

HE 147.6

.M5 R11

MICHIGAN'S STATEWIDE TRANSPORTATION MODELING SYSTEM

PRELIMINARY INVESTIGATION: A TECHNIQUE FOR THE PRO-JECTION OF ACCIDENT RATES

Report no.11 APRIL 1975 STATEWIDE RESEARCH AND DEVELOPMENT

MICHIGAN DEPARTMENT OF STATE HIGHWAYS AND TRANSPORTATION

MICHIGAN DEPARTMENT

OF

STATE HIGHWAYS AND TRANSPORTATION

BUREAU OF TRANSPORTATION PLANNING

MICHIGAN'S STATEWIDE TRANSPORTATION MODELING SYSTEM

PRELIMINARY INVESTIGATION: A TECHNIQUE FOR THE PRO-JECTION OF ACCIDENT RATES

Report no.11 APRIL 1975 STATEWIDE RESEARCH AND DEVELOPMENT

STATE HIGHWAY COMMISSION

E. V. Erickson

Chairman

Vice Chairman

Peter B. Fletcher

έ.

Carl V. Pellonpaa

Charles H. Hewitt

DIRECTOR

John P. Woodford

STATE OF MICHIGAN

WILLIAM G. MILLIKEN, GOVERNOR

DEPARTMENT OF STATE HIGHWAYS AND TRANSPORTATION

STATE HIGHWAYS BUILDING - POST OFFICE DRAWER K - LANSING, MICHIGAN 48904

JOHN P. WOODFORD, DIRECTOR

April 9, 1975

Mr. Sam F. Cryderman, Deputy Director Bureau of Transportation Planning Michigan Department of State Highways and Transportation

P.O. Drawer K Lansing, Michigan 48906

Dear Mr. Cryderman:

The following report was written by the Statewide Planning Procedures and Development Section to document their initial efforts to devise a more logical means of projecting accident rates on future year highway links. Such a development would prove most valuable in the safety analysis of regional transportation plans.

This report was prepared by Mr. Mark D. DuBay of the Statewide Section under the supervision of Richard E. Esch.

Ύ.

Sincerely, K.J. Lilly, Administrator

Highway Planning Division

HIGHWAY COMMISSION E. V. ERICKSON Chairman CHARLES H. HEWITT Vice Chairman PETER B. FLETCHER CARL V. PELLONPAA

TABLE OF CONTENTS

PRELIMINARY INVESTIGATION: A TECHNIQUE FOR THE PRO-JECTION OF ACCIDENT RATES

BY

MARK D. DUBAY

INTRODUCTION

descent and

PROBLEM DEFINITION

ANALYSIS

CONCLUSION

19

1

2

INTRODUCTION

por service and se

Algebra and Algebra

and the second s

INTRODUCTION

On July 30, 1974, the Statewide Research and Development Section published a brief report* explaining how base accident rates for old and newly proposed routes are calculated within the Statewide Transportation Modeling System. Since no technique was then available for the projection of these base year accident rates, they, out of necessity, were assumed to remain constant. Although an obvious flaw in this type of reasoning was apparent, it nevertheless gave the Department a means of evaluating alternate transportation plans until a better method could be devised. This report documents a serious attempt to find a more logical means of calculating base and future year accident rates on a link-by-link basis from variables which "physically" describe a roadway - e.g. its right-of-way, sight distance and/or surface condition. Although the data presented here does not substantiate our initial belief that it is possible to project accident rates with the proper combination of such variables, it does not, by the same token, dissuade us from believing that there is merit in Those who wish to contine our cursory investigation this approach. in this area should find this information valuable in that it frees them to investigate other possible avenues without fear of duplicating past efforts.

* Accident Rates: 547 Zone System By Alan R. Friend

-1-

PROBLEM DEFINITION

And the second se Second s

PROBLEM DEFINITION

The following formula is presently used to calculate accident rates within the Statewide Transportation Modeling System.

Accident Rate = Number of Accidents X 100,000,000 Distance X AADT X 365

Notice that the two "key" variables used in this formula are the number of accidents which have historically occurred on a road (expressed in terms of 100 million vehicle miles) and the observed AADT. To project future accident rates on a road, the Department must then be able to also project these key variables. The calculation of probably future AADT has been a fairly routine process for quite some time now but, as suggested in the introduction, no . procedure is currently available to forecast link-specific future accident rates. If the Department is to evaluate alternate highway plans in terms of safety, which is one of its prime responsibilities, it is forced to assume that accident rates remain constant through time. Although this assumption is unreasonable (e.g. the impact of technology will surely change these rates), it allows the Department to choose a "safest" highway plan from a series of alternate proposals.

