northbound direction in three and four lane sections respectively. Lane 1 is the lane nearest the center island. The other lanes are numbered consecutively to the shoulder. A change from lane 2 to lane 3 in three lane and four lane sections is different because a vehicle in a three lane section changing lanes from lane 2 to lane 3 would be entering the lane nearest the shoulder, which is the normal procedure for exiting traffic, whereas a vehicle in a four lane section changing lanes from lane 2 to lane 3 would not be entering the lane nearest the shoulder.

Analysis of this data reveals that 328 lane changes or 1.7% of the lane changing traffic in both directions changed more than one lane at a time. Further analysis reveals that 72% of the multiple lane changes occurred during the off-peak hour when traffic volumes are lower. Of the multiple lane changes, 31% occurred in southbound field IR and 2T during the off-peak hour. Field IR is located just south of the Davison Freeway. Field 2T is located just south of Field IR. Traffic from the Glendale entrance ramp enters field 2T. Trucks account for 13 of the 24 multiple lane change vehicles in Field IR and 26 of 79 multiple lane change vehicles in Field 2T. They enter the southbound Lodge Freeway in lane 1 from the Davison Freeway via a left entrance ramp to work their way to lane 3 to comply with the City of Detroit ordinance which

- 9 -

TABLE IIIA

SOUTHBOUND LANE CHANGES

IN THREE LANE SECTIONS

		Peak H	our	1	
	Lane	Lane	Lane	Lane	Multiple
Camera Field	<u>1 to 2</u>	2 and 3	<u>3 to 2</u>	<u>2 to 1</u>	Lanes
18	42 (41)	7 (7)	42 (41)	10 (10)	2(1)
2T	91(17)	35(7)	219(42)	168(32)	$\frac{2}{8}(2)$
28	26(17)	31(20)	46 (30)	48 (31)	2(2)
37	43(21)	42(21)	48 (24)	68 (33)	3(1)
38	17(32)	10(19)	9(17)	16(32)	0
47	30(25)	15(13)	40 (34)	34(28)	õ
48	8 (19)	5(12)	12(29)	17 (40)	õ
57	13(11)	39 (32)	32(26)	38(31)	ñ
58	30(29)	26 (28)	27 (26)	18(17)	Õ
6T	10(16)	$\frac{23}{33}$ (53)	19(10)	6(10)	1 (2)
68	23 (26)	28 (32)	17 (10)	20(23)	. 0
127	36(20)	26(32)	68(37)	54 (20)	- 0 - 0
128	20(22)	16(17)	20 (32)	26 (28)	1 (1)
127	53 (26)	56 (27)	A3 (91)	54 (26)	$\frac{1}{1}$ (_)
10 1	00 (20)	00 (21)	<u>+0 (21)</u>	07 (20)	_1 (-/
1-Hour Totals	442 (21,6)	372 (18.2)	644 (31.3)	577 (28)	18 (0.9)
		0.8.8 D b	17		
	Lano	UII-Peak	Hour Lana	Inno	Multiplo
Comore Field		Lane	Lane		Lanos
Camera rieiu		<u> 2 to 3</u>	$\frac{3 \text{ to } 2}{2}$		Lanes
1R	96 (40)	26 (11)	63 (26)	34 (14)	24 (8)
2T	154 (19)	68 (8)	264 (32)	261 (32)	79 (9)
2R	18 (14)	28 (22)	43 (34)	37 (30)	0
3T	57 (21)	62 (23)	55 (20)	89 (33)	10 (3)
3R	9 (19)	11(23)	9 (19)	19 (39)	0
4 T	30 (19)	19 (12)	30 (19)	68 (44)	5 (6)
4R	23 (25)	18 (19)	19 (20)	32 (34)	2 (2)
5T	50 (30)	31 (19)	37 (23)	46 (28)	0
5R	28 (21)	34 (26)	30 (23)	39 (30)	0
6 T	43 (20)	103 (47)	50 (23)	21 (10)	0
6R	24 (22)	40 (37)	20 (19)	23 (22)	0
12 T	53 (21)	33 (13)	79 (31)	82 (32)	8 (3)
12R	20 (15)	2 1 (16)	47 (35)	45 (34)	0
13T	87 (32)	77 (28)	38 (14)	<u>68 (25)</u>	3 (1)
1 Bound	609 (99 7)	571 /10 01	794 (95 7)	964 (99 E)	131 (1 2)
Totals	084 (44.1)	JIT (10.0)	(04 (40,1)	00% (40.3)	TOT (#*9)
2-Hour					
Totals	1134 (22.3)	943 (18.5)	1428 (28.1)	1441 (28.2)	149 (2.9)
() = % of	total				

