# VEHICLE AND GEOMETRIC VARIABLES RELATED TO ACCIDENTS IN RURAL NO-PASSING ZONES 

by

William C. Taylor, Ph.iD.<br>Matthew DeLong<br>Gisso Shams

Sponsored by
The Michigan Department of Transportation
The Office of HIghway Safety Planning

November 1985

MICHIGAN STATE UNIVERSITY

## COLLEGE OF ENGINEERING <br> MICHIGAN STATE UNIVERSITY <br> EAST LANSING, MICHIGAN 48824

mSU IS AN AFFIRMATIVE ACTION/EQUAL OPPORTUNITY INSTITUTION

TECHNICAL REPORT STANDARD Titlle Page


## Form DOT F 1700.7 (8-69)

## ACKNOWLEDGEMENTS

Prepared in cooperation with the Michigan Office of Highway Safety Planning, the Federal Highway Administration and the National Highway Traffic Safety Administration, through Highway Safety Project \#MrR-85-005A, and the Traffic and Safety Division of the Michigan Department of Transportation.

The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Michigan Office of Highway Safety Planning, the Federal Highway Administration, the National Highway Traffic Safety Administration, or the Michigan Department of Transportation.

The authors would like to thank Mr. Jack Benac of the Technical Services Unit, Traffic and Safety Division of the Michigan Department of Transportation for his invaluable assistance with this project. Without Mr. Benac's cooperation, knowledge and skill this project would have been extremely difficult, if not impossible, to complete.

## INTRODUCTION

A recent study conducted by the Michigan Department of Transportation reported that "accident rates in no-passing zones are over 25 percent higher than in passing zones." (1) This finding was based on the analysis of 10 years of Michigan trunkline accident data. Statistical tests were conducted, and the the difference in accident rates was found to be statistically significant. Head-on accidents were also found to be significantly higher in no-passing zones, and since this type of accident tends to be more severe than the average for all accidents, it was postulated that the magnitude of the safety problem in no-passing zones may be even greater than the difference in accident rates,

Because no-passing zones are generally located coincident with specific geometric features such as vertical curves, horizontal curves and intersections, this higher accident rate should be expected. Thus, the evaluation of the effectiveness of specific no-passing zones can not reasonably be based on the difference between locations where passing is prohibited and those locations where it is allowed. Instead, the evaluation must be based on the differences among accident rates at various no-passing zones.

[^0]
## OBJECTIVES

The ultimate goal of this study was the identification of combinations of geometric features, roadside characteristics and vehicle characteristics that are associated with high accident rates in no-passing zones. Once these combinations are known, traffic safety can be enhanced by controlling locations to avoid combinations of those variables associated with high accident locations, by altering design standards to reduce the risk of particular accident types and/or by warning the driver of potentially dangerous locations.

The first objective of the study was the determination of the magnitude and characteristics of the accident problem at no-passing zone locations on two-lane rural highways in Michigan. The data base used in this analysis included all accidents occurring on Michigan Trunkline highways in 1980, 1981 and 1982.

The second objective was the determination of the geometric features and roadside development variables associated with no-passing zones experiencing a high rate of accidents. The information for this analysis was obtained from the MIDAS accident file, the roadway inventory file and the MDOT photologs.

The third objective was the development of a "mode1" based on roadway and roadside characteristics to predict which no-passing zones would be expected to experience a high rate of accidents. This modelling analysis was used to determine combinations of geometric features and roadside variables which result in an over-representation of specific accident types.

A fourth objective was the determination of vehicle types that were over (or under) represented in accidents occurring in no-passing zones on two-lane rural highways. This analysis required the use of the VNDCTR
file and was based on the exposure measure developed under a previous contract with MDOT.(2)

This report summarizes the results of the studies used to address each of these obfectives and contains recommendations for monitoring no-passing zones. The report also includes documentation of all computex programs used in the analysis. Copies of all data tapes used in the analysis are avallable to the sponsor.

## LITERATURE REVIEW


#### Abstract

An initial tagk in this study was the preparation of a literature review of safety in no-passing zones. A major portion of thig tagk had already been included in a report on the feasibility study for this project. (3) In that report, a total of 147 citations were retrieved by the computer search, and the literature summarized as it related to signing, pavement marking, trends in eye height and tort ilability. Roadway geometry and the roadside environment were examined in this study, and the literature review expanded to cover these items.

An additional 70 citations related to geometric or roadside features were included in the literature review covering roadway geometry (vertical curves, horizontal curves and intersections) and roadside environment (driveways) and their relationship to accidents. Most of these papers have been reviewed and summarized by the FHWA in a recent publication on highway safety (4).


(2) Safety Impacts of Vehicle Design and Highway Geometry, a dissertation by Koji Kuroda, Michigan State University, 1984.
(3) A report on the Statemof-the-Practice on No-Passing Zone Signing and Marking (1984).
(4) Synthesis of Safety Research Related to Traffic Control and Roadway Elements, Volume $1,1982$.

Geometric features, such as intersections, horizontal curves and vertical curves, generally dictate whether a section of roadway will be a passing or no-passing zone. Previous studies have found that each of these alignment features significantly affects accident rates. There is a particulaxly high concentration of accidents at rural intersections. "In rural areas 24 percent of the total accidents and 17 percent of fatal accidents occurred at intersections."(5)

The relationship between the number of accidents and the radius of horizontal curves has been studied by many researchers. One such relationship developed by Babkok in 1968 showed: "Alignments with curvature less than 3 degrees produce a small decrease in the number of accidents, while alignments with curvature greater than 3 degrees produce a rapid increase in accidents." (6) Figure 1 shows this relationship.

The combined effect of curvature and volume on accident rates has also been reported: "Accident rates increase with increasing curvature at volumes below 5000 vehicles per day (VPD). Sharp curves have lower accident rates than moderate curves at volumes over 5000 VPD" (Raff; 1953). Table 1 shows the combined effect of volume and curvature on accident rates.

On vertical curves, an increase in gradient leads to an increase in the accident rate. Bitzel (1956) studied expressways in Germany and found a positive relationship between gradient and accidents shown in Table 2.

[^1](6) Ibid.

FIGURE I

RELATIVE NUMBER OF ROAD ACCIDENTS VERSUS RADIUS


Source: "Synthesis of Safety Research Related to Traffic Control and Roadway Elements," Volume 1, December 1982.

Table 1. Accident Rate on Two-Lane Curves, by Volume of Traffic and Degree of Curvature

| Curvature | 0-4,900 vpd |  | 5,000 und or more |  | Al1 Volumes |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Degrees | Number | Per Million Vehicle Miles | Number | Per Million Vehicle Miles | Number | Per Million Vehicle Miles |
| 0-2.9 | 395 | 1.6 | 111 | 1.9 | 506 | 1.66 |
| 3.0-5.9 | 423 | 2.3 | 173 | 3.1 | 596 | 2.53 |
| 6.0 or more | 569 | 3.2 | 123 | 2.8 | 682 | 3.13 |

Source Data From: "Interstate Highway Accident Study," by M.S. Raff, Highway Research Board Bulletin 74, 1953, p. 35 (81).

Table 2. Accident Rates Related to Gradient
(German Expressways)

| Gradient in Percent | Accident Rate* |
| :---: | :---: |
| $0-1.9$ | 0.75 |
| $2-3.9$ | 1.09 |
| $4-5.9$ | 3.06 |
| $6-8.0$ | 3.39 |

* Accidents/MVM

Source: "Effect of Motorway Design on Accidents in Germany," by I. F. Bitzel, Highways and Bridges and Engineering Works, 1956, p. 4 (12).

Table 3. Freeway Accidents and Vertical Curvature

| Type of Vertical Curve and Position | Accident Rate |
| :---: | :---: |
| CRESTS (General) | 2.02 |
| On upgrade of crests | 2.33 |
| At peak of crests | 1.96 |
| On downgrade of crests | 1.92 |
|  |  |
| SAGS (General) | 2.96 |
| On downgrade of sags | 3.57 |
| At bottom of sags | 2.45 |
| On upgrade of sags | 2.39 |

* Accidents/MVM

Source: "Freeway Traffic Accident Analysis and Safety Study," by B. F. K. Mullins and C. J. Keese, HRB Bulletin 291, 1961, p. 46 (76).
The type of curve is also apparently an important factor in highway
safety, with crest curves experiencing a lower accident rate than sag
curves. The reported accident rate per mile for each curve type are as
follows: (7)


## Roadside Environment

The effect of access along 420 miles of rural, two-lane highway in Minnesota was atudied by staffeld (1953). This 420 miles had an average of 7.7 private driveways per mile. In this study the accident rates were determined for sections with and without driveways. "Accident rates for sections without driveways averaged 1.4 per million vehicle miles (MVM) while those sections with driveways for low volume or residential use averaged 1.5 accidents per MVM" (Staffeld; 1953). The rate of accidents for sections containing one or more commercial driveway, however, was found to be 2.9 accidents per MVM. This difference reflects the greater frequency of use of commercial driveways. Figure 2 shows this relationship.

After analyzing threa years of accident data on 1400 miles of rural, two-lane highways in Oregon, Schoppert (1957) concluded that volume,

[^2]FIGURE 2



## METHODOLOGY

The methodology used in this study is illustrated in Figure 3, and described in the steps which follow.


Figure 3. Methodology for Safety Evaluation of No-Passing Zones



Figure 3. (Continued)
The second objective of this study
was the determination of geometric
features and roadside characteristics
associated with no-passing zones
experiencing a high rate of accidents.
Since all roadside information is not
available on an automated file, this
task required the review of photolog
film to obtain this data, It was not
feasible (nor necessary) to view film
for the entire state, so a sample of
routes from throughout the state of
Michigan was selected for analysis.