The reader who is familiar with the procedures utilized in a transportation modeling system* will recognize the fact that alternate highway plans shift minimum paths between zones and therefore the flow of traffic between them. Although the link-specific accident rates do not change from plan-to-plan, their projectd traffic volumes do. Logically, then, because the above accident rate formula is tied to these varying traffic volumes, a certain plan will emerge as superior (from a safety perspective) when the historical accident

*STATEWIDE TRAVEL IMPACT ANALYSIS PROCEDURES (VOL X-A) By Mark D. DuBay -2rate is multiplied by the projected number of trips passing through each system link and there rates are summed for all paths within the system. The higher the traffic volumes assigned by the model to the more hazardous highway paths, obviously, the less safe the over-all plan will be in the final analysis.

This type of safety evaluation ignores many crucial factors which may, in some way, be responsible for the number of accidents experienced on a certain section of the highway system. Some variables are too complex to be included or even discussed here (e.g. the role of human behavior) but others are fairly simple and, in fact, already exist on the modeling system's network file. Figure 1, taken from this report's predecessor (see footnote on previous page), indicates that there is a definite difference in the accident rates between urban and rural links. As the density of traffic flow increases on urban links, can we be confident enough to say that accidents will in turn consistently rise? From the information in this figure, the design of a road (expressway vs. non-expressway) would seem to emerge as a significant variable. Does the number and width of road lanes significantly influence the occurance of accidents on a certain highway link? The point here is simply this - there is evidence to suggest that if a road segment possesses certain physical qualities it may be the site of an undue number of accidents when the proper combination of truly "causal" variables is also present. The question becomes whether such physical traits have a pervasive effect; whether they are sufficiently related to accident rates to allow the Department to use this relationship to predict accidents. If such a relationship were found to exist, a more realistic, easily updated accident rate could be assigned to each system link - as its physical characteristics change (are projected to change) so too would its assigned

-3-

4.

JU 15010	CTION 1 IS (RUR)					
41 *	# LANES=4	147.9	TOT	AL MILES=	697,68	
	# LANES=GREATER THAN 4	145.2	101	AL MILES=	. 85,92	
					· ·	
JC/12010	SITOW S IS (OBB)					
	# LANES=4	243.7	TOT	AL ⊬ILES=	56,55	
55-7	# LANES=GREATER THAN 4	170.5	TOT	AL MILES=	98,68	
JURISCI	CTION 3 FAP (RUR)		•			
	# LANES=4 AND GREATER	154 3	107		101 17	
	EXPRESSWAY	100+3		AF LIFEOA	Thi [¢] Il	
	# LANES=4 AND GREATER NON-EXPRESSWAY	352.4	TOT	AL MILES=	695,62	
	# LANES=LESS THAN 4	386.3	TOT	AL MILES≈	4303,38	
		· · · · ·				
JURISOI	CTION 4 FAP (URB)					
	# LANES=4 AND GREATER EXPRESSWAY	307+0	10T	AL MILES=	133.89	
Annual and a second sec	# LANES=4 AND GREATER	648.2) n í		301 00	
			101	AL NYLES		
	A CANEDATEOR LUAN A	00442	•()	AL FILLOS	21V e 01	
JARISDI	CTION 5 FAS (RUR)		•			
	# LANES=4 AND GREATER	117434	τοι	AL MILES=	10,43	
	# LANES=LESS THAN -4	418.2	101	AL MILES=	2239.22	
JAISOIO	CTION 6 FAS (URB)					
	# LANES=4 AND GREATER	816+6	101	AL MILES=	19,23	
and the second se	# LANES=LESS THAN 4	1449.1	TOT	AL MILES=	60.75	
		·				
	·	1.		·		
		FIGURE 1				
	SUMMARIZED	FROM 1970 HIC	GHWAY NETWO	RK		

-4-

accident rate. Such a relationship would be invaluable in assigning accident rates to proposed highway routes which currently are assigned rates which reflect those experienced on "similar" roads. A technique of this type would lead to a better safety evaluation of proposed highway plans.