- = Less than 0.5%

of the second second

And the second se

· _____

- 10 -

TABLE IIIB

SOUTHBOUND LANE CHANGES

IN FOUR LANE SECTIONS

Peak Hour

Camera Field	Lane 1 to 2	Lane <u>2 to 3</u>	Lane <u>3 to 4</u>	Lane $4 \text{ to } 3$	Lane <u>3 to 2</u>	Lane 2 to 1	Multiple Lanes
7R 8T 8R 9T 9R 10T 10R 11T 11R 13R 1-Hour 37 Totals	$\begin{array}{c} 24 & (11) \\ 77 & (19) \\ 16 & (11) \\ 36 & (11) \\ 25 & (19) \\ 44 & (14) \\ 24 & (15) \\ 52 & (14) \\ 14 & (16) \\ 29 & (27) \\ 1 & (14.7) \end{array}$	73 (34) 100 (24) 42 (29) 72 (12) 25 (19) 40 (12) 27 (18) 69 (19) 21 (24) 41 (39) 510 (20)	$\begin{array}{c} 47 & (22) \\ 73 & (18) \\ 23 & (16) \\ 45 & (7) \\ 16 & (12) \\ 35 & (11) \\ 18 & (12) \\ 44 & (12) \\ 3 & (4) \\ 0 \\ \end{array}$ $\begin{array}{c} 304 & (12) \end{array}$	35 (16) 55 (13) 8 (5) 212 (35) 20 (16) 59 (18) 29 (19) 45 (13) 13 (16) 0 476 (18.8)	$\begin{array}{c} 26 & (12) \\ 56 & (14) \\ 24 & (16) \\ 111 & (18) \\ 23 & (17) \\ 81 & (25) \\ 26 & (17) \\ 67 & (19) \\ 14 & (16) \\ 19 & (17) \\ \end{array}$ $\begin{array}{c} 447 & (17.6) \\ \end{array}$	$\begin{array}{c} 8 & (4) \\ 48 & (12) \\ 33 & (23) \\ 86 & (14) \\ 23 & (17) \\ 52 & (16) \\ 29 & (19) \\ 81 & (23) \\ 21 & (24) \\ 19 & (17) \\ \end{array}$ $6) 400 & (15.8)$	$\begin{array}{c} 3 & (1) \\ 0 \\ 13 & (2) \\ 0 \\ 12 & (4) \\ 0 \\ 0 \\ 0 \\ 28 & (1.1) \end{array}$
			Off-	Peak Hour			· .
Camera Field	Lane 1 to 2	Lane 2 to 3	Lane <u>3 to 4</u>	Lane 4 to 3	Lane <u>3 to 2</u>	Lane 2 to 1	Multiple Lanes
7R 8T 9T 9R 10T 10R 11T 11R 13R 1-Hour	23 (13) 73 (20) 30 (20) 66 (13) 30 (12) 26 (13) 26 (19) 56 (16) 27 (14) 32 (16)	$\begin{array}{cccc} 57 & (32) \\ 135 & (37) \\ 38 & (25) \\ 119 & (24) \\ 44 & (18) \\ 39 & (20) \\ 26 & (19) \\ 53 & (15) \\ 26 & (14) \\ 42 & (20) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26 (15) 17 (5) 12 (8) 97 (20) 43 (18) 18 (9) 16 (12) 59 (17) 46 (25) 61 (29)	19 (11) 39 (11) 33 (22) 52 (1) 48 (20) 48 (24) 33 (24) 61 (17) 39 (21) 30 (14)	$\begin{array}{c} 17 & (9) \\ 37 & (10) \\ 19 & (12) \\ 64 & (13) \\ 38 & (15) \\ 47 & (24) \\ 26 & (19) \\ 72 & (20) \\ 35 & (19) \\ 31 & (15) \end{array}$	$\begin{array}{c} 0\\ 2\\ 0\\ 18\\ 2\\ (1)\\ 2\\ (1)\\ 7\\ (4)\\ 2\\ (1)\\ 6\\ (2)\\ 0\\ 0\\ 0 \end{array}$

Totals 760 (15.1) 1089 (21.5) 629 (12.5) 871 (17.3) 849 (16.8) 786 (15.5) 65 (1.3)

-11-

TABLE IVA

NORTHBOUND LANE CHANGES

IN THREE LANE SECTIONS

Peak Hour

	Lane	Lane	Lane	Lane	Multiple
Camera Field	1 to 2	<u>2 to 3</u>	<u>3 to 2</u>	<u>2 to 1</u>	Lanes
1R	18 (37)	12 (25)	9 (18)	10 (20)	0
21	61 (24)	100 (40)	50 (20)	41 (16)	0
28	79 (26)	108 (36)	52(18)	58 (20)	1 (-)
3.0	65 (35)	56 (30)	32(18)	30 (16)	îù
38	13 (18)	17 (94)	$\frac{02}{24}$ (34)	17 (24)	0
470	IJ (10)	17 (44)	24 (34)	17 (24)	1(-)
41 4D	01 (20) 15 (00)	110(02)	34 (13)	22 (10)	· · · (-)
4K	15 (23)	20 (31)	13 (20)	16 (25)	1 (1)
51	18 (25)	7 (10)	26 (37)	20 (28)	0
5R	15 (25)	19 (31)	12 (19)	15 (25)	U U
6T	7 (18)	10 (25)	9 (22)	14 (35)	0
6R	5 (10)	17 (14)	27 (56)	9 (18)	2 (2)
7 T	9 (17)	7 (6)	79 (63)	30 (24)	0
12 T	21 (28)	22 (30)	14 (19)	17 (23)	0
12R	28 (29)	14 (14)	26 (26)	28 (29)	2 (2)
13T	47 (28)	29 (17)	35 (21)	54 (33)	1 (1)
1-Hour Totals	452 (24.6)	553 (30.1)	440 (24)	381 (20.8)	9 (0.5)
		Off-Peak	Hour		
	Lane	Lane	Lane	Lane	Multiple
Camera Field	1 to 2	2 to 3	3 to 2	2 to 1	Lanes
				<u> </u>	
1R	19 (23)	6 (7)	16(20)	40 (49)	$1 \cdot (1)$
21	90 (24)	121 (32)	70 (19)	85 (23)	8 (2)
2R	28 (18)	49 (32)	45 (30)	31 (20)	0
3 T	49 (23)	85 (40)	2 9 (14)	36 (17)	14 (6)
3R	15 (16)	30 (33)	16 (18)	30 (33)	0
4 T	48 (19)	97 (37)	60 (23)	49 (19)	5 (2)
4R	20 (15)	34 (26)	40 (31)	37 (28)	0
5 T	45 (26)	37 (22)	50 (29)	39 (23)	1 (-)
5R	21(22)	28 (31)	23 (25)	21 (22)	0
6 T	22 (16)	39 (29)	38 (29)	34 (25)	2 (2)
6R	20(26)	14 (18)	27 (35)	16(21)	0
71	20(27)	16(22)	21(29)	16(22)	Ő
127	48 (20)	49(20)	65(27)	80 (32)	Ž (1)
128	91(21)	10(10)	34(35)	25 (25)	0
13T	86 (28)	79 (26)	51(17)	90 (29)	1 (-)
7 77		702 (00 1)		<u> </u>	<u> </u>
Totals	552 (22.1)	703 (28,1)	585 (23,3)	629 (25.1)	34 (1,4)
2-Hour					
Totals	1004 (23.1)	1256 (28.8)	1025 (23.7	7) 1010 (23.4)	43 (1.0)