The proposed data collection and analysis procedure was tested by selecting a sample route (M-52 from Saginaw to Adrian) and conducting a sample analysts. A separate set of calculations of passing section rates were made using only the nearest five mile lengths of passing sections on elther gide of each no-passing zone. The entire route rate and theae selected section rates were then compared. There was no significant difference between the accident rate using these two methoda. Thus, it was decided that accident rates based on the entire route on which each no-passing zone was located would be used in this study.
A listing from highest ( 7.02 accidents/MVM) to lowest ( 0
accidents/MVM) accident rates occurring in no-passing zones on M-52 was
prepared. A sample of the 15 highest accident locations and 15 locations
with zero accidents were selected and roadside information collected for
these sites. A discriminate analysis using sPSS was run on these sites,
and the results were reviewed. Based on this successful test of a sample
route, the data required for the remainder of the study was obtained and
coded as described in the following sections.


## DATA PREPARATION

Accident data for Michigan Trunkline routes for the years 1980-1982 (which is found in the MIDAS accident file) were used for this study. "Bitstat," an internal program in the state computer system, was used to reduce the master file so that it contained only two-lane two-way rural road information (file $2 L 2 W R R$ ). The $2 L 2 W R R$ file was then stratified into two files, one containing all intersection accidents and the other containing all midblock accidents.

For this study a no-passing zone is defined as any zone in which passing is restricted in one or both directions. The identified passing and no-passing zones on the 2L2WMR file were not consistent with this definition. Because of other criteria which define the limits of a control section, a zone as defined in this study may comprise several zones on the state files. Bridges, intersections, and changes in cross-section are some of the criteria the State uses for ending one zone and starting a new one. Thus, one long stretch of no-passing zone may be
several no-passing zones on the State records. This problem was solved by running the 2 L 2 WMR file through the program "Crunch" to reduce the state zones so that they matched the study definition. This was done by comparing the begin and end mile points of consecutive no-passing zone roadway segments. End mile points which were equal to the begin mile point of the following segment were replaced by the end mile point of that segment. By matching definitions the number of zones on the revised file (2L2WMR1) was approximately one third less than on file 2L2WMR.

Three years of accident data (1980-82) were combined with volume data and the accident rate (in accidents per million vehicle miles) was used as the selection criteria for high and low accident sites. The revised (2L2WMR1) file was run through the program "Accrate" which computed the accident rate for the selected accident types (see accident selection) and created a new file (file ACCRATE).

Geometric and obstacle information gathered from the photolog (see photolog data gathering) was combined with the information on the ACCRATE file for each site selected for analysis. This was accomplished by running both sets of data through the program "MERGE." A new file (file MERGE) was created with each entry having the following information: district code, control section, route number, ADT, lane width, shoulder width, begin mile, end mile, zone type, 3 accident frequencies, 3 accident rates, shoulder surface type, curve information, driveway information, roadside obstacle information, and intersection information. The two files ACCRATE and Merge were the end products of the data base building process.

Each of these files was then divided into files containing no-passing zones and those occuring where passing is allowed. Finally, each of the
files was further classified as horizontal curves or other (the other being vertical curves, tangent sections and miscellaneous segments not classified as horizontal curves). This resulted in the following eight data files available for analysis:
a. Intersection accidents occuring on horizontal curves in passing zones.
b. Intersection accidents occuring on vertical curves or tangent sections in passing zones.
c. Intersection accidents occuring on horizontal curves in no-passing zones.
d. Intersection accidents occuring on vertical curves or tangent sections in no-passing zones.
e. Midblock accidents occuring on horizontal curves in passing zones.
f. Midblock accidents occuring on vertical curves or tangent sections in passing zones.
g. Midblock accidents occuring on horizontal curves in no-passing zones.
h. Midblock accidents occuring on vertical curves or tangent sections in no-passing zones.


## ACCIDENT SELECTION

The objective of this phase of the study was to identify accident typea which occur at a differential rate in passing sections and no-passing zones. Using the data files listed in the preceding section, the mean, standard deviation and variance of each accident type in each data file was calculated. The selection of the relevant intersection and midblock accident types to be used in this study was based on a comparison of data files $a$ and $b$ versus $c$ and $d$ and data files and $f$ versus $g$ and h. These sets contain the statewide no-passing and passing zone average accident rates at intersections and midblock locations respectively.

The passing and no-passing zone accident rate, standard deviation and variance. of 25 accident types (see Table 4) were calculated and compared. At intersections, the difference in total accident rate and the rate for each accident type between passing sections and no-passing zones was quite small. Since (1) the presence of no-passing zone had little effect on the number or type of intersection accidents; (2) the accident files do not distinguish accidents by approach leg to an intersection, and (3) the accident rate at intersections $x$ difficult to define; the intersection accident file was not used for any further analyses.

The accident rates were significantly different for aeveral accident types at midblock locations. Eight midblock accident categories (total, injury, wet, icy, dark, overturned, fixed object, and head-on) were found to have a statistically significant difference in the accident rate, and

TABLE 4. Accident Rates for rural Trunkline Highways in Michigan.

| \# | Accident Type | 2L2W Rural Intersection |  | 2L2W Rural Midblock |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | No-Pass Acc/MV | Pass Acc/mV | No-Pass <br> Acc Rate | Pass Acc Rate |
| 1 | Total | 0.42 | 0.39 | 1.94 | 1.73 |
| 2 | Injury | 0.15 | 0.14 | 0.49 | 0.34 |
| 3 | Fatal | 0.00 | 0.00 | 0.02 | 0.02 |
| 4 | Wet | 0.08 | 0.08 | 0.31 | 0.26 |
| 5 | Icy | 0.07 | 0.07 | 0.41 | 0.31 |
| 6 | Dark | 0.15 | 0.14 | 1.03 | 0.96 |
| 7 | Overturn | 0.02 | 0.02 | 0.16 | 0.13 |
| 8 | Train | 0.00 | 0.00 | 0.00 | 0.00 |
| 9 | Parked | 0.01 | 0.01 | 0.03 | 0.02 |
| 10 | Multi: other | 0.02 | 0.02 | 0.15 | 0.15 |
| 11 | Pedestrian | N/A | N/A | 0.01 | 0.01 |
| 12 | Fixed Object | 0.09 | 0.07 | 0.49 | 0.31 |
| 13 | On Road Obj. | 0.00 | 0.00 | 0.01 | 0.01 |
| 14 | Animal | N/A | N/A | 0.71 | 0.80 |
| 15 | Bicycle | N/A | N/A | 0.01 | 0.01 |
| 16 | Single: other | 0.00 | 0.00 | 0.02 | 0.02 |
| 17 | Head On | 0.02 | 0.01 | 0.14 | 0.10 |
| 18 | SS-Meet | 0.00 | 0.00 | 0.01 | 0.01 |
| 19 | SS-Pass | 0.00 | 0.00 | 0.01 | 0.01 |
| 20 | Ang 1e | 0.09 | 0.09 | 0.01 | 0.01 |
| 21 | Left Turn | 0.05 | 0.06 | 0.01 | 0.02 |
| 22 | Right Turn | 0.01 | 0.01 | 0.00 | 0.00 |
| 23 | Rear End | 0.07 | 0.06 | 0.15 | 0.14 |
| 24 | Backing | N/A | N/A | 0.00 | 0.00 |
| 25 | Parking | N/A | N/A | 0.00 | 0.00 |

were identified as potential categories for analysis (see Table 5). The fact that the total accident rate and the injury accident rate were both found to be significantly higher in no-passing zones than in passing zones supports the findings in the previous MDOT report.

Since several of these categories are not mutually exclusive (i.e. a head-on accident could occur on an icy road at night, and many of the variables are not related to the presence of a no-passing zone; icy, wet, dark, injury and total accidents were not subjected to further analysis.

The three remaining accident categories (fixed object; head-on and overturned) are all related to geometrics, and thus are potentially susceptible to change by modifying geometric design standards or traffic control devices. To gain further insight into these accident types, the no-passing zones were separated into two groups, those containing at least one horizontal curve, and those with no horizontal curves, and the accident rates for each group determined.

Table 6 presents the results of this stratification. In all cases, the accident rate in no-passing zones which contain a horizontal curve is higher than in those that were established due to a vertical curve, intersection, railroad approach or some other reason. This could be expected for the three accident types selected, as these accident types are typical of horizontal curve accidents. However, it is also true of the total accident rate.

This concluded the first phase of the study, which was the determination of the difference in accident rates between nompassing zones and sections of roadway where passing is allowed. The total accident rate is approximately $10 \%$ higher in no-passing zones, with certain types of accidents being as much as $37 \%$ higher.