-5-

0

Service Antonio S.

ANALYSIS

.

Sector Sector

and a straight of

Anaylsis

To quickly test our hypothesis that indeed a road's physical traits could be used as a predictor of accident rates, it was decided to use regression analysis to determine the strength of the statistical relationship. The physical "descriptors" which were to be utilized as the independent variables in this analysis currently reside on the modeling system's network file. They have been obtained from various Divisions throughout the Department and have undergone a conversion process only when necessary. A 1970 volumeto-capacity ratio was used in both its daily and hourly forms as a possible predictor of accident rates - abbreviated as DVCR and HVCR in the following discussion. Other descriptive variables and hopeful predictors included the number of lanes (NLAN), the lane width (LANW), the right-of-way (ROW), surface condition (SURF) and the sight distance (SITE).

The reader is assumed to be at least vaguely familiar with the concepts involved in regression analysis. No attempt is made to even briefly explain the statistics produced. The first and more lengthly portion of the investigation involved the use of the simple regression technique to determine if any relationship exists between the above mentioned variables and the accident rates on the major state trunklines. These trunklines included only those roads of the first six jurisdictional types.*

-6-

\$_

The 1970 network has approximately 1900 links of these types within the system.

Jurisdiction 1 - Rural Interstate Jurisdiction 2 - Urban Interstate Jurisdiction 3 - Rural FAP Jurisdiction 4 - Urban FAP Jurisdiction 5 - Rural FAS Jurisdiction 6 - Urban FAS

Figures 2 through 7 show the statistics calculated when each of the physical descriptors are regressed against accidents on each of the six road types. Although the value of R^2 (Fraction of Removed Variance) is, of course, not the only indicator used to determine the strength of a relationship between two variables, it is one of the first statistics generally considered. If a valid and usable relationship were found to exist between the dependent variable (accident rate) and one of the independent variables (physical descriptors), this R^2 value would approach either a +1 or a-1. Of the forty values presented in these first six figures none exceed .07. No relationship is therefore assumed to exist. (From the scatter plots provided in the original output, no relationship whatever seems to exist - i.e., neither one of a linear nor of a curvilinear nature.)

To be completely confident with our investigation it was decided to re-run the data using the simple and the multiple regression techniques. In both runs the dependent and independent variables remained the same. But in the former (simple regression) approach all six road types were "lumped" together - they were not stratified into groups as they had for the previous six runs. The relevant output appears in Figure 8. The R^2 value for all seven variables used is again extremely low. The multiple regression technique allows its user to emply a series of independent variables as a means of

-7-

JOB DEF# 4***	** [`] ¤1	PREDI	CT ACC	IDENTS AS	A FUNCTION	DF ROAD DES	CRIPTORS F	OR JUR≢1		1	:	PAGE	ົ 1	
DATA DEF= DESC	Y≡¥X+8 RP	HIGHW	AY PHYS	SICAL DESC	RIPTURS			,				BASIS		
X VÅRIABLE	Y VAR	IABLE	N	REGRESS A	IDN COEFF B	S.ERR	R(X,Y)	FRACTION OF Removed var	t					• • • •
HVCR		ACC	183	34.1691	137.3038	97.021	0+075	5,678-03	1	a ta	•		• •	•
DVCR		ACC -	183	55.9082	133.3945	96+523	0.126	• 0.02		••	*.	• •	÷	· · .
NLAN		ACC	183	-3.8376	171+8596	97+263	°0•026	6.910-04			•			•
LANW	•	ACC	183	6.7512	75.5000	96+927	0∎087	7,580-03	· •	÷ .	;	-		
SURF	ı	ACC	183	4,67,90	145,4267	97 . 194	0:046	2,110-03		 	•	7. j. 1. N		
ROW	•	ACC	183	=0.1651	203+7058	96 • 755	-0.105	0.01			5'		с	t j
• . :	۱								κ			r Ar	· .	
*** VARIANCE OF	X OR Y	VAR≖0,	ANALY:	SIS OF	SITE	DELETED,			·· .			се . Э.	1. a.s. 1.	. *
				•			•	·	•	بے ^ب ر			•	:
	· · ·	. ,		,	•	:		· · · · ·	·		:		ана 1917 - С	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
		•.												N
	•	* : .*			, , , , , , , , , , , , , , , , , , , ,		· ·	· · · · · · · · · · · · · · · · · · ·						
		,	,		•		•		r.	10 m	y in Co N sy Si ar		Ē	L
					•	···						والمراجع والمراجع والمراجع		
		یں۔ چ		3		·	. •			*		*		
•	س .		- ·				, .			. F				• • •
	ۍ د ۱				•	•			, .	· · ·			· .	
								:		× **		• •	÷	•
· · · · · · · · · · · · · · · · · · ·										• • •	. •		-	
• • •			1.3		4 1 1 1 1 1 1							,	•	
			25		1517+1303	1	. I				•	•		
					yery Arthulya (hart rt.)	ار میں میں اور میں میں اور	a ser en trast		an a	and a second for			and press	entra estatutar