() = % of total - = Less than 0.5%

TABLE IVB

NORTHBOUND LANE CHANGES BY LANE

IN FOUR LANE SECTIONS

Peak Hour

Camera Field	Lane 1 to 2	Lane 2 to 3	Lane <u>3 to 4</u>	Lane <u>4 to 3</u>	Lane 3 to 2	Lane 2 to 1	Multiple Lanes
7R 8T 9T 9R 10T 10R 11R 13R	$\begin{array}{c} 0\\ 25 \ (6)\\ 5 \ (4)\\ 31 \ (6)\\ 7 \ (5)\\ 15 \ (5)\\ 12 \ (15)\\ 3 \ (2)\\ 58 \ (22) \end{array}$	$\begin{array}{cccc} 3 & (-) \\ 25 & (6) \\ 7 & (6) \\ 51 & (10) \\ 16 & (12) \\ 55 & (18) \\ 16 & (19) \\ 19 & (11) \\ 30 & (11) \end{array}$	$\begin{array}{c} 0 \\ 33 & (8) \\ 17 & (15) \\ 39 & (7) \\ 14 & (10) \\ 61 & (20) \\ 3 & (4) \\ 43 & (24) \\ 7 & (3) \end{array}$	$\begin{array}{cccc} 475 & (93) \\ 115 & (26) \\ 29 & (26) \\ 156 & (29) \\ 45 & (33) \\ 59 & (19) \\ 10 & (9) \\ 70 & (39) \\ 83 & (31) \end{array}$	$\begin{array}{c} 34 & (7) \\ 149 & (34) \\ 34 & (30) \\ 158 & (30) \\ 34 & (25) \\ 74 & (25) \\ 24 & (29) \\ 31 & (17) \\ 55 & (21) \end{array}$	4 (-) 80 (18) 21 (19) 81 (15) 20 (14) 30 (10) 19 (23) 12 (7) 32 (12)	0 9 (2) 0 18 (3) 2 (1) 6 (3) 0 0 1 (-)
l-Hour Totals	156 (6.2)	222 (8.6)	217 (8.5)	1042 (40.5)	593 (23.2)	299 (11.6)	36 (1.4)
			<u>Off-</u>	Peak Hour			
G a a a a a a		-		_		-	
Field	Lane <u>1 to 2</u>	Lane 2 to 3	Lane 3 to 4	Lane 4 to 3	Lane <u>3 to 2</u>	Lane 2 to 1	Multiple Lanes
Field 7R 8T 8R 9T 9R 10T 10R 11R 13R 1-Hour	Lane <u>1 to 2</u> 19 (42) 30 (12) 17 (13) 48 (13) 28 (23) 58 (17) 31 (18) 19 (6) 36 (26) 286 (15.1)	Lane 2 to 3 9 (20) 41 (16) 17 (13) 79 (21) 19 (15) 70 (20) 30 (17) 26 (9) 21 (15) 312 (16.5)	Lane 3 to 4 0 47 (18) 11 (8) 50 (13) 10 (8) 50 (14) 26 (15) 40 (14) 0 234 (12.	Lane <u>4 to 3</u> <u>4 (9)</u> 30 (12) 16 (12) 55 (14) 13 (11) 19 (6) 20 (11) 123 (42) <u>5 (4)</u> <u>4</u>) 285 (15.1)	Lane <u>3 to 2</u> 10 (22) 52 (20) 46 (34) 70 (19) 29 (24) 66 (19) 34 (20) 54 (18) 41 (29) 402 (21.2)	Lane 2 to 1 3 (7) 47 (18) 26 (20) 66 (17) 24 (19) 73 (21) 33 (19) 25 (9) 37 (26) 334 (17.7)	Multiple Lanes 0 10 (4) 0 9 (3) 0 10 (3) 0 6 (2) 0 35 (2)

= % of total = Less than 0.5%

13

-13-

requires that "Trucks Slow Vehicles Keep Right". On the other hand, 43 of the 79 multiple lane change vehicles in field 2T were passenger vehicles that changed from lane 3 to lane 1.

Figures IIIA and IIIB show the percent of total lane changes by lane in three lane and four lane sections respectively. Of course, all lane change traffic in the three lane sections use lane 2, while in the four lane sections 66% of lane change traffic use lane 2 and 72% of lane change traffic use lane 3.

Figure IV shows the comparison of direction of percent of lane changes by groups of sections. This reveals that 55.8% of the lane changing traffic in all groups combined changed lanes from the shoulder side toward the center island side. Since the study area is about the middle area of the Lodge Freeway, between the Central Business District and the end of the Freeway at James Couzens Highway in northwest Detroit, the heavier movement toward the center island does not appear to be significant. However, there is a decided difference in the percent of lane change traffic changing lanes from the shoulder side toward the center island side in the northbound direction during the During the peak hour, 45% of lane change traffic in the peak hour. northbound three lane sections and 77.3% of the lane change traffic in the northbound four lane sections change lanes from the shoulder side toward the center island side. This 32.3% difference may be caused in part by the fact that the four lane field are in the south half of the study area. Northbound peak traffic apparently changes lanes in the four lane field to enter the through traffic lanes.

Tables VA and VB show the total lane changes by type of vehicle for southbound and northbound directions respectively. Percent of total lane change by type of vehicle is shown in table VI where some

- 14 -

FIGURE III A

1.0

PERCENT OF TOTAL LANE CHANGES IN 3 LANE SECTIONS BY LANE

-15-

FIGURE IIB

و از می ازد. از معطیه معدود ا

PERCENT OF TOTAL LANE CHANGES IN 4 LANE SECTIONS BY LANE

NOTE: 1.4% Multiple Lane Changes

-16-

FIGURE IV

ľ.

1.1.1

د. درزی د

-17-

vehicle types are combined. Passenger vehicles accounted for 91.5% of the lane changes, 95% in the peak hour and 88% in the off-peak hour. Percent of total lane change by passenger vehicles is compared with percent of total volume by passenger vehicles in Figure X.

Hourly volumes of traffic by location for comparable periods of time when the lane changes were made are shown in Table VII. Daily and hourly volume variations account for the differences in volumes in sections where there appears to be no other reason, such as entrance or exit ramp, for a difference in volume. Of course, peak hour volumes are always heavier than off-peak volumes in each field, although not as heavy as might be expected. The peak hour varies from 53.7% of the two-hour volume total in southbound field 3T and 3R to 67.4% of the two-hour volume total in northbound field 2T.