Table 5. Test of difference in accident rates at two lane midblock locations.

| Accident Type | No-Pass |  | Pasas |  | Difference$x_{1}-x_{2}$ | * Difference | Statiztically Significant ( $\alpha$ ه. 80) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | freq. | $\mathrm{x}_{1}$ | freq. | $x_{2}$ |  |  |  |
| Total | 12074 | 1.94 | 21712 | 1.73 | 0.42 | 10.6 | Yes |
| Injury | 3018 | 0.49 | 5657 | 0.34 | 0.15 | 30.6 | Yes |
| Fatal | 143 | 0.02 | 306 | 0.02 | 0.00 | 0.0 | No |
| Wet | 1875 | 0.31 | 3785 | 0.26 | 0.05 | 16.9 | Yes |
| Icy | 2510 | 0.41 | 4570 | 0.31 | 0.10 | 24.4 | Yes |
| Dark | 6318 | 1.04 | 13215 | 0.96 | 0.07 | 7.3 | Yes |
| Overturn* | 3018 | 0.17 | 5657 | 0.13 | 0.04 | 24.2 | Yex |
| Train | 143 | 0.00 | 306 | 0.00 | 0.00 | 0.0 | No |
| Parked | 1875 | 0.03 | 3785 | 0.02 | 0.01 | 14.8 | No |
| Multi: other | 941 | 0.15 | 2138 | 0.15 | 0.00 | 0.0 | No |
| Pedeatrian | 39 | 0.01 | 143 | 0.01 | 0.00 | 0.0 | No |
| Fixed Object ${ }^{\text {* }}$ | 2995 | 0.49 | 4535 | 0.31 | 0.18 | 37.2 | Yes |
| On Road obj. | 54 | 0.01 | 112 | 0.01 | 0.00 | 0.0 | No |
| Animal |  | N/A |  | N/A | -- | -- | -- |
| Bicycle |  | N/A |  | N/A | -- | -- | -- |
| Single: other | 112 | 0.02 | 220 | 0.02 | 0.00 | 0.0 | No |
| Head-On* | 824 | 0.14 | 1507 | 0.10 | 0.04 | 23.7 | Yes |
| SS-Meet | 35 | 0.01 | 88 | 0.01 | 0.00 | 0.0 | No |
| SS-Pasa | 73 | 0.01 | 108 | 0.01 | 0.00 | 0.0 | No |
| Ang 1 e | 63 | 0.01 | 111 | 0.01 | 0.00 | 0.0 | No |
| Left Turn | 91 | 0.02 | 227 | 0.02 | 0.00 | 0.0 | No |
| Right Turn | 12 | 0.00 | 22 | 0.00 | 0.00 | 0.0 | No |
| Rear End | 942 | 0.15 | 2053 | 0.14 | 0.01 | 9.1 | No |
| Backing |  | N/A |  | N/A | -* | -- | -- |
| Parking |  | N/A |  | N/A | - | -- | -- |
| * Three Acc. Types Used for Analy:is |  | 0.79 |  | 0.54 | 0.23 | 32.2 | Yez |

TABLE 6. Accident rates in zones with and without horizontal curves (acc. per MVM)

|  | No Passing Zones | Passing Sections | \% Difference |
| :---: | :---: | :---: | :---: |
| Statewide | 1.939 | 1.734 | 10.6 |
| Zones Containing Horizontal Curves | 1.980 | 1.750 | 11.6 |
| Zones Without <br> Horizontal Curves | 1.922 | 1.731 | 9.9 |
| Overturned Accidents |  |  |  |
| Statewide | .165 | . 125 | 24.2 |
| Zones Containing <br> Horizontal Curves | . 193 | . 146 | 24.3 |
| Zones Without <br> Horizontal Curves | . 153 | . 121 | 20.9 |
| Fixed Object Accidents |  |  |  |
| Statewide | . 491 | . 308 | 37.3 |
| Zones Containing <br> Horizontal Curves | . 580 | . 338 | 41.7 |
| Zones Without <br> Horizontal Curves | . 455 | . 303 | 33.4 |
| Head-on Accidents |  |  |  |
| Statewide | . 135 | . 103 | 23.7 |
| Zones Containing <br> Horizontal Curves | . 151 | . 126 | 16.6 |
| Zones Without <br> Horizontal Curves | . 129 | .100 | 22.5 |

Expand Data Base to Other Routes
To obtain a representative sample of
all two-lane two-way rural roads in
Michigan, approximately 1000 miles of road
from the $2 L 2 W R R$ file were selected
representing all regions of the state (see
Table 7).


These routes contained 525 no-passing zones with a total length of 227.20 miles. There were 633 of the three selected types of accidents in these zones, An accident rate for the three selected accident types plus one for a combination of head-on, fixed object, and overturned accidents was produced for each no-passing zone and for the passing sections. The no-passing zones were ranked in order from highest to lowest accident rate within each route.

Selection of the sites for the study was based on the accident rate of the three combined accident types. This rate for each zone was compared with the route wide rate, and if the rate for the no-passing zone was at least twice the rate for the passing sections on the route it was selected as a high accident site. There were 245 such sites identified. Those sites which had accident rates lower than the passing zone rates were selected as possible low accident sites. No-passing zones with low rates were more plentiful than those with high rates so to keep an equal balance, 280 sites with an accident rate of zero were selected as low accident sites.

Table 7. Routes selected for analysis.

| Zone | Route | Location | Approximate Mileage |
| :---: | :---: | :---: | :---: |
| 1 | M-123 | Between Moran and Paradise | 55 miles |
|  | M-94 | Between Manistique and Munising | 52 miles |
|  | M-35 | Between Escanaba and Menominee | 55 miles |
|  | M-28 | Between Marquette and Ironwood | 133 miles |
|  | M-26 | Between Copper Harbor and Mass City | 92 miles |
| 2 | M-32 | Between Gaylord and Alpena | 74 miles |
|  | M-72 | Between Mio and Harrisville | 41 miles |
|  | M-65 | Between Rogers City and AuGres | 112 miles |
|  | M-115 | Between Clare and Frankfort | 86 miles |
|  | M-55 | Between Cadillac and Manistee | 45 miles |
|  | M-73 | Between Grayling and Traverse City | 50 miles |
| 3 | M-52 | Between Stockbridge and Hemlock | 69 miles |
|  | M-46 | Between Saginaw and Muskegon | 82 miles |
|  | M-81 | Between Saginaw and Cass City | 45 miles |
|  | M-25 | Between Lexington and Port Austin | 65 miles |
|  | M-57 | Between Clio and Greenville | 76 miles |
|  | M-89 | Between Plainwell and Ganges | 33 miles |
|  | M-20 | Between Midland and Big Rapids | 69 miles |
|  | M-50 | Between Eaton Rapids and Aito | 51 miles |
| 4 | M-86 | Between Coldwater and Three Rivers | 42 miles |
|  | M-50 | Between Jackson and Monroe | 57 miles |
|  | M-52 | Between Adrian and Stockbridge | 45 miles |
|  | M-43 | Between Kalamazoo and South Haven | 35 miles |
|  | M-140 | Between South Haven and Niles | 40 miles |
|  | M-99 | Between Springport and Ransom | 57 miles |
|  | M-40 | Between Gobles and Long Lake | 50 miles |

[^3]Collect Geometric and Roadside
Environment Information

Geometric and roadside environment
information for each of the 525 selected
zones were gathered through the use of

MDOT's photologs. The film record of each control section was viewed and the beginning and ending mileage for each no-passing zone identified. The following geometric and roadside environment data were obtained for these no-passing zones:

## Roadway Geometry

1. Beginning mile point of the no-passing zone.
2. Ending mile point of the no-passing zone.
3. Shoulder Type - paved, unpaved, partially paved.
4. Type of Curve

- horizontal
- right
- left
- vertical
- sag
- crest

Roadside Environment

1. Number of Driveways

- commercial
- on vertical curve
- on horizontal curve
- on tangent
- residential
- on vertical curve
- on horizonal curve
- on tangent

2. Number of Roadway Obstacles within 30 feet of the Highway

- trees
- poles
- ditch (\%)
- mailbox
- guardrail
- overpass
- embankment (\%)
- culvert
- other (fence, etc.)
- signs
- target
- chevron
- advisory
- other (all highway signs except the 3 previous categories)

3. Presence of Intersection

- minor
- with stop
- with flasher
- with signal
- major
- with stop
- with flasher
- with signal

The information described above was collected separately for each side of the road (ascending and descending control section number) and was coded on data sheets. The ascending and descending information was combined for each no-passing zone for analysis purposes.

The beginning and ending photolog mile points (mile point coded through use of photolog) of each individual no-passing zone were compared with the beginning and ending MALI mile points (mile point used in the ACCRATE file) of the same no-passing zone. Since the accident files are based on MALI the mile points obtained from the photologs were changed (where necessary) to match the MALI points. A file was constructed (geometric file) consisting of 525 records, each including route number, control section number, beginning and ending mile point of each no-passing zone and the geometric and roadside environment information. This file was designated as the final work file. The file format is included in Appendix $B$.

## STATISTICAL ANALYSIS OF DATA

The discriminant analysis technique (see
discriminant anatysis
$D=D_{1} Z_{1}+D_{2} z_{2}+\ldots+D_{\rho}{ }_{\rho}$ Appendix) was used to gain an understanding of the variables that describe the propensity of a no-passing zone to experience a high accident rate. Only sites with "high" and "low" accident rates were used in the analysis in an attempt to accent the difference in the value of the variables. The analysis resulted in a set of "models" which provide a numerical estimate of the relationships being sought.

In any model building process, it is desirable to test the model against a data set different than that used to build the model. Since no comparable data exists, the data contained in the final work files (as described in the previous section) were randomly divided into two files. The first file (containing $50 \%$ of the sites) was used in model construction, and the second file (containing the remaining $50 \%$ of the sites) was used for model testing.

As in regression analysis, there are several operational options available within discriminate analysis. In this study models were constructed (1) using forward and backward stepwise procedures with all variables included in the final work file, (2) using stepwise procedures with selected variable sets and (3) using the direct method with selected variables. The purpose of the third option was to determine if there were relatively inexpensive countermeasures available that would explain the classification of a given site as "high" or "low."