22

ι.

JOB DEF= **** PROC DEF= JC Data DEF= DESC Regression;	Y¥¥ PREDIC DB2 CRP HIGHWA Y≡AX+B	T ACCI Y Phys	DENTS AS ICAL DESC	A FUNCTION Riptors	OF ROAD DES	CRIPTORS FO	t jUR≢2	
X VARIABLE	Y VARIABLE	N	REGRESS	ION CDEFF B	S.ERR	R(X,Y)	FRACTION OF Removed var	1
HVCR	ACC	64	109.2556	167.8571	194.456	0,182	0.03	
DVCR	ACC	64	52.5654	200.6433	196.538	0+110	- 0.01	
NLAN	ACC	67	-14.2652	306+3368	193.947		0.01	
LANW	ACC	67	1.2826	217+6337	195+294	0+017	3.058-04	
SURF -	ACC	67	48;0094	136.7275	188,017	0,271	0.07	
RDW	ACC	67	0,1855	178+5335	193.903	0,120	0.01	

*** VARIANCE OF X OR Y VAR*0, ANALYSIS OF

SITE DELETED,

:

PAGE

. BASIS

1

FIGURE

6

•

PF	108 DEF# ***	*** 1023	PREDI	СТ АСС	IDENTS AS	A FUNCTION	OF ROAD DES	CRIPTORS FO	S JUH⊒3		PAGE
DA Neg	TA DEF DES RESSIONI	CRP Y#A	HIGHW. X+B	АУ РНУ	SICAL DESC	RIPTORS			· .		. BASIS
)	VARIABLE	Y	VARIABLE	N	REGRESS A	ION COEFF B	S.ERR	R(X,¥)	FRACTION OF Removed var 1	•	š.
	HVCR		ACC	931	101.6766	297.5433	. 280.743	0.168	0+03	•	
	DVCR	,	ACC	931	151.8305	290.5275	277+654	0.222	· 0•05	•	
	NLAN		ACC	935	4,9538	364.3358	285.198	0,016	2,600-04	• .	
	LANW		ACC	935	-1.1943	389+9947	285+228	■0.007	5,010-05		
	SURF		ACC	935	19,7330	320+5688	-284.473	0.0/3	5,340-03	r .	J ·
	ROW	•	ACC	935	=0.7413	447 • 3722	279.050	*0. 207	0+04		
• •	SITE	У	ACC	935	1,1838	365.6498	284.720	0.060	3,610=03	. •	

:

Section 200

المشمو تعتجي و

2

FIGURE

-10-

J	08 0EF# ***	***	PREDI	CT ACC	IDENTS AS	A FUNCTION	OF ROAD DES	CRIPTORS FOR	t jüR∞4	
DA Regi	TA DEF# DES RESSION:	CRP Y#AX+B	HIGHN	АУ РНУ	SICAL DESC	RIPTORS				•
X	VARIABLE	Y VAR	TABLE	N	REGRESS	SION COEFF B	\$•ERR	R(X,4)	FRACTION OF Removed VAR (
•	HVCR		ACC	387	45,8859	813.0772	, 742.726	0.042	1.730-03	•
	DVCR	,	ACC	387	21,2135	841.3198	743+233	0.019	3.698-04	• •
	NLAN	•	ACC	392	-31.8406	987.4959	742+647	-0.079	6.230-03	
	LANW		ACC	392	14.9321	700.5102	743.521	0.062	3.898-03	
	SURF		ACC	392	45.5059	736.5856	-742+950	0.074	5.410-03	
e. ,	ROW	-	ACC	392	-2.1728	1061+5845	718+518	#0 . 264	0.07	•
-	SITE		ACC	392	₩4 .7461	860+0369	744.485	∞0.036	1.30#=03	•

