HE
1.47 .6

tatewide

Mransportation

Analysis \&

Research

MICHIGAN'S
STATEWIDE TRANSPORTATION
MODELING SYSTEM
PRELIMINARY INVESTIGATION:
A TECHNIQUE FOR THE PRO-
JECTION OF ACCIDENT RATES
Repontno.ll
APRIL 1975
STATEWIDE
RESEARCH AND DEVELOPMENT

MICHIGAN DEPARTMENT

OF

STATE HIGHWAYS AND TRANSPORTATION bureau of transportation planning

MICHIGAN'S
STATEWIDE TRANSPORTATION
MODELING SYSTEM
PRELIMINARY INVESTIGATION:
A TECHNIOUE FOR THE PROJECTION OF ACCIDENT RATES

Repont no. il
APRIL 1975
STATEWIDE
RESEARCH AND DEVELOPMENT

STATE HIGHWAY COMMISSION

E. V. Erickson

Chairman

Peter B. Fletcher

Charles H. Hewift
Vice Chairman

Carl V. Pellonpaa

DIRECTOR

HIGHWAY COMMISSION
E. V. ERICKSON Chairman CHARLES H. HEWITT Vice Chalrman PETER B. FLETCHER CARL V. PELLONPAA

STATE OF MICHIGAN

WILLIAM G. MILLIKEN, GOVERNOR
DEPARTMENT OF STATE HIGHWAYS AND TRANSPORTATION
STATE HIGHWAYS BUILDING - POST OFFICE DRAWERK - LANSING, MICHIGAN 48904
JOHN P. WOODFORD, DIRECTOR
April 9, 1975

Mr. Sam F. Cryderman, Deputy Director
Bureau of Transportation Planning
Michigan Department of State Highways and Transportation
P.O. Drawer K

Lansing, Michigan 48906
Dear Mr. Cryderman:
The following report was written by the Statewide Planning Procedures and Development Section to document their initial efforts to devise a more logical means of projecting accident rates on future year highway links. Such a development would prove most valuable in the safety analysis of regional transportation plans.

This report was prepared by Mr. Mark D. DuBay of the Statewide Section under the supervision of Richard E. Esch.

TABLE OF CONTENTS

PRELIMINARY INVESTIGATION:
 A TECHNIQUE FOR THE PROJECTION OF ACCIDENT RATES
 BY

MARK D. DUBAY

INTRODUCTION

PROBLEM DEFINITION

ANALYSIS

INTRODUCTION

INTRODUCTION

On July 30, 1974, the Statewide Research and Development Section published a brief report* explaining how base accident rates for old and newly proposed routes are calculated within the Statewide Transportation Modeling System. Since no technique was then available for the projection of these base year accident rates, they, out of necessity, were assumed to remain constant. Although an obvious flaw in this type of reasoning was apparent, it nevertheless gave the Department a means of evaluating alternate transportation plans until a better method could be devised. This report documents a serious attempt to find a more logical means of calculating base and future year accident rates on a link-by-link basis from variables which "physically" describe a roadway - e.g. its right-of-way, sight distance and/or surface condition. Although the data presented here does not substantiate our initial belief that it is possible to project accident rates with the proper combination of such variables, it does not, by the same token, dissuade us from believing that there is merit in this approach. Those who wish to contine our cursory investigation in this area should find this information valuable in that it frees them to investigate other possible avenues without fear of duplicating past efforts.

[^0]
PROBLEM DEFINITION

PROBLEM DEFINITION

The following formula is presently used to calculate accident rates within the Statewide Transportation Modeling System.

Accident Rate $=$	Number of Accidents	X	$100,000,000$	
Distance	$X \quad$ AADT	X	365	

Notice that the two "key" variables used in this formula are the number of accidents which have historically occurred on a road (expressed in terms of 100 million vehicle miles) and the observed AADT. To project future accident rates on a road, the Department must then be able to also project these key variables. The calculation of probably future $A A D T$ has been a fairly routine process for quite some time now but, as suggested in the introduction, no . procedure is currently available to forecast link-specific future accident rates. If the Department is to evaluate alternate highway plans in terms of safety, which is one of its prime responsibilities, it is forced to assume that accident rates remain constant through time. Although this assumption is unreasonable (e.g. the impact of technology will surely change these rates), it allows the Department to choose a "safest" highway plan from a series of alternate proposals.