Model 1


#### Abstract

The first model constructed used the forward stepwise procedure with all coded variables to develop the discriminant function. The variables selected for this model (in ordex of their selection) were: 1. Vertical Curves 2. Other Signs 3. Partially Paved Shoulder 4. Minor Intersections with Flasher Control 5. Mailboxes 6. Trees 7. Major Intersections 8. Unpaved Shoulders

Model 1 correctly categorized 87 of 122 of the high accident locations and 92 of 127 of the low accident locations. Overall, the model correctly classified $71.89 \%$ of the 249 sites as belonging to either the high or low group.. This perecent correct is referred to as the model accuracy rate in the remainder of this study.


Model 2

Since the order in which variables are used to develop the discriminant function is dependent on their order in the input data, the backward stepwise procedure was used to develop a discriminate function.

The variables included in this analysis were: (The order has no meaning in this technique since variables are being removed instead of added.)

1. Unpaved Shoulders
2. Partially Paved Shoulder
3. Horizontal Curves
4. Vertical Curves
5. Major Intersection
6. Minor Intersections with Flashers
7. Other Signs
8. Trees
9. Mailboxes
10. Embankment
11. Driveways on

Horizontal Curves

This model includes horizontal curves, embankment and driveways as new variables not used in model 1 . The net results were quite close, with 85 of 122 high accident locations and 91 of 127 low accident locations


#### Abstract

correctly categorized for an overall accuracy rate of $70.68 \%$. This implies that either these variables add little to the explanatory power of the models, or that they are closely correlated with other variables included in model 1.


## Model 3

To test the effect of sample size on the model results, a second model using the backward stepwise procedure was developed with $60 \%$ of the sites used to build the model. The variables included in this model were the same as model 2 except that driveways on vertical curves was also included.

Model. 3 correctily categorized 105 of 152 high accident location and 114 of 158 low accident locations for an overall accuracy rate of $70.65 \%$. Since the accuracy of the model in correctly categorizing high accident locations or low accident locations did not change significantly, the use of a $50 \%$ sample was retained for the remaining model analyses.

Model 4
Since shoulder width and lane width are continuous variables that are descriptive of the entire no-passing zones, and since the presence of guardrail and/or warning signs may be the result rather than a cause of a high accident rate (having already been installed as a countermeasure), a model was constructed with only these four variables. Using the forward stepwise procedure, the variables included in the model were:

1. Signs
2. Guardrail

This model, using only two variables, correctly categorized 73 of 122 high accident locations and 87 of 127 low accident locations for an overall accuracy rate of $64.26 \%$. This is reasonably close to Models 1,2
and 3. However, the question of whether these zones have high accident rates because of the presence of guardrail and signs, or have guardrail and signs because of the presence of a high accident rate has not been resolved.

Model 5

Model 5 used the backward stepwise procedure with the same four variables as model 4 , and the same variables were selected: signs and guardrail. Thus, model 5 correctly categorized the same locations as model 4.

## Model 6

Model 6 was run using only total driveways, driveways on vertical curves and driveways on horizontal curves as variables, since previous research has shown driveway density to be related to accident rates. This model selected only driveways on horizontal curves as an explanatory variable. Using this one variable, 41 of 122 high accident locations and 107 of 127 low accident locations were correctly categorized for an overall accuracy rate of $59.44 \%$ This is considerably lower than the previous models, and not too much higher than a random assignment, which would theoretically correctly categorize $50 \%$ of the sites. In fact, the only reason the model accuracy is even this high is that it classifies most sites as "low," and this results in a high level of accuracy for low sites.

Mode1 7
Discriminant analysis techniques assume the variables used in the analysis are normally distributed. Several of the variables included in our data set are classification variables ( 0,1 ); and several others were
coded into categories ( $0-3$ driveways $=1 ; 4-7$ driveways $m 2$, etc.). To test the possible effect of data format on the results, model 7 was run using only the values of the continuous variables. The stepwise technique was used, and the following variables were selected:
a. Horizontal curves
d. Other signs
b. Major intersections
e. Driveways on vertical curves
c. Minor intersections controlled
f. Mailboxes
by flashing lights
g. Overpasses

Model 7 correctly categorized 68 of 122 high accident locations and 103 of 127 low accident locations for an overall accuracy rate of $68.67 \%$.

The results of the statistical analysis of the data indicate that there is no single variable that can accurately discriminate between high and low accident sites. There are, however, several combinations of variables that can discriminate with almost equal accuracy of $70 \%$ for both high and low accident sites.

## MODEL VERIFICATION

Each of the 7 models developed in the project was used to predict the classification of the sites previously separated and placed in the verification file. The results of this model verification test is shown in Table 8.

TABLE 8. Results of the model verification analysis.

| Model | High Accident Location Correctly Categorized |  | Low Accident Location Correctly Categorized |  | Accuracy |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Number | Percent | Number | Percent |  |
| 1 | 88/123 | 71.5 | 94/153 | 61.4 | 65.9 |
| 2 | 85/123 | 69.1 | 95/153 | 62.1 | 65.2 |
| 3 | 64/93 | 68.8 | 80/122 | 65.6 | 66.98 |
| 4 | 81/123 | 65.9 | 112/153 | 73.2 | 69.3 |
| 5 | 81/123 | 65.9 | 112/153 | 73.2 | 69.3 |
| 6 | 44/123 | 64.2 | 118/153 | 77.1 | 58.7 |
| 7 | 71/123 | 57.7 | 121/153 | 79.1 | 69.6 |

These numbers are very close to the model calibration results,
indicating that the model results are consistent in their ability to
categorize locations as "high" or "low" accident sites.
Table 9 lists the variables included in the discriminant functions
for each of the seven models developed in this study. Table 10 presents
the values of the coefficients for each of these variables and the $D^{2}$
values for each model. Statistically, models 1,2 and 3 should provide
the maximum accuracy in placing no-passing zones in their correct
category, because they have the highest ${ }^{2}$ value. This means that the
centroids of the two groups are separated by a greater difference for
these models than for models $4,5,6$ and 7 .

TABLE 9. Discriminant analysis results.


Discriminant analysis identifies those variables that contribute most to the separation of the mean score of "high" and "low" accident sites. The contribution of each variable to the difference in the mean value of the two groups is represented by the variable coefficient (Table 10). Since Models 1, 2 and 3 had the highest accuracy rate, the variables used in these models were analyzed.

In model 1 , the variables with a positive coefficient contribute to the score of "high" accident sites, while the variables with a negative coefficient contribute to the score of the "low" sites. There are three variables with coefficients significantly larger than the remainder of the variables: the number of vertical curves, the number of signs located in the zone and the presence of partially paved shoulders. The high accident sites had an average of 16.1 other signs per zone, while the low accident sites averaged only 7.2 of these signs per site. The high accident sites had an average of 3.15 curves per zone compared to 1.31 in the sites with a low accident rate. While the coefficient for partially paved shoulders was relatively high, the difference in the mean score for the two categories was not significant (Table 11).

In model 2, the same three variables had the largest coefficients, indicating that these are the three variables which are nost effective in discriminating between a high accident location and a low accident location. The negative sign on the coefficients in model 2 are associated with high accident sites, a characteristic that makes discriminant analysis coefficients different than regression coefficients.

In model 3 , the major contributors are other signs, partially paved
shoulders, and unpaved shoulders. As with partially paved shoulders, the unpaved shoulder variable has an insignificant difference in the mean value between high accident and low accident sites.

It appears that both geometry, as described by the number of vertical curves per zone, and roadside development, as described by the number of other signs per zone contribute to the prediction of accident rates. However, no combination of these variables categorized sites with a satisfactory level of accuracy. Even after selecting sites from two clearly distinct categories, the models only placed about $70 \%$ of the sites in the correct category. The accuracy of the models to correctly categorize the marginal sites would probably be lower than this.

To detexmine whether the model accuracy decreased as the accident rate in the high accident zones approached the average accident rate, the 45 locations with the highest accident rates were selected, and the ability of each of the models to correctly identify these high accident locations recorded in Table 12. Using these sites with very high accident rates did not improve the model accuracy, and it was obvious that the same sites were being missed by all of the models.

One possible explanation for the lack of predictive capability is that we are attempting to predict random events. This is a problem with any accident analysis based on a small number of accidents per site, and is well recognized in the profession. For example, a site with only one accident in three years could be in the high category with an accident rate of 3.65 if the $A D T$ were 1000 vehicles and the length of the no-passing zone was .2 miles, Yet it is possible that the one accident was truly a random event, and none of the variables associated with high accident sites were present at this location.

To test the effect of these low accident frequency sites on the analysis, a model was developed using only sites with at least 3 accidents in the three year analysis period to define high accident sites. This model correctiy categorized 31 of 43 high accident sites and 118 of 127 low accident sites for an overall accuracy rate of $87.7 \%$.

The verification test was similarly successful, with an overall accuracy rate of $83.3 \%$ Reducing the influence of random accidents improved the predictive capability of the models, as expected.

The variables with the largest contribution to the discriminant scores in this model are vertical curves, horizontal curves, and the presence of an embankment with coefficients of .68, .45 and .41 respectively. As with shoulder treatment, the embankment variable has virtually the same mean value for high and low accident sites, and thus may have little significance as an independent variable.

Table 10. Discriminant function equations for the seven models.