Table VIII shows the number of lane changes per vehicle-mile. The number is computed by dividing the number of lane changes per mile in Table II by volume in Table VII. Except for southbound field 10T and northbound fields 2R, 7T, 7R, 8T, and 13R, the lane change rate during the off-peak hour is always higher. The off-peak hour percent of combined two hour number of lane changes per vehicle-mile is shown in Figure V. The off-peak hour percent is computed by dividing the lane change rate per off-peak hour by the combined peak and off-peak hour rates in Table VIII for each field. The average off-peak hour percent per field was 63%. Of the 48 field, 65% of the fields were within 10% \pm of the average and 94% of the fields were within 20% \pm of the average. Of the 29 three-lane fields, 25 fields were within 28% (off-peak %; 59% Of the 19 four lane fields, 14 fields were within 23% (off peak to 86%). %; 44% to 66%). The off-peak hour percent varies from 86% of the two-hour

- 18 -

Camera		·· .		Pea	ak Hou	ır						Off-P	eak H	our		
Field	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	- (1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
IR	68	0	5	2	8	18	2	0	169	18	5	8	22	30	0	0
2 T	444	23	24	15	10	5	3	0	671	22	22	36	44	30	1	0.
2R	123	11	11	3	3	2	0	0	86	9	2	10	6	13	0	0
ЗТ	174	10	5	7	2	5	0	1	208	16	15	9	10	15	0	0
3R	37	9	5	1	0	0	0	0	37	6	1	1	1	2	0	0
4 T	96	8	9	1	3	2	0	0	. 117	13	6	10	5	2	1	0
4R	34	6	. 1	0	0	0	0	1	71	11	4	5	1	1	0	1
5 T	105	9	3	2	1	2	0	0	145	5	2	· 4	5	3	0	0
5R	89	9	0	2	1	1	2	0	117	2	2	5	4	1	0	0
6T	50	5	3	3	0	0	1	0	159	12	17	16	6 :	6	1	0
6R	81	3	2	1	0	1	0	0	93	. 9	· 4	4	1	1	0	0
7R 🔭	183	22	7	1	3	0	0	0	154	10	3	5	3	2	0	0
8 T	321	41	24	10	1	12	0	0	2 85	34	7	20	9	8	0	0
8R	114	12	11	1 '	• 0	8	0	0	132	6	2	9	2	1	0	0
9T	499	58	19	17	11	0	1	0	400	40	20	18	10	6	2	0
9R	119	4	4.	2	3	0	0	0	209	13	9	8	4	2	0	0
10T	268	23	19	9	3 -	0	1	0	179	15	4	7	5	1	1	0
10R	94	26	. 14	17	0	2	0	0	121	6	1	4	1	4	0	0
11T	278	26	22	7	19	3	· 1	2	28 6	17	' 6	24	15	3	1	-0
11R	70	5	4	3	1	2	1	0	145	9	6	11	6	9	0	0
12T	130	25	11	2	11	4	1	0	200	22	6	· 9	10	. 8	7	0
12R	75	9	4	1	1	1	1	0	113	1	4	10	3	2	0	0
13T	166	17	10	3	10	1	0	0	195	28	9	12	22	7	0	0
13R	79	15	8	3	- 3	0	0.	0	170	10	5	12	8	3	0	0
1-Hour Totals	3697	376	225	113	94	69	14	4	4462	334	162	257	2 03	160	14	1

TOTAL SOUTHBOUND LANE CHANGES BY TYPE OF VEHICLE

(1) = Standard passenger vehicle
(2) = Compact passenger vehicle
(3) = Small passenger vehicle
(4) = Panel and pick-up truck
(5) = Single axle truck
(6) = Combination truck

- (7) = Bus
- (8) = Motorcycle

-

 $\left\{ \cdot \right\}$

Sec. 1

All services

1 -1200

. . .

Camera Field			Peak Hour							Off-Peak Hour						
, <u> </u>	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8
1R	47	0	1	1	0	0	0	0	54	14	2	5	4	1	1	1
2т	219	·· 8	12	8	4	0	0	1	299	16	8	19	25	6	0	. 1
2 R	266	13	11	4	3	0	1	0	128	2	8	5	9	1	0	-0
3Т	162	12	6	1	3	0	0	0	172	17	8	5	10	1	-0	0
3R	71	0	. 0	0	0	•0	0	θ	68	6	6	5	3	3	0	-0
4T	191	15°	8	0	1	- 4	1	1	204	15	11	8	13	6	1	1
4R	63	-0	1	0	1.	0	0	0	95	10	5	8	5	8	0	0
5T	59	6	4	2	0	0	0	0	130	16	8	9	5	2	1	1
5R	48	8	. 2	2	0	0	1	0	70	2	4	- 6	3	8	0	0
6T	31	5	1	3.	0	0	0	0	101	13	5	3	7	6	0	0
6R	45	2	1	0	0	1	0	0	58	9	5	3	1	1	0	0
7T	113	7	5	0	0	0	0	0	56	. 7	1	2	5	2	0	0
7R	426	43	26	7	8	1	5	0	33	3	2	3	3	1	0	0
8T	362	47	10	10	2	2	3	0	202	25	8	10	5	6	1	0
8R	94	12	4	0	· 3	0	0	0	104	13	4	7	3	2	0	0
9Т	420	69	28	10	1	3	3	0	2 93	35	10	18	15	6	0	0
9R	128	3	5	2	0	· : 0	0	0	98	8	. 8	5	1	3	0	0
10T	259	19	9	7	3	2	1	0	283	25	11	10	9	6	2	0
10R	81	1	0	1	1	0.	0	0	147	3	3	5	6	10	2	0
11R	148	8	3	3	4	1	1	0	255	4	12	8	8	6	0	0
12T	59	. 8	12	3	2	2	2	0	185	22	.9	12	10	6	0	0
12R	73	13	2	3	1	4	1	1	63	5	5	7	8	11	0	0
13T	146	5	3	4	5	3	0	0	202	20	5	19	38	19	4	0
13R	211	18	. 8	10	11	8	0	0.	99	7	3	5	14	12	0	· 0
l-hour3 Totals	8769	322	162	81	53	31	19	3	3399	297	151	187	210	133	12	4