Ē

FIGURE

PAGE

BASIS

1

JOB DEF# ***** Proc Def# Job Data Def# Descri	* P 5 P H	REDICT ACC Ighway Ph	CIDENTS AS VSICAL DESC	A FUNCTION Riptors	OF ROAD DE	SCRIPTORS FO	R JUR⊒5		P BA	AGE 1
REGRESSION: Y	¤AX∳B				•					
X VARIABLE	Y VARIAB	LE N	REGRESS	ION COEFF B	\$.ERR	- R(X»Y)	FRACTION OF Removed Var,		. <i>t</i>	• •
HVCR	A	CC 338	27.4073	385,3824	. 286+285	0.033	1.08@=03	•		
DVCR	- A	CC 338	62,4668	378,7492	285+751	0.069	y 4.808∞03	. • · · <u>+</u>	:	n an
NLAN	Å	CC 338	130.7929	133.6819	283+799	0.135	0+02	· ·		· · ·
LANW	A	CC . 338	12.0054	274.0322	285.684	0.073	5,270=03			
SURF	Α	CC .338	4,6087	413+2464	.286.388	°°0₄019	3,580~04	1 5	.1	
RÓW	A	CC 338	-1.0926	458.4940	285.368	• 0 +086	7+470-03			
SITE	A	CC 338	1,1826	379.3880	285.544	0,079	6.240-03	, × -		· · · · ·
	ت. ۲						· ·			Steel States
			, ,			• .	Э			
				•						
	ę				î .				т.,	
						4				J 2-
		•			*		· · · · · · · · · · · · · · · · · · ·	N N	sy i f Fair	1
		. "			د. مراجع		:			
			•	•						
	<i>,</i> , , , , , , , , , , , , , , , , , , ,					X				
		1	-	· · ·		12 5-				
							•	1,	IIIIII IIIIIII IIIIIIIIIIIIIIIIIIIIII	
		-	-				•			
			• •	·	. 1	•		· · ·		
			·				:	, ·		· · ·
					•					
		· •						•*	• •	• • •
•					. •	_				• •
	a far generation and generation and a second			pri 1973 anna - gunathanna (1975 - 1975) 1975 - 1975 - 1975 - 1975 - 1975 1976 - 1976 - 1976 - 1976 - 1976		arrandi tana arranga Arranga arranga				

•

•

۰.

ý.

.

J08 Proc	DEF# ****	**	PREDICT	A C (CIDENTS AS	A FUNCTION	OF ROAD	DESCRIPTORS FI	JR JUR#6	.`
DATA Regre	DEF= DESC SSION:	RP Y=AX+B	HIGHWAY	РН.	YSICAL DES	CRIPTORS				•
X V	ARIABLE	Y VARI	ABLE	N	REGRES	SION COEFF B	\$•ER	R R(X0Y)	FRACTION OF Removed Var (
	HVCR		ACC	42	103.0656	1292.9957	,3313+59	9 0.031	9.450-04	•
	DVCR		ACC	42	199.4998	1215.5415	3310.20	9 0.055	2.998=03	•
	NLAN		ACC	44	#150.0514	1745.7743	3238.83	4 ≅0,054	4.050-03	
	LANW	, ·	ACC	44	29,4714	1058.6970	3244.05	3 0.029	8+368-04	
	SURF		ACC	44	79.4976	1110.2910	3243.95	4 0,030	8.972~04	•
	ROW	•	ACC.	44	-9,5004	1800+8945	3227.70	4 =0,104	0+01	·
-	SITE	•	ACC	44	-38,4211	1427 • 1915	3236,94	9 •0.072	5.210-03	

PAGE

BASIS

1

FIGÙRE

-13

entration and the second

÷

Same and

SALA DEP PREETURE DESCRETAS

87.53

1.04

1 "