MODEL 1:

$$
\begin{aligned}
D & =0.540 x_{a}+0.573 x_{b}+0.594 x_{c}-0.191 x_{d}+0.194 x_{e} \\
& =0.253 x_{f}-0.177 x_{g}+0.301 x_{h} \\
D^{2} & =-0.568-0.591=-1.160
\end{aligned}
$$

MODEL 2:

$$
\begin{aligned}
D & =-0.371 x_{a}-0.618 x_{b}+0.319 x_{c}-0.528 x_{d}+0.211 x_{e} \\
& +0.209 x_{f}-0.535 x_{g}+0.249 x_{h}-0.183 x_{i}-0.322 x_{j}-0.172 x_{k} \\
D^{2} & =0.583-(-0.607)=1.190
\end{aligned}
$$

MODEL 3:

$$
\begin{aligned}
\mathrm{D} & =-0.439 x_{a}-0.602 x_{b}+0.223 x_{c}-0.387 x_{d}+0.176 x_{c}+0.149 x_{f} \\
& =0.560 x_{g}+0.281 x_{h}-0.166 x_{i}-0.300 x_{j}-0.250 x_{k}-0.137 x_{1} \\
D^{2} & =0.579-(-0.602)=1.181
\end{aligned}
$$

MODELS 4 AND 5:

$$
\begin{aligned}
& D=0.675 x_{a}+0.636 x_{b} \\
& D^{2}=-0.321-0.334=-0.655
\end{aligned}
$$

MODEL 6:

$$
\begin{aligned}
D & =0.506 x_{a} \\
D^{2} & =-0.336-0.350=-0.686
\end{aligned}
$$

MODEL 7:

$$
\begin{aligned}
D & =0.515 x_{a}+0.178 x_{b}+0.282 x_{c}-0.721 x_{d}-0.374 x_{e} \\
& =0.345 x_{f}-0.406 x_{g} \\
D^{2} & =0.480-(-0.500)=0.980
\end{aligned}
$$

* $D^{2}=$ Group 1 centroid - Group 2 centroid

Table 11. Mean values of the variables used in discriminant analysis.

| Variables | Zero Accident Sites | High Accident Sites |
| :---: | :---: | :---: |
| Paved Shoulder (\%) | 0.089 | 0.033 |
| Unpaved Shoulder " | 0.504 | 0.419 |
| Partially Paved Shoulder " | 0.396 | 0.527 |
| Horizontal Curve (Number/Zone) | 1.638 | 3.912 |
| Vertical Curve " | 1.729 | 3.376 |
| Guardrail " | 2.389 | 7.596 |
| Signs " | 0.354 | 1.436 |
| Minor Intersection with Flashers " | 0.016 | 0.038 |
| Minor Intersections with Stop Signs " | 0.723 | 1.877 |
| Major Intersection " | 0.083 | 0.057 |
| Other Signs " | 10.127 | 20.204 |
| Poles " | 5.171 | 5.554 |
| Trees " | 14.492 | 19.265 |
| Driveways on Vertical Curves . " | 2.535 | 6.445 |
| Driveways on Horizontal Curves " | 1.464 | 2.180 |
| Mailboxes " | 2.600 | 3.956 |
| Overpass " | 0.529 | 1.592 |
| Embankment (\%) | 0.150 | 0.380 |
| Ditch " | 0.393 | 0.984 |
| Culvert (Number/Zone) | 0.500 | 1.131 |

Table 12. Sites identified as "high" accident locations by the 7 models.

|  |  | MODEL NUMBER |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RANK | $\begin{gathered} \text { ACCIDENT } \\ \text { RATE } \end{gathered}$ | 1 | 2 | 3 | 4 \& 5 | 6 | 7 |
| 1 | 12.45 | - | - | - | - | - | - |
| 2 | 10.15 | - | - | - |  |  | - |
| 3 | 9.61 | - | - | - |  |  |  |
| 4 | 8.14 | - | - | - | - | - | - |
| 5 | 7.31 |  |  |  |  |  |  |
| 6 | 7.02 |  |  |  |  |  |  |
| 7 | 6.52 |  |  |  |  |  |  |
| 8 | 6.34 |  |  |  |  |  |  |
| 9 | 5.89 |  |  |  | - |  |  |
| 10 | 4.68 | - | - | - | - | - | - |
| 11 | 4.57 | - | - |  | - |  |  |
| 12 | 4.39 |  |  |  |  |  |  |
| 13 | 4.06 | - | - | - |  |  | - |
| 14 | 4.01 | - | - | - | - | * | - |
| 15 | 3.95 | - |  | - |  |  |  |
| 16 | 3.90 | - | - | - | - | - | - |
| 17 | 3.90 | - | - | - | - | - | - |
| 18 | 3.65 | - | - | - | - | - | - |
| 19 | 3.51 |  | - |  |  |  |  |
| 20 | 3.31 | - |  |  |  |  | - |
| 21 | 3.18 |  |  |  |  |  |  |
| 22 | 3.15 |  |  |  |  |  |  |
| 23 | 3.13 |  |  |  |  |  |  |
| 24 | 2.68 |  |  |  |  |  |  |
| 25 | 2.28 |  |  |  | - |  |  |
| 26 | 2.27 | - | - | - | - | - | - |
| 27 | 2.27 | - | - | - | * | - |  |
| 28 | 2.13 | - | - | - |  |  |  |
| 29 | 2.12 | - | - | - | - | - |  |
| 30 | 2.12 | - | - | - | - | - | - |
| 31 | 2.11 | - | - | - | - | - | - |
| 32 | 2.08 |  |  |  | - |  |  |
| 33 | 2.07 | - | - | - | - | - | - |
| 34 | 2.05 | - | - | - | - | - | - |
| 35 | 2.04 |  |  |  | - | - | - |
| 36 | 2.00 | - | - | - | - |  |  |
| 37 | 1.96 | - | * |  |  |  | - |
| 38 | 1.95 | - | - | - | - | - | - |
| 39 | 1.95 | - | - | - | - | - | - |
| 40 | 1.93 | - | - | - | - | - | - |
| 41 | 1.89 | - | - | - | - | - | - |
| 42 | 1.87 | - | - | - | - | - | - |
| 43 | 1.86 | - | - | - |  | - | - |
| 44 | 1.86 |  |  |  |  |  |  |
| 45 | 1.83 | - |  |  |  |  |  |

## RATE BASED ANALYSES


#### Abstract

The analyses conducted to construct the models presented in Table 10 were based on the frequency with which the independent variables occurred in each of the no-passing zones. Since the mean length of the no-passing zones with zero accidents was only 0.26 miles while the average length of the high accident zones was 0.63 miles, this difference in length could mask the significance of some variables. For example, while the number of trees per zone were 14.5 and 19.3 for zero accident sites and high accident sites respectively (see Table ll), the density of trees were 34.2 and 15.6 respectively.

To determine if the use of rate based variables would alter the results of the analyses, the frequency based variables were divided by the length of the zone in which they occurred, and a new set of variables constructed as shown in Table 13. Regression analysis and discriminate analysis techniques were then used to analyze ths data set.

Examination of the mean values were somewhat surprising in that the density of trees and poles was higher in zero accident sites than in high accident sites. On the other hand, there is little difference in the mean value of vertical curves per mile and other signs per mile, two of the variables identified as significant in the discriminant analysis models.

^[ Two of the variables that appeared to have a significant difference in value for the zero accident sites and high accident sites were driveways on vertical curves and driveways on horizontal curves. These two variables were selected for further analysis since it is reasonable to expect an increase in accidents where the existence of driveways and ]


curves coincide. The 525 analysis zones were categorized by accident frequency, and the mean value of each of these variables calculated for each category. The results of these calculations are shown in Table 14, and Figures 4 and 5. There is an obvious trend in this data, with the frequency of accidents increasing with both the number of driveways per mile on vertical curves and the number of driveways per mile on horizontal curves. Since grouped data were used to construct these curves, it must be remembered that much of the variability in the values of the independent variables is lost in these figures.

Simple and multiple regression techniques were used to determine whether any single variables or combination of variables were statistically significantly related to the total accident rate or the accident rate for the three accident types used in the discriminant analysis models. The simple correlation coefficients are shown in Table 15. The correlation coefficient for the multiple regression equation were only . 084 and .080 respectively for the total accident rate and the rate for the three selected accident types.

Scatter diagrams of the number of driveways per mile on horizontal curves, driveways per mile on vertical curves, trees per mile and other signs per mile versus total accident rate and accident rate for the three selected accident types is shown in Figures 6 through 13. It is clear from these diagrams that the variability of the data is too large to develop statistical significance.

Finally, a discriminate analysis was conducted to determine whether a model with better predictive capability than those presented in Table 10 could be developed. The predictive capability of the best model. using rates instead of frequencies was only $60.9 \%$. This is lower than those using frequency.