TOTAL NORTHBOUND LANE CHANGES BY TYPE OF VEHICLE

(1) - Standard passenger vehicle
(2) = Compact passenger vehicle
(3) = Small passenger vehicle
(4) = Panel and pick-up trucks
(5) = Single axle trucks
(6) = Combination trucks

(7) = Bus

1

1-13 U

(8) = Motorcycle

TABLE VI

PERCENT OF TOTAL LANE CHANGES BY TYPE OF VEHICLE

Southbound Direction

Northbound Direction

0.479

Camera		Peal	k Hou	r	C	ff-Pe	eak Ho	our		Camera	• .	Peak	Hour			Off-F	eak H	lour	
Field	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)	· .	Field	$\overline{(1)}$	(2)	(3)	(4)	$\overline{(1)}$	(2)	(3)	(4)	_
		~		_	-	~	0.7	•				•	•	•	~ -		•	-	
	79	2	17	2	76	3	21	0		<u>IR</u>	98	2	0	0	85	6	6	3	
$\frac{2T}{2}$	94	3	3	-	87	4	9	7	-	21	95	3	2		81	7	12		
2R	95	2	3	0	77	. 8	15	0		2R	98	1	1		90	7	3	0	
3T	92	.4	4	_	87	3	10	0		ЗT	97	2	1	0	93	2	- 5	0	
3R	. 98	2_{\perp}	0	0	92	2.	6	0		3R	100	0	0	0	89	5	6	0	
4T	94	.1	5	0	87	7	5	1		4T	97	0	2	l	89	3	7	1	
4R	98	0	0	2	92	5	2	1		4R	98	0	2	0	84	6	10	0	
5T	96	2	2	0	93	2	5	0		5T	97	3	0	0	90	5	4	1 '	
5R	94	2	2	2	92	4	4	0		5R	94	4	0	2	82	6	12	0	
6Т	94	4	0	2	87	7	6			6T	94	6	0	0	88	2	10	0	
6R	98	1	1	0	95	4	1	0		6R	98	0	2	0	92	5	3	0	
, 7R	98	-	2	0	94	3	3	0		7T	100	0	0	0	88	3	9	0	
N 8T	94	3	3	0	90	5	5	0		7R	96	1	2	1	86	6	8	0	
₩ 8R	94	1	5	0	92	6	2	0		8T	96	2	1	1	91	4	5		
' 9T	95	3	2	-	93	4	3			8R	97	0	3	0	91	5	4	- 0	
9R	96	2	-2	0	94	3	3	0		9T	97	2	1		90	5	5	0	
10T	94	4	2	_	93	4	3			9R	98	2	ō	0	93	4	3	õ	
10R	88	רר	1	0	93	3	4	0		10T	96	2	$\tilde{2}$	-	89	4	6	1	
117	91	$\overline{2}$	Ā	ĩ	88	7	5			IOR	98	1	ī	0	88	3	Ğ	ñ	
118	ฉั่ริ	3	3	1	86	Ġ	Ř	Ω		118	45	2	ົ້າ	-	02	ð	5	ň	
ገጋጥ	an	1	Ģ		00 00	A	â	õ		197	01 01	а А	5		82	5	7	n n	
190	06 06	а. Т	2	1	20 20	Т Q	2 2	0		192	00 00	2	5	0 9	74	7	ιά	0	
127	90	・ つ	5	~	0 <i>3</i> Q5	4	ט דר	- ŭ		1210 1270	02 02	2	<u>л</u>	2	74	Ġ	10	7	
101	90 04	2	5	0	ຸດປ	4 C	 	0		LCT -	90 00	с к	4± 77	0	74	0	157	· T	
Tou	94	э	3	U	09	ю	Э	U		Lon	22	4	1	U	19	4	11	U	
Average				· .						Average									
% 1_Hr										% l_Hr									
Total	94	3	3	_	90	4	ß	_		Total	96	2	2	:	86	7 `	. 7	_	
Average	54	9			50	T	U	-		Avorago	50	2	6.4	—	00	· · ·	5	-	
<i>d</i> Dimoct	ion									9 Dinoct	ion								
/ Direct	0.0 1011	25	4 5							% Direct	1011	<i>1</i> E							
Anona	94	э,э	4.0	-					· .*	JOTAL	ΆT	4.0	4.0						
average	A									•									
% Study	Area		<u> </u>							**									
Total	91.5	4.0	4.5	-				· ·		~							• .		
(1) =					\				-	(0)	_	_						_	
(1) = Pa	ssenge	rver	110168	5 (2) = Pa	nel &	pick	up tr	ucks	(3) = Heat	vy tru	icks	(4) =	Misc	ellan	eous	(þus	etc.)	
- = Les	s than	0.57	6	,															

Camera Field	Peak Hour	Off-Peak Hour	Camera Field	Peak Hour	Off-Peak H
1 R	4989	3259	lR	5627	28 31
2 T	5018	4190	2 T	5804	2810
2R	5018	3569	2R	5804	3815
3T	4974	4292	ЗТ	5804	2996
3R	4974	4292	3R	5 686	3202
4 T	5099	3764	4 T	5756	3202
4R	5552	4016	4 R	5918	3397
5 T	5552	4016	5T	565 2	3321
5R	5301	3587	5R	5652	3321
6T	5301	4153	6 T	5652	3321
6R	5301	4252	6R	5652	3321
7R	6938	4015	7т	5652	3910
8 T	6165	4078	7 R	6366	4225
8R	6222	4109	8 T	5416	3967
9T	6971	4142	8R	5583	4169
9R	6293	4496	9T	5583	4169
10T	6612	4791	9 R	5583	4169
10R	7006	4496	10T	4901	4183
11T	6465	3916	10R	4901	4232
11R	6465	4136	11R	4901	4183
12T	5988	4426	12T	4665	3532
12R	5988	4001	12R	4415	3144
13T	5988	3639	13T	4944	3694
13R	6439	3202	138	5178	4076

TABLE VII

- 22 -

.