 $y_{i} \geq -y_{i}$ 41

\$

	JOB DI PROC D	EF= +,	****		PRED	ICT ACC	IDENTS AS	A FUNCTION	OF ROAD DES	CRIPTORS FO	R JUR≡1≈6		1	PAGE	1	
R	DATA DE	EF= DE ION:	ESCRP Y#	AX+B	HIGH	WAY PHY	SICAL DESC	RIPTURS				•		BASIS		
	X VAR	IABLE	•	Y VAŖI	ABLE	N 1 1 1	REGRESS	ION COEFF B	S.ERR	R(X,Y)	FRACTION OF Removed var	. ,			•	
		HVCR			ACC	1945	211,8089	307:9980	666 . 024	0.168	0.03	• .	••••		•	
		DVCR			ACC	1945	262+6994	308+5275	660.883	0.208	· 0•04		-	,		
		NLAN			ACC	1959	18,5180	416+2311	673.603	0.040	1,620-03				·.	
		LANW	•		ACC	1959	-13,7305	621,0484	673,499	∞0,04 4	1.930-03					
	1	SURF		\$	ACC	1959	26,8136	399,5986	673,466	0.045	2.028-03		. •			
	1	ROW			ACC	1959	-1 .3076	618.7307	660,561	-0 ,200	0.04		•			
	1 1	SITE	• •		ACC	1959	-1,8226	486.5849	673,645	~0,039	1.490-03		· .			
	i .															

ł e(4)- 14 1 . 1.15

 $\P \rightarrow$ 1999 - P 11. ٠, 412.47 17 . 3. r 2 1 A L 11 - 11 1.

FIGURE 8

-14-

الروائية والمتعادية

Į i

• • n

more accurately predicting a change in the dependent variable. Typically, when simple regression analysis is used and no relationship between variables is found, use of the multiple regression approach will yield no better results. But in some cases data values "interact" causing the importance of certain variables to be significantly improved. Unfortunately, the combination of independent variables which were at our disposal did not display this phenomenon. As can be seen in Figure 9, regressing all seven independent variables against the accident rates for all six road types simultaneously resulted in a relationship only slightly better than the previous R^2 values (Coefficient of Determination = .0854).

in the second second

								. •		_	
PŘ)8 DEF≖ ±∗*)C DEF≖ j	*** .P. 1088	REDICT ACCIDE	NTS AS A FU	INCTION OF RC	DAD DESCRIPTOR	S FOR JUR=1=	6		PAGE	1
DA1	TA DEF# DES	CRP H NUL	IGHWAY PHYSIC T I P L E	AL DESCRIPT LINEA	rurs K REGF	RESSION	ANALY	SIS		BASIS	· ·
GRDI ND (JP NO 1 OF INDEPEND	ENT VARIABL	ES 6		·			· · · · ·			• •
EPS	× 5,0000e-	11 FOR SING	ULAR MATRIX T	EST	-					•	
DEPI	ENDENT VARI	ABLE =	ACC ·				·• ·	•	٠.		
ME 41	NS AND STAN	DARD DEVIAT	IDNS		1.			•			v
•	VARIABLE	MEA	N ST.DEVIATI	ON	•	· .	. .		• • •• •		
	HVCR NLAN LANW Surf Row SITE ACC	0.789 3.049 10.909 2.732 112.441 7.875 475.270	0 0.53 1.44 1.44 1.95 1.11 6 102.79 16 102.79 16 14.31 104 675.41	947 75 54 10 58 61 44		•				•	
NOR	HAL MATRIX	Ø					•	• *	•		
	3	2	. 3	4	5	6		•	•		e - 1
ROW	1 555.7171	80,3778	∞124 , 7997	173,2598	-23000,0961	891,2466	• •		•		
NUW	្ថ៍០.0000	4073.2617	206.7362	•722.2848	158315,6021	≈15446.0555		. •			-
RDW	3 0,0000	0.0000	7432.8925 -	996+5877	117454,1712	≈4182.0226	· ·		, .		
NUN	ຼື 0.0000	0,0000	0.0000	2399,4416	-56035,9028	6826.1763			•	-	•
RDW	٥،0000 کې کې	0,0000	0.0000	0.0000	******	-888039,1218			•		
ROW	ő . 0.0000	0.000	0.0000	0.0000	0.000	398425.8900	e á	· · ·			

÷Т,

Elizabete el

.)