Table 13. Mean Values of the Rate Based Variables (using 525 sites)

| Variables | Zero Accident Sites | $\begin{gathered} \text { Zero Accident } \\ \text { Sites } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: |
| Horizontal Curves (\#/mi) | 6.30 | 6.21 |
| Vertical Curves (\#/mi) | 6.65 | 5.36 |
| Signs (\#/mi) | 1.36 | 2.28 |
| Minor Intersection with Signal (\#/mi) | 0.06 | 0.09 |
| Minor Intersection with Stop Sign (\#/mi) | 2.78 | 2.98 |
| Minor Intersection with Flasher (\#/mi) | 0.06 | 0.06 |
| Major Intersection (\#/mi) | 0.32 | 0.09 |
| Other Signs (/f/mi) | 38.95 | 32.07 |
| Poles ( $/ 1 / \mathrm{mi}$ ) | 19.89 | 15.73 |
| Trees (\#/mi) | 55.74 | 30.58 |
| Driveways on Tangent Section ( $/ / / \mathrm{mi}$ ) | 2.95 | 2.35 |
| Driveways on Vertcal Curves (\#/mi) | 9.75 | 10.23 |
| Mailboxes (\#/mi) | 10.00 | 6.28 |
| Mean Length of No-Passing Zones (mi) | 0.26 | 0.63 |

Table 14. Mean number of accidents for various categories of driveway density

| \# Accidents | Mean Density of driveway, on <br> horizontal curves ( $\mathrm{H} / \mathrm{mi})$ |
| :--- | :---: |
| 0 | 2.27 |
| $1-2$ | 2.26 |
| $3-4$ | 1.99 |
| $5-6$ | 3.52 |
| $7-8$ | 2.28 |
| $9-10$ | 4.71 |
| $>10$ | 3.27 |


| Accidents | Mean Density of driveways on <br> vertical curves (\#/mi) |
| :---: | :---: |
| 0 | 3.43 |
| $1-2$ | 5.74 |
| $3-4$ | 6.47 |
| $5-6$ | 8.20 |
| $7-8$ | 5.38 |
| $9-10$ | 9.50 |
| $>10$ | 8.67 |

Figure 4. Accident Frequency versus Density of Driveways on Horizontal Curves


Figure 5. Accident Frequency versus Density of Driveways on Vertical Curves


Table 15. Simple Correlation Coefficients

| Variable | Total Accident Rate | Three Type Accident Rate |
| :--- | :---: | :---: |
| ADT | -.232 | -.162 |
| horizontal curve density | -.049 | .096 |
| vertical curve density | .017 | -.039 |
| sign density | .051 | .103 |
| other sign density | .035 | -.009 |
| tree density | -.052 | .054 |
| pole density | -.009 | -.029 |
| minor intersection with <br> signal density <br> minor intersection with <br> stop sign density <br> driveway on tangent section <br> density <br> driveway on horizontal curve <br> density <br> driveway on vertical curve <br> density <br> mailbox density | .021 | .035 |



| 0.00 | 20.00 | 40.00 | 60.00 | 80.00 | 100.00 | 120.00 | 140.00 | 160.00 | 180.00 | 200.00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

5.00

9.00
6.00
3.00
$\begin{array}{lll}* & * & \\ * & & \\ + & * & \\ * & & * M\end{array}$
$M+$
$M+$
$M+$
M **

M M
M $M+M$
MMMM
MM**
MMM** * *
MMM * ** * * **M *
MM **
MM
0.00

MM
MMMMM
**M
M**M*
$\begin{array}{lllllllll}0.00 & 20.00 & 40.00 & 60.00 & 80.00 & 100.00 & 120.00 & 140.00 & 160.00\end{array} 180.00 \quad 200.00$
FIGURE 7 Density of Driveways on Horizontal Curves vs the Three Type Total Accident Rate


FIGURE 8 Density of Driveways on Vertical Curves vs Total Accident Rate
 15.00

M
$\begin{array}{lll}: M & \\ : M & M * * & \\ M\end{array}$
$: M M * * * *$
:M*M***
$: M *$ MMMMM *M
: МММММММММ*M
: $\mathrm{M}^{+}$* MMMMM
0.00 -
-ММММММММММММ* $\quad$ MM**M***** **

| 0.00 | 20.00 | 40.00 | 60.00 | 80.00 | 100.00 | 120.00 | 140.00 | 160.00 | 180.00 | 200.00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

FIGURE 9 Density of Driveways on Vertical Curves vs the Three Type Total Accident Rate.

15.00


FIGURE 11 Density of Trees vs the Three Type Total Accident Rate.
0.00
20.00
40.00
60.00
80.00
100.00
120.00 140.00 160.00 180.00 200.00


FIGURE 12 Density of Other Signs vs Total Accident Rate


FIGURE 13 Density of Other Signs vs the Three Type Total Accident Rate.

## EVALUATION OF HEAD-ON ACCIDENTS

A search of the accident files for the three year period (1980-82) identified a total of 100 accidents coded as head-on accidents in the 525 no-passing zones. Due to a coding change in 1982 , hard copies of only 82 of the 100 identified accidents were easily obtainable. These 82 accident reports were obtained and examined. From the information given on the police reports the accidents were classified as horizontal curve accidents, vertical curve accidents, and other. The category "other" includes all accidents not specifially coded by the investigating officer as having occured on a horizontal or vertical curve. This category probably includes the no-passing zone approaches to horizontal and vertical curves as well a no-passing zones related to intersections, railroad crossings, etc.

Most of the accidents (57 of 82) fell into the other category. Thirteen of these accidents were not head-on accidents. This subgroup contains accidents such as "gravel from a dump truck going in the opposite direction broke the windshield," or, "a chair fell off of the northbound vehicle and the southbound vehicle ran into it."

Five of these accidents were caused by impaired drivers. This includes accidents on tangent, level roadway sections where the driver at fault fell asleep at the wheel, was intoxicated, or was distracted in some other way. Another seven of these accidents involved vehicles turning into driveways or intersection accidents classified as midblock.

The xemaining 32 "other" accidents were "crossed the centerline" accidents. Of these accidents 11 were weather related (visibility zero,
icy roads causing loss of control, etc.) and four were loss of control accidents. Only two accidents were reported as driver disregard for the no-passing zone marking.

A total of 15 of the 82 accidents occurred in no-passing zones on horizontal curves. Of these, four were weather related, three were loss of control accidents, two were intersection or turning accidents, and six were "crossed the centerline" accidents.

Only 10 of the 82 accidents occurred on vertical curves. Of these, four were weather related, three were driver error (too fast for conditions, reckless driving), and three were "crossed the centerline" accidents.

The number of head-on accidents included in the 525 zones was relatively small, with the majority of these accidents occurring on tangent sections. Because of the small number of accidents, no satisfactory analysis of these accidents was possible. Violations of the no-passing zone markings do not appear to contribute to a significant number of accidents, and no particular problems were discovered relative to the length of the no-passing zone marking or the driver eye height. While this study cannot conclusively state that these are not important issues, they do not appear to contribute to a significant number of accidents.

## VEHICLE CHARACTERISTICS

The third objective of this study was to determine if certain vehicle classifications, by weight, were over or under represented in accidents at no-passing zones. A previous study (8) had shown that small vehicles are over-represented in rural midblock accidents, but no determination had been made relative to the presence of a no-passing zone.

VNDCTR
Vehicle characteristics were obtained from the "VNDCTR $83^{\prime \prime}$ program file. The program "VNDCTR 83 " was developed for use in the previous study and was adapted for use in this study. The accident information on the VNDCTR file (file VIN) is from 1983 and 1984. There are more than 36,000 accident records on two-lane two-way rural roads in this file. (For file description see Appendix).

The VNDCTR file was first used to identify the number of vehicles in each of six vehicle weight classes involved in midblock accidents on 2-1ane rural highways. This distribution (on a statewide basis) for the selected accident types was determined using the VNDCTR file and the 2L2WMR file. Then the percentage of accidents, by vehicle weight, was determined by separating passing sections from no-passing zones. The results are shown in Table 13.

Figures 4, 5, 6 and 7 show the no-passing to passing accident ratio, by vehicle weight, for overturned, fixed object, head-on, and the total of