\mathbf{T}_{i}	A	B	L	E	V	1	Ι	I

NUMBER OF LANE CHANGES PER VEHICLE-MILE

Southbound Direction

· ja

1.4

Contraction in the

And the second second

Northbound	Direction

Camera Field	Peak Hour	Off-Peak Hour	Camera Field	Peak Hour	Off-Peak Hour
1R	.27	. 99	18	. 15	.31
2 T	.38	.72	2T	. 16	.31
2R	. 54	.62	2R	.78	.61 ,
зт	.24	.37	ЗŤ	.19	.44
3R	.22	. 24	3R	. 29	.67
4 T	.25	. 43	4 T	. 18	
4R	.05	. 15	4R	. 19	.68
5 T	. 33	.62	5 T	. 13	. 53
5R	.13	.24	5R	. 13	.35
6Т	.11	. 50	6 T	.06	.36
6R	. 29	.44	6R	. 23	.62
7R	. 82	1.16	71	. 47	.40
8T	.41	.55	7R	2.86	.37
8R	.62	.98	8T	. 53	.42
9T	. 57	.79	8R	. 53	. 84
9R	.25	. 57	9T	. 63	.60
10T	.41	.35	9R	.29	.35
10R	.58	.81	10T	.52	.70
11T	.58	.94	lor	.45	1.01
11R	.35	1.08	11R	.25	.48
12T	.32	.61	12T	. 18	.81
12R	. 20	.44	12R	.39	. 55
13T	. 16	.35	13 T	. 19	.46
13R	/44	1.72	13R	1,09	.72

FIGURE I

OFF-PEAK HOUR PERCENT OF COMBINED TWO HOUR NUMBER OF LANE CHANGES PER VEHICLE - MILE

combined total rates in northbound field 6T to 11% of the two hour combined total rates in northbound field 7R. The very high rate of lane change in northbound field 7R was caused primarily by the reduction of one lane at the Hamilton exit ramp. Sign changes were made at this exit after the study and an after check reveals that 403 fewer lane changes in field 7R were made in a comparable peak hour. There were 392 fewer lane changes from lane 4 to lane 3 and 12 fewer lane changes from lane 3 to lane 2. The after check increased the off-peak hour percent to 37% of the two-hour combined total rate. The sign changes that were made for the Hamilton exit consisted of adding the message "Exit Only" to the overhead signs. This sign change, however, has not completely solved the problem since traffic changing lanes from lane 4 to lane 3 (83 during peak hour after check) are illegal movements.

Number of lane changes per vehicle-mile in three lane sections and four lane sections are shown in Figure VI and Figure VII respectively. The lane change rates in the four lane sections are generally higher than in the three lane sections.

Figure VIII shows the number of lane changes per vehicle-mile by groups of sections. As shown the number of lane changes per vehiclemile for the study area is .48. The four lane northbound peak hour group has the highest rate of .84 lane changes per vehicle-mile and all three lane peak hour groups have the lowest rate of .24 lane changes per vehicle mile.

Figure IX shows the comparison of combined rate of lane changes per vehicle mile for one peak and one off-peak hour with respect to entrance and exit ramps, horizontal and vertical curves, and three

- 25 -

FIGURE VI

أ. 1

. .

NUMBER OF LANE CHANGES PER VEHICLE-MILE IN THREE LANE SECTIONS

-26-

FIGURE VII

FIGURE VIII

123

1.2.1

6

د . رید ۱

NUMBER OF LANE CHANGES PER VEHICLE MILE BY GROUPS OF SECTIONS

B - 4 LANE SB OFF PEAK HOUR C - 4 LANE OFF PEAK HOUR TOTAL D - 4 LANE NB TOTAL E - 4 LANE NB TOTAL F - 4 LANE TOTAL G - SB OFF PEAK HOUR TOTAL H - 4 LANE SB TOTAL J - 4 LANE NB OFF PEAK HOUR K - OFF PEAK HOUR TOTAL L - NB OFF PEAK HOUR TOTAL M - 3 LANE NB OFF PEAK HOUR N - NB TOTAL

P-4 LANE SB PEAK HOUR Q-3 LANE OFF PEAK HOUR TOTAL R-TOTAL STUDY AREA S-SB TOTAL T-3 LANE SB OFF PEAK HOUR U-NB PEAK HOUR TOTAL V-PEAK HOUR TOTAL V-SB PEAK HOUR TOTAL X-3 LANE NB TOTAL Z-3 LANE SB TOTAL P-3 LANE SB TOTAL C-3 LANE SB PEAK HOUR C-3 LANE NB PEAK HOUR

and four lane sections. As expected, there was generally an increased rate in the vicinity of entrance and exit ramps. There does not appear to be a rate increase in the vicinity of the horizontal curves attributable to the horizontal curves alone. Rate increases in horizontal curve fields appear to be caused by adjacent entrance and exit ramps. The horizontal curve in camera fields 4 and 5 has a degree of curvature of 2° 45', and the horizontal curve in camera fields 6 and 7 has a 30° 10' degree of curvature. The superelevated twelve foot wide lanes apparently accommodate traffic well through the curve sections. However. 32% of the curve in section 7 and 35% of curve in section 5 in northbound direction and 46% of the curve in section 7 and 21% of the curve in section 5 in southbound direction were not visible on the television monitors and therefore not surveyed. The increased lane change rate in northbound field 3R may be caused in part by the + 1.9% vertical grade. The maximum vertical grade in the remainder of the study area is 0.8%. In southbound field 4T and northbound fields 12R and 5T, there are rate increases before entrance ramps. The rate increases may be caused in part by motorists changing lanes to avoid merging traffic. In some fields such as southbound field 12T there does not appear to be a specific explanation for the rate increase.

Total volumes by type of vehicle are shown in Table IX. The percent of total volume by type of vehicle is shown in Table X. This reveals that 92.1% of the total volume is passenger vehicles and compares with 91.5% of lane changing which is done by passenger vehicle (Table VI). Percent of total volume by passenger vehicles is within 2.2% of percent of lane changes by passenger vehicles during peak, as well as off-peak hours for both directions.