The reader who is familiar with the procedures utilized in a transportation modeling system* will recognize the fact that alternate highway plans shift minimum paths between zones and therefore the flow of traffic between them. Although the link-specific accident rates do not change from plan-to-plan, their projectd traffic volumes do. Logically, then, because the above accident rate formula is tied to these varying traffic volumes, a certain plan will emerge as superior (from a safety perspective) when the historical accident
rate is multiplied by the projected number of trips passing through each system link and there rates are summed for all paths within the system. The higher the traffic volumes assigned by the model to the more hazardous highway paths, obviously, the less safe the over-all plan will be in the final analysis.

This type of safety evaluation ignores many crucial factors which may, in some way, be responsible for the number of accidents experienced on a certain section of the highway system. Some variables are too complex to be included or even discussed here (e.g. the role of human behavior) but others are fairly simple and, in fact, already exist on the modeling system's network file. Figure l, taken from this report's predecessor (see footnote on previous page), indicates that there is a definite difference in the accident rates between urban and rural links. As the density of traffic flow increases on urban links, can we be confident enough to say that accidents will in turn consistently rise? From the information in this figure, the design of a road (expressway vs. non-expressway) would seem to emerge as a significant variable. Does the number and width of road lanes significantly influence the occurance of accidents on a certain highway link? The point here is simply this - there is evidence to suggest that if a road segment possesses certain physical qualities it may be the site of an undue number of accidents when the proper combination of truly "causal" variables is also present. The question becomes whether such physical traits have a pervasive effect; whether they are sufficiently related to accident rates to allow the Department to use this relationship to predict accidents. If such a relationship were found to exist, a more realistic, easily updated accident rate could be assigned to each system link - as its physical characteristics change (are projected to change) so too would its assigned

* LANES=4
147.9
TOTAL NILES $=697.68$
* LANES=gREATER THAN a
145.2
IOTAL NILES: $=85.92$

NiISUICTION 2 is (URB)

* LANES=4 243.7

TOTAL FILES $=56.55$
\# LANES=GREATER THAN 4
170.5

TOTAL NILES $=98.68$

JURISCICTION 3 FAP (RUR)
\# LANES $=4$ AND gREATER EXPRESSWAY
\# Lanes=4 and greates NON-EXPRESSWAY.
352.4
386.3

IUTAL NILES= 101.17
156.3
\# LANES=LESS THAN 4
TOTAL MILES $=695.62$
tOTAL NILES $=4303.38$

JURISOICTION 4
FAP (URB)
\# LAMES=4 ANO GREATER

- EXPRESSWAY
307.0

1OTAL MILES $=133.89$
\# LANES=4 ANT GREATER NON-EXPRESSWAY
648.2

IOTAL NILES $=391.00$
\geq LAMES=LESS THAN 4
864.9

IOTAL FILES $=210.67$

JRISDICTION 5 FAS (RUR)

\# LANES $=4$ ANO GREATER	1174.4	IOTAL NILES $=10.43$
\# LANES=LESS THAN 4	$418 . ?$	TOTAL NILES $=2239.22$

WhISOICTION 6 FAS (URB)

\# LANES $=4$ ANS GREATEF	816.6	IOTAL NILES $=19.23$
\# LANES =LESS THAN 4	1449.1	IOTAL NILES $=60.75$

b:

FIGURE 1

SUMMARIZED FROM 1970 HIGHWAY NETWORK
accident rate. Such a relationship would be invaluable in assigning accident rates to proposed highway routes which currently are assigned rates which reflect those experienced on "similar" roads. A technique of this type would lead to a better safety evaluation of proposed highway plans.

ANALYSIS

Anaylsis

To quickly test our hypothesis that indeed a road's physical traits could be used as a predictor of accident rates, it was decided to use regression analysis to determine the strength of the statistical relationship. The physical "descriptors" which were to be utilized as the independent variables in this analysis currently reside on the modeling system's network file. They have been obtained from various Divisions throughout the Department and have undergone a conversion process only when necessary. A 1970 volume-to-capacity ratio was used in both its daily and hourly forms as a possible predictor of accident rates - abbreviated as DVCR and HVCR in the following discussion. Other descriptive variables and hopeful predictors included the number of lanes (NLAN), the lane width (LANW), the right-of-way (ROW), surface condition (SURF) and the sight distance (SITE).