[^5]Table 13. Accidents by Vehicle Weight Class

| Accident Type: <br> Vehicle Type: <br> Vehicle Number: | $\begin{aligned} & 1500- \\ & 1999 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2000- \\ & 2499 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2500- \\ & 2999 \\ & \hline \end{aligned}$ | $\begin{aligned} & 3000- \\ & 3499 \\ & \hline \end{aligned}$ | $\begin{array}{r} 3500- \\ 3999 \\ \hline \end{array}$ | $\begin{aligned} & \text { Over } \\ & 4000 \end{aligned}$ | Total <br> Accidents |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Overturned No-Passing VEH \#1 | $\begin{gathered} 37 \\ 13.7 \% \end{gathered}$ | $\begin{gathered} 80 \\ 29.5 \% \end{gathered}$ | $\begin{gathered} 74 \\ 27.37 \end{gathered}$ | $\begin{aligned} & 43 \\ & 15.9 x \end{aligned}$ | $\begin{aligned} & 21 \\ & 7.7 \% \end{aligned}$ | $\begin{aligned} & 16 \\ & 3.9 \% \end{aligned}$ | $\begin{aligned} & 271 \\ & 100 \% \end{aligned}$ |
| Overturned Passing VEH \#1 | $\begin{gathered} 61 \\ 12.9 \% \end{gathered}$ | $\begin{aligned} & 134 \\ & 28.5 \% \end{aligned}$ | $\begin{aligned} & 115 \\ & 24.5 \% \end{aligned}$ | $\begin{gathered} 79 \\ 16.8 \% \end{gathered}$ | $\begin{gathered} 48 \\ 10.2 \% \end{gathered}$ | $\begin{aligned} & 33 \\ & 7.0 \pm \end{aligned}$ | $\begin{aligned} & 470 \\ & 100 \% \end{aligned}$ |
| Fixed Object <br> No-Passing VEK 1 | $\begin{aligned} & 30 \\ & 4.9 \% \end{aligned}$ | $\begin{aligned} & 177 \\ & 17.3 \% \end{aligned}$ | $\begin{aligned} & 208 \\ & 20.3 \% \end{aligned}$ | $\begin{aligned} & 254 \\ & 24.9 \% \end{aligned}$ | $\begin{aligned} & 163 \\ & 15.9 \% \end{aligned}$ | $\begin{aligned} & 170 \\ & 16.6 \% \end{aligned}$ | $\begin{aligned} & 1022 \\ & 100 \% \end{aligned}$ |
| Fixed object Passing VEH \#1 | $\begin{aligned} & 69 \\ & 4.5 \% \end{aligned}$ | $\begin{aligned} & 245 \\ & 15.9 \% \end{aligned}$ | $\begin{aligned} & 322 \\ & 20.9 \% \end{aligned}$ | $\begin{aligned} & 382 \\ & 24.7 \% \end{aligned}$ | $\begin{aligned} & 277 \\ & 17.9 \% \end{aligned}$ | $\begin{aligned} & 249 \\ & 16.1 \% \end{aligned}$ | $\begin{aligned} & 1344 \\ & 100 \% \end{aligned}$ |
| Head-on No-Passing VEH \#1 | $\begin{aligned} & 19 \\ & 6.6 \% \end{aligned}$ | $\begin{aligned} & 56 \\ & 19.5 \% \end{aligned}$ | $\begin{gathered} 60 \\ 20.9 \% \end{gathered}$ | $\begin{gathered} 71 \\ 24.7 \% \end{gathered}$ | $\begin{gathered} 43 \\ 15.0 \% \end{gathered}$ | $\begin{gathered} 38 \\ 13.2 \% \end{gathered}$ | $\begin{aligned} & 287 \\ & 100 \% \end{aligned}$ |
| Head-on Passing VEH \# | $\begin{aligned} & 29 \\ & 6.3 \% \end{aligned}$ | $\begin{gathered} 74 \\ 16.0 \% \end{gathered}$ | $\begin{gathered} 93 \\ 20.1 \% \end{gathered}$ | $\begin{aligned} & 110 \\ & 23.8 \% \end{aligned}$ | $\begin{aligned} & 91 \\ & 19.7 \% \end{aligned}$ | $\begin{aligned} & 66 \\ & 14.3 \% \end{aligned}$ | $\begin{aligned} & 463 \\ & 100 \% \end{aligned}$ |
| 3 Type Total No-Passing VEH \#I | $\begin{aligned} & 106 \\ & 6.7 \% \end{aligned}$ | $\begin{aligned} & 313 \\ & 19.8 \% \end{aligned}$ | $\begin{aligned} & 342 \\ & 21.6 \% \end{aligned}$ | $\begin{aligned} & 368 \\ & 23.3 \% \end{aligned}$ | $\begin{aligned} & 227 \\ & 14.4 \% \end{aligned}$ | $\begin{aligned} & 224 \\ & 14.2 \% \end{aligned}$ | $\begin{aligned} & 1580 \\ & 100 \% \end{aligned}$ |
| 3 Type Total Pasaing VEH \#l | $\begin{aligned} & 139 \\ & 6.4 \% \end{aligned}$ | $\begin{aligned} & 453 \\ & 18.3 \% \end{aligned}$ | $\begin{aligned} & 530 \\ & 21.4 \% \end{aligned}$ | $\begin{aligned} & 371 \\ & 23.1 \% \end{aligned}$ | $\begin{aligned} & 416 \\ & 16.8 \% \end{aligned}$ | $\begin{aligned} & 348 \\ & 14.0 \% \end{aligned}$ | $\begin{aligned} & 2477 \\ & 100 \% \end{aligned}$ |
| All Accidents <br> No-Passing* <br> VEH \#2 <br> (Exposure) | 6.15\% | 15.58\% | 17.3\% | 23.85\% | 19.84\% | 17.14\% | 100\% |
| All Accidents <br> Passing* <br> VEH 12 <br> (Exposure) | 6.13\% | 15.6\% | 17.3\% | 23.82\% | 19.83\% | 17.33\% | 100\% |

[^6] Michigan State University, East Lansing, Michigan, 1984.



Figure 4. Head-on. No-Passing/Passing - VWT 1.


Figure 5. Overturned. No-Passing/Passing - VWT 1.


Figure 6. Fixed Object. No-Passing/Passing - VWT 1.


Figure 7. Three Type Total. No-Passing/Passing - VWT 1.


Figure 8. Head-on. No-Passing and Passing - VWT 1/VWT 2 Exposure.


Figure 9. Ovexturned. No-Passing and Passing - VWI 1/VWT 2 Exposure.


Figure IO. Fixed Object. No-Passing and Passing - VWT 1/VWT 2 Exposure.


Figure 1. Three Type Total. No-Passing and Passing - VWT 1/VWT 2 Exposure.

The major findings of this study can be summarized as follows:

1. This study confirmed the previous Michigan Department of Transportation study conclusion that the accident rate in no-passing zones is significantly higher than that in passing sections on the same route. We found the total accident rate to be $10.6 \%$ higher in rural midblock locations (1.94 versus $1.73 \mathrm{acc} / \mathrm{MVM}$ ) and $7.1 \%$ higher at rural intersections ( 0.42 versus $0.39 \mathrm{acc} / \mathrm{MV}$ ).

The fact that this difference is significantly lower than that reported in the previous MDOT study may be explained by several factors: a) Continuous no-passing zones were combined into single zones for this study; b) traffic volumes for the specific locations being gtudied were used to determine accident rates in this study, while a statewide average rate was used in the previous study; and c) intersection accidents were segregated before accident rates were calculated, as these records include accidents on all approach legs of the intersection, not just the approaches in which nompassing zones exist.
2. These differences in accident rates are not uniformly distributed across all accident types. At midblock locations, overturned accidents are $24.2 \%$ higher; fixed object accidents are $37.3 \%$ higher and head-on accidents are $23.7 \%$ higher in no-passing zones. Accident severity is also significantly different, with injury accidents being $44.1 \%$ higher in no-passing zones. Icy road accidents and wet road accidents were higher by $24.5 \%$ and $16.9 \%$ respectively. This could be expected because no-passing zones are normally coincident with horizontal andor vertical
curves.
3. The frequency of head-on accidents is relatively small, and these accidents are not concentrated at horizontal and/or vertical curves. These accidents are more often related to loss of control than to a violation of the no-passing zone marking.
4. There are certain roadway geometry variables and roadside characteristics which are distributed differently between those no-passing zones with a high accident rate and those with a low accident rate. These include number of horizontal curves per zone; number of vertical curves per zone; presence of guardrail, poles, signs and culverts; and the number of driveways per zone.

However, no single variable explains. a significant amount of the variance in accident rates among the no-passing zones. There is a large range of values for each variable among both the high and low accident rate sites.
5. Through the use of Discriminant Analysis, it is possible to construct multivariate predictive equations (models) that successfully categorize most no-passing zones into "high" and "1ow" accident categories. The accuracy of the classification is about $70 \%$ when the sample contains only sites with an accident rate at least twice the average for the route on which the zone is located, and sites with zero accidents in three years.
6. It is easier to predict "low" accident locations than it is to predict "high" accident locations. The single variable model correctly categorized $84 \%$ of the low accident sites and only $34 \%$ of the high

```
accident sites. This is due to the tendency of this model to categorize
most sites as "low." As additional variables are introduced in the
equations, a more balanced prediction capability is achieved.
```

7. The distribution of vehicies involved in accidents in rural midblock locations (by weight class) is similar in passing areas and in no-passing zones. However, small vehicles are overrepresented in both locations. Those vehicles weighing less than 2500 pounds are overrepresented by a factor of 2.

There is a clear, and expected, difference in the type and frequency of accidents which occur in no-passing zones when compared to the remainder of a given route. This study has demonstrated that it is possible to construct models which predict which no-passing zones will experience "high" and "low" accident rates based on geometric and roadside variables.

The number of routes used in this study represented about 12 percent of the Michigan Trunkline system. It would be beneficial if a list of no-passing zones could be prepared indicating the accident rate and the grouping predicted by the model for the remainder of the Michigan Trunkline system. Since the models are operational on the Department computers, no additional contract work need be undertaken to complete this task.

No evidence was found that the length of the no-passing zone or the presence of curve warning signs, chevrons or advisory speed plates is related to the accident rate in no-passing zones. Perhaps such a relationship will emerge from looking at the list of sites where the accident rate is higher than predicted. However, at the current time, no change in the marking or signing policy of the Department is indicated.

It is recommended that the department begin coding no-passing zones by direction. In our analysis, all accidents occurring within the mile points in which either direction has restricted passing were coded as having occurred in a no-passing zone. Since it is reasonable to assume that some of these accidents involved vehicles travelling in the direction in which passing was allowed, the results may be biased.

No-passing zones do not appear to be particularly hazardous for
vehicles of any specific weight class. While smell vehicles do experience a higher than expected accident rate in rural midblock locations, this does not appear to be exacerbated in no-passing zones.

APRENDIX $A$
DISCRIMTNANT ANALYSTS

## APPENDIX A


surface.

Discriminant Analysis between Two Groups
Berenson, Levine and Goldstein (1983) described the procedure involved in Fisher's Linear Discriminant Analysis between two groups:

1) the variables involved in the analysis are selected based on their significance; 2) the mean of each variable within each of the two groups is calculated; 3) discriminant coefficients, interpreted as a measure of a variable's worthiness (as a discriminator) are found.

This leads to a discriminator function;

$$
D=d_{1} x_{1}+d_{2} x_{2}+\ldots+d_{n} x_{n}
$$

where: $D$ is a discriminant score which is non~dimensional; $x$ 's are standardized values of the selected variables; and $d_{1}, d_{2}, \ldots, d_{n}$ are discriminant coefficients.