- 29 -

FIGURE IX

COMPARISON OF COMBINED © RATE OF LANE CHANGES PER VEHICLE-MILE TO GEOMETRIC FEATURES

TABLE IX

TOTAL VOLUMES BY TYPE OF VEHICLE

Southbound Direction

Northbound Direction

Camera	Peak Hour Off-Peak Hou						ur			Camera	·	Peak	Hour		Off-Peak Hour					
Field	$\overline{(1)}$	(2)	(3)	(4)	(1)	(2)	(3)	(4)			Field	$\overline{(1)}$	(2)	(3)	(4)	(1)	(2)	(3)	(4)	
				=0	0.074	100	1 50	304				F 400	700	e 7		0400	7 4 4	100	110	
1R	4826	:57	36	70	2874	128	153	104			IR	5409	ΤΖŻ	51	55	Z4 30	144	138	118	
$\mathbf{2T}$	4821	85	36	76.	3795	149	121	125			2T	5540	166	51	47	2447	147	125	91	
2R	4821	85	36	76	3100	154	205	110	·		2R	5540	166	51	47	3396	182	147	90	
3 T	4779	83	. 36	- 76	3782	209	152	149			ЗТ	5540	166	51	47	2713	147	138	98	
3R	4779	83	36	76	3782	209	152	149			3R	5428	162	49	47	2779	163	166	94	
4 T	4915	71	66	47	3355	156	140	113	:		$4\mathrm{T}$	5562	96	50	48	2779	163	166	94	
4R	5324	87	82	59	3568.	171	158	119			4R	5706	102	56	54	2950	176	175	96	
5T	5324	87	82	59	3568	171	158	119	÷		5T	5411	117	61	63	2994	129	183	115	
5R	5012	149	62	78	3185	135	113	154			5R	5411	117	61	63	2994	129	18 3	115	
6 T	501 2	149	62	78	3712	189	142	100			6T	5411	117	61	63	2994	129	183	115	
6R	5012	149	62	78	3795	181	131	145			6R	5411	117	61	63	2994	129	183	115	
7 R	6647	136	70	85	3587	179	128	121			7T	5411	117	61	63	3478	173	155	103	
$\mathbf{8T}$	5853	111	112	89	3572	185	2 18 ·	103			7R	6100	126	70	70	3761	187	167	110	
8R	5957	89	85	91	3704	174	129	102			- 8T	5183	96	73	64	3420	147	185	115	
9 T	6657	101	110	103	3682	201	146	113			8R	533 8	99	81	65	3692	159	201	117	
9R	606 2	7 4 ·	. 78	79	3995	188	125	188			9Т	53 38	99.	81	65	369 2	159	201	117	
10T	6354	115	82	61	4227	216	144	204			9R	5338	99	81	65	3692	159	201	117	
10R	660 7	169	136	94	4112	.111	132	141			10T	4647	113	- 78	63	3693	183	179	128	
11T	6075	161	135	94	3425	197	162	13 2			10R	4647	113	78	63	3695	195	133	200	
11R	6075	161	135	94	3690	187	113	146			11R	4647	113	78	63	3693	183	179	128	
12T	5643	143	92	110	3977	179	112	158			12T	4368	138	69	90	3088	175	170	99	
1 2 R	5643	143	92	110	3594	142	119	146		1	12R	4173	107	77	68	2680	184	186	124	
13T	5643	143	92	110	3204	161	192	82			13T	4670	97	108	69	3239	156	172	127	
13R	6062	158	98	121	2806	1 2 0	191	85		• *	13R	4886	1 2 3	96 7	73	3547	185	20 0	134	

(1) = Passenger vehicles
(2) = Panel and pickup trucks
(3) = Heavy trucks
(4) = Busses and miscellaneous

Figure X shows the comparison of percent of total lane changes by passenger vehicles to percent of total volume by passenger vehicles. Except for southbound peak-hour field 1R, southbound off-peak hour fields 1R and 2R, and northbound off-peak hour fields 12R and 13T, the percent of total lane changes by passenger vehicles is within 10% of the percent of total volume by passenger vehicles for both directions during both peak and off-peak hours. The major reason for the increase in lane changes by trucks in these fields is due to the location of the Davison and Ford Freeways left entrance ramps to the Lodge Freeway. Trucks which serve automobile manufacturers on the west end of the Ford Freeway and east end of the Davision Freeway, account in part for the increased percent of lane changing. The trucks, of course, must work their way from lane 1 to lane 3 to comply with the ordinance to keep from interfering with traffic in lanes 1 and 2.

TABLE X

PERCENT OF TOTAL VOLUME BY TYPE OF VEHICLE

Southbound Direction

Northbound Direction

(____)