The reader is assumed to be at least vaguely familiar with the concepts involved in regression analysis. No attempt is made to even briefly explain the statistics produced. The first and more lengthly portion of the investigation involved the use of the simple regression technique to determine if any relationship exists between the above mentioned variables and the accident rates on the major state trunklines. These trunklines included only those roads of the first six jurisdictional types.*

[^1]```
Jurisdiction l - Rural Interstate
Jurisdiction 2 - Urban Interstate
Jurisdiction 3- Rural FAP
Jurisdiction 4 - Urban FAP
Jurisdiction 5 - Rural FAS
Jurisdiction 6 - Urban FAS
```

Figures 2 through 7 show the statistics calculated when each of the physical descriptors are regressed against accidents on each of the six road types. Although the value of $\mathrm{R}^{2}$ (Fraction of Removed Variance) is, of course, not the only indicator used to determine the strength of a relationship between two variables, it is one of the first statistics generally considered. If a valid and usable relationship were found to exist between the dependent variable (accident rate) and one of the independent variables (physical descriptors), this $\mathrm{R}^{2}$ value would approach either a +1 or a-1. Of the forty values presented in these first six figures none exceed .07. No relationship is therefore assumed to exist. (From the scatter plots provided in the original output, no relationship whatever seems to exist - i.e., neither one of a linear nor of a curvilinear nature.)

To be completely confident with our investigation it was decided to re-run the data using the simple and the multiple regression techniques. In both runs the dependent and independent variables remained the same. But in the former (simple regression) approach all six road types were "lumped" together - they were not stratified into groups as they had for the previous six runs. The relevant output appears in Figure 8. The $\mathrm{R}^{2}$ value for all seven variables used is again extremely low. The multiple regression technique allows its user to emply a series of independent variables as a means of


PREDICT ACCIDENTS AS A FUNCTION OF ROAD DESCRIPTORS FOR JURE2
 REGRESSION: YヵAX $\& B$


## GURE 3 $-9-$




PREOICT ACCIDENTS AS A FUNCTION OF ROAD DESCRIPTORS FOR JURZ5 HIGHHAY PHYSICAL DESCRIPTORS

FRACTION OF
KEMOVEO VAR,
-
1.082003

| HVCR | ACC | 338 | 27.4073 | 385.3824 | . 286.285 | 0.033 | 1.088003 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OVCR | ACC | 338 | 62,4668 | 378.7492 | 285.751. | 0.069 | 4.808003 |
| NLAN | ACC | 338 | 130.7929 | 133.6819 | 283.798 | 0.135 | 0.02 |
| Lanh | ACC | $33^{8}$ | 12.0054 | 274.0322 | 285.684 | 0.073 | 5.27e-03 |
| SURF | ACC | . 338 | . 4.6087 | 413.2464 | . 2860388 | -0.019 | 3.580004 |
| ROW | ACC | 338 | -1.0926 | 458.4940 | 285.368 | 00.086 | 7.478-03 |
| SITE | ACC | 338 | 1.1826 | 379.3880 | 285.544 | 0.079 | 6.249-03 |


| JOB DEF: ****** PROC DEF: <br> J086 DATA DEFa OESCRP HEGRESSION: $\qquad$ |  |  | $\begin{aligned} & \text { PREDICT } \\ & \text { HIGHWAY } \end{aligned}$ |  | ACCIOENTS AS A FUNCT PHYSICAL OESCRIPTORS |  |  | of road de | Ptors F | JUR=6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x$ | VARIABLE | $Y$ | VARIABLE |  | $N$ | REGRES <br> A | SION COEFF | SOERR | $R(X, Y)$ | fraction of removed var, |
|  | HVCR |  | ACC |  | 42 | 103.0656 | 1292.9957 | .3313.599 | 0.031 | 9.45904 |
|  | OVCR |  | ACC |  | 42 | 199.4998 | 1215.5415 | 3310.209 | 0.055 | 2.998003 |
|  | NLAN |  | ACC |  |  | - 150.0514 | 1745.7743 | 3238.834 | 00.084 | 4.058-03 |
|  | LANH |  | ACC |  | 44 | 29.4714 | 1058.6970 | 3244.053 | 0.029 | 8.360004 |
|  | SURF |  | ACC |  | 44 | 79.4976 | 1110.2910 | 32430954 | 0.030 | 8.97904 |
|  | ROW |  | $A . C C$ |  | 44 | -9.5004 | 1800.8945 | 3227.704 | -0.104 | 0.01 |
| - | SITE |  | ACC |  | 44 | -38.4211 | 1427.1915 | 3236.949 | -0.072 | 5.210003 |


more accurately predicting a change in the dependent variable. Typically, when simple regression analysis is used and no relationship between variables is found, use of the multiple regression approach will yield no better results. But in some cases data values "interact" causing the importance of certain variables to be significantly improved. Unfortunately, the combination of independent variables which were at our disposal did not display this phenomenon. As can be seen in Figure 9, regressing all seven independent variables against the accident rates for all six road types simultaneously resulted in a relationship only slightly better than the previous $\mathrm{R}^{2}$ values (Coefficient of Determination $=.0854$ ).
PREDICT ACCIDENTS AS A FUNCTION OF ROAD OESCRIPTORS FOR JUREIOB HIGHMAY PHYSIGAL DESCRIPTURS

GROUP NO \&
AO OF INDEPENDENT VARIABLES 6
EPS: 5,0000P-1I FOR SINGULAR MATRIX TEST
DEPENDENT YARIABLE = ACC.
MEANS AND STANDARD DEVIATIONS

| VARIABLE | MEAN STODEVIATION |  |
| ---: | ---: | ---: |
| HVCR | 0.7897 |  |
| NLAN | 3.0494 | 0.5347 |
| LANH | 10.9090 | 1.4475 |
| SURF | 2.7321 | 1.9554 |
| ROW | 112.4410 | 1.1110 |
| SITE | 7.8756 | 14.7958 |
| ACC | $\boxed{475.2704}$ | .675 .4144 |

NDRMAL MATRIX由
8
23
4
5
6

| ROW | $\frac{1}{555.7171}$ | 80.3778 | -124.7997 | 173.2598 | $=23000.0981$ | 899.2466 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ROW | 2 |  |  |  |  |  |
| W | 0.0000 | 4073.2617 | 206.7362 | -722.2848 | 158315.6021 | -15446,0555 |
| ROH | 3 |  |  |  |  |  |
|  | 0.0000 | 0.0000 | 7432.8925. | 996.5877 | 117454.d712 | se4182.0226 |
| ROW | 4 |  |  |  |  |  |
|  | 0.0000 | 0.0000 | 0.0000 | 2399.4416 | -56035,9028 | 6826.1763 |
| ROW | 5 |  |  |  |  |  |
|  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |  | 888039.1218 |
| ROW | $6$ |  |  |  |  |  |
|  | $0.0000$ | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 398425.8900 |

CORRELAYION MATRIX*





| HVCR | 0.0992 | 0.0763 |
| :--- | ---: | :--- |
| NLAN | 0.1284 | 0.0701 |
| LANW | 0.0115 | 0.0853 |
| SURF | 0.0041 | 0.0854 |
| ROW | -0.2241 | 0.0371 |
| SITE | 0.0726 | 0.0806 |