.

in a second s

17.809Q

CORR	ELATION HA	TRIX-					•	•		•		
	1	2	3	4	5	6	•		• • •		•	•
ROW	1						,			•		
DAU	1.0000	0,0534	∞0,0614	0,1500	-0,2153	0,0599				•	•	
	0.0534 0.0322	1.0000	0.0376	-0.2310	0,5473	∞0 ,3834					9 ⁻	
ROW	3 -0.0614 -0.0729	0.0376	1.0000	0.2360	0.3006	~ 0,0768		·		•		•
ROW	4 0:1500 0:0353	-0.2310	0.2360	1.0000	-0,2524	0.2208	•	•				
ROW	5 ~0.2153 ~0.2048	0.5473	0.3006	-0.2524	1.0000	∞0 ,3104				• •		
ROW	6 0,0599	-0,3834	-0,0768	0.2208	-0.3104	1.0000			•			•
Rew	≈0.0411 7	•			,-		•	• •		•	•	•

0411

0.1677

0.0322

°0.0

29

0.0353

. 2 חי

Gerdenie

FIGURE 9-B

-17

tan bir

(김희교)

Sector Sector <u>199</u>3

.

ζ

en. Na secondaria

JOB DEF= ****** PROC DEF= JOBB DATA DEF= DESCRP

PREDICT ACCIDENTS AS A FUNCTION OF ROAD DESCRIPTORS FOR JUR=1=6

HIGHWAY PHYSICAL DESCHIPTURS

REGRESSION COEFFICIENTS-

VARIABLE	COEFFICIENT	BETA COEFFICIENT	BETA	
CONSTANT	357.8772			

INSTANT	357.8772	
HVCR	127,2919	0.1008
NLAN	74.4824	0,1596
LANW	4.2699	0.0124
SURF	-2,6590	-0.0044
RDW	-1,9655	-0.2991
SITE	-3.6272	-0.0769

STANDARD ERROR DF ESTIMATE	Ŧ	646,9269
COEFFICIENT OF DETERMINATION	ia di	0.0854
COEFFICIENT OF DETERMINATION (ADJ)		0.0826
MULTIPLE CORRELATION COEFFICIENT	#	0,2922
MULTIPLE CORRELATION COEFFICIENT (ADJ)	2	0.2874

STANDARD DEVIATIONS AND T VALUES OF REGRESSION COEFFICIENTS-

VARIABLE	STD DEVIATION	Т	STD DEV BETA	F
HVCR	29,0002	4,39	0.0230	19,27
NLAN	13.0693	5,70	0.0280	32,48
LANW	8,4516	0,51	0,0245	0,26
SURF	14.7925	-0,18	0.0243	0,03
ROW	0.1942	-10,12	0,0296	102,46
SITE	1.1324	-3,20	0.0240	10,26

HIGH ORDER PARTIAL CORRELATION COLFF AND R2-DELETE

VARIABLE PARTIAL CORR COEF R2-DELETE

HVCR	0,0992	0.0763
NLAN	0,1284	0.0701
LANW SURF	0.0115 -0.0041	0.0853 0.0854
ROW	-0.2241	0.0371
SITE	≈0.0726	0.0806

ANALYSIS OF VARIANCE TABLE

SOURCE	D.F.	SUM	SQUARES	MEAN	SQUARES	F
REGRESSION	67	57418	49.9320	126236	41,6554	30.16
ERROR	193881	10809	69+8200	4185	14.4323	
TOTAL	194488	68228	19+7500			

CONFIDENCE LEVEL OF F(6, 1938) = 100,00%

PAGE BASIS

> ე. ე.

FIGURE

2000

ta da angana ang Sana angana angana

1 or 19

CONCLUSION

CONCLUSION

It was hoped at the beginning of this study that the seven independent variables utilized in the regression equation would have sufficient explanatory power to readily permit the projection of accident rates without further investigation or expensive data collection. Since the data for these variables already existed within the highway link file, the finding of a relationship between a road's accident rate and "descriptors" of its physical features would have, of course, made the cost of model development extremely low. The results of this preliminary investigation indicated that these seven independent variables do not in themselves possess the necessary "power of prediction". This is not to say that these variables should be discounted in any future study but rather other variables which describe a road's physical qualities should be added to them. If our original hypothesis is indeed correct, there is a proper combination of explanatory variables the cost of determining exactly what this combination might be is, at the moment however, prohibitive. Other persons interested in continuing this study may contact the Statewide Planning Procedures and Development Section for any link-specific data they may wish to obtain.