Camera	Р	Peak Hour Off-Peak Hour		2		Camera]	Hour	Off-Peak Hour									
Field	(1)	(2)	(3)	(4)	$\overline{(1)}$	(2)	(3)	(4)		Field	(1)	(2)	(3)	(4)	$\overline{(1)}$	(2)	(3)	$(\bar{4})^{-}$
18	97	1	0.5	1.5	88	4	5	3		1R	96	2	1	1	86	5	5	4
2T	96	1.5	1.	1.5	91	4	2.5	2.5		2T	95	3	ī	ī	87	5	5	3
2R	96	1.5	1	1.5	87	4	6	3		2R	95	3	1	1	89	5	4	2
3 T	96	1.5	ī	1.5	88	5	3.5	3.5		ЗТ	95	3	1	1	90	4	3.5	2.5
3R	96	1.5	1	1.5	88	5	3.5	3.5		3R	96	2	1	1	87	5	5	3
4 T	97	1	1	1	89	4	4	3		$4\mathrm{T}$	97	1	1	1	87	5	5	3.
4R	96	1.5	1.5	1	89	4	4	3		4R	96	2	1	1	87	5	5	3.
5T	96	1.5	1.5	1	89	4	4	3		5T	96	2	1	1	90	3	4	3
5R	95	3	1	1	89	4	3	4		5R	96	2	1	1	90	3	4	3
$6\mathrm{T}$	95	3	1	1	89	5	3.5	2.5		6Т	96	2	1	1	90	- 3	4	3
6R	95	3	1	1	90	4	3	3		6R	96	2	1	1	90	3	4	3
1 7R	97	2	1	1	89	5	3.5	3.5		7T	96	2	1	1	89	- 4	4	3
ఎ 8T	95	2	2	1	88	4	5	3		7 R	96	2	1	1	89	4	4	3
ω_{8R}	96;5	1.5	1.5	1.5	90	5	3	2		$\mathbf{8T}$	96	2	1	1	86	4.5	5	3.5
9T .	95	1.5	2	1.5	89	5.5	3	2.5		8R	95	2	1.5	1.5	88	4	5	3
9R	97	1	1	1	89	4	3	4		9T	95	2	1.5	1.5	88	4	5	3
10T	97	1	1	1	88	5	3	4		9R	95	2	1.5	1.5	88	4	5	3
10R	95	2	2	1	92	2	3	3		10T	95	2	1.5	1.5	88	4.5	4.5	3
11T	94	3	2	1	88	5	4	3		lor	95	2	1.5	1.5	88	4	3	5
11R	94	3	2	1	89	5	3	3		11R	95.	2	1.5	1.5	88	4.5	4.5	3
12T	96	2	1	1	90	4	2	4		12T	93	3	2	2	88	4.5	4.5	3
12R	96 ·	2	1	1	90	4	2	4		12R	95	. 2	1.5	1.5	86	5	5	4
13 T	96	2	1	1	88	4	5	3		13T	95	2	2	1	88	- 4	5	3
13R	94	2	2	2	88	4	5	3		13R	95	2	2	1	87	ີ5	5	3
Averag e % 1-Hr.									Ave 1-H	rage % r.								
Total	95.3	1.9	1.4	1.4	89.5	4.2	3.5	2.8	Tot	al	95.5	2.1	1.3	1.1	88.2	4.3	4.5	3.0
Average %						• •		• • •	Ave: Dire	rage %	e .	· 1				X .	·	
Total	92.4	3.1	2.4	2.1					Tota	al	91.8	3.2	2.9	2.1				
Average Study							,									× .		
Total	92.1	3.1	2.7	2.1		ч И						·						
(1) = Passe	1) = Passenger Vehicles (2) = Panel & pickup trucks				trucks	(3)	- Heavy	trucks	(4)=	- Buss	es an	d misc	ellar	ieous	~			

FIGURE X

and the second second

Findings

This study indicated that the percent of lane changes by passenger vehicles (91.5%) compared quite closely with the percent of total volume by passenger vehicles (92.1%). Percent of total volume by passenger vehicles was within 2.2% of percent of lane changes by passenger vehicles during peak as well as off-peak hours for both directions.

The study also revealed that 1.7% of lane change movements involved multiple lane changes. Of the multiple lane changes 72% occurred during the off-peak hours when traffic volumes were lower. All lane change movements in a three lane section, of course, involve lane 2. In the four lane sections, 66% of lane change traffic used lane 2 and 72% of lane change traffic used lane 3. Analysis showed that 55.8% of the lane change traffic changed lanes from the shoulder side to the center island side.

The number of lane changes per vehicle-mile was found to be .48 in the entire study area. The lowest rate was .05 in southbound field 4R (a 3 lane peak hour field) and the highest rate was 2.86 in northbound field 7R (a four lane peak hour field). The 2.86 rate may approach a maximum rate since northbound field 7R is located at a point where the freeway is reduced from four lanes to three lanes and the peak hour traffic makes it difficult for some traffic entering the freeway from the heavy W. Grand Boulevard entrance ramp and Seward entrance ramp to weave from lane 4 before field 7R. The 2.86 rate was reduced to a .62 rate after signs were installed requiring traffic using lane 4 to exit only via the exit ramp at the north end of field 7R. This reduction may or may not be offset by changes in other fields upstream since it would be necessary to re-survey the northbound study area further south to determine this. It has however, indicated that sign changes

- 35 -

Findings (Cont'd)

63

can reduce the rate of lane changes considerably at a specific point. In addition to northbound field 7R, critical sections, those with a high percentage of multiple lane changes and lane changes by trucks, appear to be those at the approach extremities of the study area where left entrance ramps from the Davison and Ford Freeways cause trucks to work their way from lane 1 to lane 3.

Lane change rates were generally higher in the four lane sections and the off-peak periods. As expected, there was usually an increased lane change rate per vehicle mile in the vicinity of entrance and exit Because of the various factors involving lane changing techniques, ramps. a lane change rate increase has usually been found a considerable distance downstream from the entrance ramp. Lane change rate increases were found before some entrance ramps. This may be caused in part by motorists changing lanes to avoid merging traffic. Although advance directional overhead signs are provided for exit ramps, the highest rate of lane change is generally in the area in advance of the ramp. There does not appear to be a rate increase in the vicinity of the horizontal curves attributable to the horizontal curves alone. However. lane changes in portions of the horizontal curves could not be viewed on the television monitors. The only vertical upgrade in excess of 0.8% in field 3R (+1.9%) shows an increased rate for no other explainable reason. There does not appear to be a specific explanation for rate increases in some fields such as southbound field 12T.

The study also showed that there appears to be a limit between the number of lane changes per vehicle-mile possible in the peak hour to the number of lane changes per vehicle-mile obtained during the off-peak

- 36 -

Findings (Cont'd)

hour for a given field. The off-peak percent of combined two hour number of lane changes per vehicle-mile was higher and more consistent in three lane fields than four lane fields. Analysis showed that 86% of the three lane fields were within 28% (off-peak %; 59% to 86%) and 74% of the four lane fields were within 23% (off-peak %; 44% to 66%). Using an off-peak percent average of 72% for three lane fields and 55% for four lane fields, it may be possible to make a prediction on the number of lane changes in a field for the peak hour, given the off-peak rate and peak hour volume.

Many factors in this 3.2 mile study are, including the three and four lane sections, major freeway interchanges at each end of the study area, nine entrance or exit ramps for each direction, horizontal and vertical curves, and mixture of through and local traffic contribute to the difficulty of analyzing lane change movements. Further study remains to be done on this subject since the maximum efficiency of a freeway, or any traffic facility, is obtained when the greatest volume of traffic is maintained. Among other things, this will require a minimum of lane changing movements at points where they will least interfere with through traffic. Findings in other studies of lane changes of this project may substantiate some of the findings in this report and add further information on this subject.

The author wishes to acknowledge the assistance of his associate, Mr. David F. Van Hine, for his valuable contribution in the preparation of this report.

- 37 -