```
ANALYSIS OF VARIANCE TABLE
```

    SOURCE D.F. SUM SQUARES MEAN SQUARES F
    | REGRESSION | 675741849.9320 | 12623641.6554 | 30.16 |
| :--- | ---: | :--- | :--- | :--- | :--- |

    ERROR \(1938811080969.8200 \quad 418514.4323\)
    TOTAL 1944886822819.7500
    CONFIDENCE LEVEL OF F $(6,1938)=100,00 \%$

## CONCLUSION



## CONCLUSION

It was hoped at the beginning of this study that the seven independent variables utilized in the regression equation would have sufficient explanatory power to readily permit the projection of accident rates without further investigation or expensive data collection. Since the data for these variables already existed within the highway link file, the finding of a relationship between a road's accident rate and "descriptors" of its physical features would have, of course, made the cost of model development extremely low. The results of this preliminary investigation indicated that these seven independent variables do not in themselves possess the necessary "power of prediction". This is not to say that these variables should be discounted in any future study but rather other variables which describe a road's physical qualities should be added to them. If our original hypothesis is indeed correct, there is a proper combination of explanatory variables the cost of determining exactly what this combination might be is, at the moment however, prohibitive. Other persons interested in continuing this study may contact the Statewide Planning Procedures and Development Section for any link-specific data they may wish to obtain.


[^0]:    * Accident Rates: 547 Zone System By Alan R. Friend

[^1]:    *The 1970 network has approximately 1900 links of these types within the system.