A discriminant score $D$ for each observation within both groups will be calculated and the mean values of these discriminant scores for each group will be found. These are commonly referred to as group centroids (D). Then the point of separation, or cutting score, will be determined. This is the score against which each individual's discriminant score is judged to determine into which group the individual should be classified. Based on the type of existing sample sizes - that is, the samples either being equal or unequal in sizes, two different procedures should be followed: In the case of equal sample sizes, the point of separation between groups will be halfway between the two group centroids - i.e., $D^{*}=\left(D_{1}+D_{2} / 2\right)$. In the case of unequal sample sizes the point of separation would be the weighted average of the group centroids - i.e., $D^{*}=\left(n_{2} D_{1}+n_{1} D_{2} / n_{1}+n_{2}\right)$.

In order to determine if the between group differences are statistically significant in the sense of mean separation, the sample estimate of the difference in the group centroids can be found.

$$
\mathrm{D}^{2}=\mathrm{D}_{1}-\mathrm{D}_{2}
$$

Large values of $D^{2}$ would give us some comfort that future observations can, on the basis of the characteristic measured, be successfully classified.

## Validation Methods

Hair et al. (1979) proposed two methods for assessing how well a discriminant rule functions. These are:

1) Confusion Matrix: This is a matrix which shows the actual group and the predicted group memberships. This will identify the percent of the cases that are correctly classified. (Referred to as the accuracy rate in this study.) Although this method of assessment is a common procedure, it does have an overly optimistic nature. Since the data being classified and the data that are used in constructing the discriminant function are precisely the same, there is an optimistic bias built into the calculation.
2) Split Sample Validation: (This is the validation technique used in this study.) . The second method for estimating the probability of correct classification without bias is to split the available sample in two parts (50-50, $70-30,60-40)$, with one part being used to generate the discriminant function, and the other used to assess its worth. This method seems to give a more precise estimate for the probability of correct classification since it uses independent samples.

## REFERENCES

1. Berenson, Mark L., Levine, David M., Goldstein, Mathew. Intermediate Statistical Methods and Applications, pp. 508-525, 1983.
2. Hair, Joseph F., Anderson, Rolph E.; Tatham, Ronald L., Grablowsky, Bernie. Multivariate Data Analysis, pp. 94-97, 1979.
3. Hand, D. J. Kernel Discriminant Analysis, pp. 2-15, 1982.
4. Klecka, Williams R. Discriminant Analysis, pp. 43-60, 1980.
5. Neuman, Timothy R. "Discriminant Analysis as a Tool for Investigating Highway Safety Relationships," ITE Journal, pp. 16-22, 1984.

APRENDIX B

| $\begin{gathered} \text { FILE } \\ \text { POSITION } \\ \hline \end{gathered}$ | DESCRIPTION | CODE (IF ANY) |
| :---: | :---: | :---: |
| 1 | District | 1 ( Crystal Falls |
|  |  | 2 - Newberry |
|  |  | 3 = Cadillac |
|  |  | 4 - Alpena |
|  |  | 5 = Grand Rapids |
|  |  | $6=$ Saginaw |
|  |  | 7 =Kalamazoo |
|  |  | 8 -Jackson |
|  |  | 9 = Southfield (Metro) |
| 2-6 | Control Section |  |
| 13 | Data Flag | $00=$ Midblock |
|  |  | 10 m Intersection |
|  |  | $20=$ Trunkline- |
|  |  | Trunkline Intersection |
|  |  | $30=$ Trunkiine- |
|  |  | Trunkline Minor Leg |
| 23-26 | Begin Mile Point |  |
| 27-30 | End Mile Point |  |
| 31-32 | Laneage Code | 12 Lane 2-way |
|  |  | 23 Lane 2-way |
|  |  | 34 Lane 2-way |
|  |  | 45 Lane 2-way |
|  |  | 56 Lane 2-way |
|  |  | 67 Lane 2-way |
|  |  | 72 Lane 1-way |
|  | . | 83 Lane 1-way |
|  |  | 94 Lane 1-way |
|  |  | 104 Lane Divided |
|  |  | 116 Lane Divided |
|  |  | 128 Lane Divided |
|  |  | 13 Other |
| 33-34 | Lane Width | Measured in Feet |
| 35-36 | Shoulder Width | 0 Curb |
|  |  | 4 0-4 ft |
|  |  | 8 4-8 ft |
|  |  | 10 8-10 ft |
|  |  | 12 10-12 ft |
| 39 | Roadside Development | 1 Rural |
|  |  | 2 Strip-Fringe |
|  |  | 3 Uxban |
| 40 | No-Passing Zone | 0 Passing |
|  |  | 1 No-Passing |

## MASTER FILE (continued)

| FILE |  |
| :--- | :--- |
| POSITION |  |
| 49-52 | DESCRIPTION |
| $137-142$ |  |
| $143-145$ | Degree of Curve |
| $146-148$ | ADT |
| $149-151$ | Injury Accidents |
| $152-154$ | Fatal Accidents |
| $155-157$ | Wet Accidents |
| $158-160$ | Icy Accidents |
| $161-163$ | Dark Accidents |
| $164-166$ | Overturned Accidents |
| $167-169$ | Train Accidents |
| $170-172$ | Parked Veh. Accidents |
| $173-175$ | Multi: Other Accidents |
| $176-178$ | Pedestrian Accidents |
| $179-181$ | Fixed Object Accidents |
| $182-184$ | On Road Object Accidents |
| $185-187$ | Animal Accidents |
| $188-190$ | Bicycle Accidents |
| $191-193$ | Single: Other Accidents |
| $193-196$ | Head-on Accidents |
| $197-199$ | SS-Meet Accidents |
| $200-202$ | SS-Pass Accidents |
| $203-205$ | Angie Accidents |
| $206-208$ | Left Turn Accidents |
| $209-211$ | Right Turn Accidents |
| $212-214$ | Rear End Accidents |
| $215-217$ | Backing Accidents |

CODE (IF ANY)

Degree and Minute

## 2L2WRR FILE

This file is identical to the Master File with the following exceptions:

| FILE <br> POSITION | DESCRIPTION | CODE (IFANY) |
| :---: | :--- | :--- |
| 13 | Data Elag | 00 midbiock |
| $31-32$ | Laneage Code | 10 Intersection |
| 39 | Roadside Development | 1 Lane 2-way |
|  |  | 1 Rural |

This information was added to the 2L2WRR File.


FILE POSITION
$1-5$
$6-9$

10-13
14-18
19-20
21-22
23-43
44-92
93-94
95-96
97-98
99-100
101-102
103-104
105-106
107-108
109-110
111-112
113-114
115-116
117-118
119-120
121-122
123-124

126-126
127-128
129-130
131-132
133-134
135-136

DESCRIPTION
Control Section
Beginning Mile Pont
End Mile Poiint
ADT
Lane Width
Shoulder Width
Accident Frequencies
Accident Rates
Paved Shoulder
Unpaved Shoulder
Partially Paved Shoulder
Right Horizontal Curve
Left Horizontal Curve
Crest Vertical Curve
Sag Vertical Curve
Restricted Commercial
Driveway on Vertical Curve
Normal Commercial
Driveway on Vertical Curve
Extended Commercial
Driveway on Vertical Curve
Restricted Commercial
Driveway on Horizontal Curve
Normal Commercial
Driveway on Horizontall Curve
Extended Commercial
Driveway on Horizontal Curve
Restricted Commercial
Driveway on a Tangent
Normal Commercial
Driveway on a Tangent
Extended Commercial
Driveway on Tangent
Restricted Residential
Driveway on Vertical Curve
Normal Residential
Driveway on Veretical Curve
Extended Residential
Driveway on Vertical Curve
Restricted Residential
Driveway on Horizontal Curve
Normal Residential
Driveway on Horizontal Curve
Extended Residential
Driveway on Horizontal Curve

CODE (IF ANY)
$0=$ No $\quad 1=$ Yes
$0=$ No $\quad 1=$ Yes
$0=$ No $1=$ Yes
Column $99-182$

The data in columns 99-182 are frequency of the variable
e.g. number of restricted commercial driveways or vertical curves.

| $\begin{gathered} \text { FILE } \\ \text { POSITION } \\ \hline \end{gathered}$ | DESCRIPTION | CODE (IF ANY) |
| :---: | :---: | :---: |
| 137-138 | Restricted Residential |  |
|  | Driveway on a Tangent |  |
| 135-140 | Normal Residential |  |
|  | Driveway on a Tangent. |  |
| 141-142 | Extended Residential |  |
|  | Driveway on a Tangent |  |
| 143-144 | Trees | $11=$ Greater than 10 |
| 145-146 | Poles |  |
| 147-148 | Mailbox |  |
| 149-150 | Guardrail |  |
| 151-152 | Overpass |  |
| 153-154 | Embankments |  |
| 155-156 | Ditches |  |
| 157-158 | Culverts |  |
| 159-160 | Other Objects |  |
| 161-162 | Tangent Signs |  |
| 163-164 | Chevrons |  |
| 165-166 | Advisory Speed Signs |  |
| 167-168 | Other Signs |  |
| 169-170 | Major Intersections with Signals |  |
| 171-172 | Major Intersections with Flashers |  |
| 173-174 | Major Intersections with Stop Signs |  |
| 175-176 | Minor Intersections with Signais |  |
| 177-178 | Minor Intersections with Flashers |  |
| 179-180 | Minor Intersections with Stop Signs |  |
| 181-182 | Number of |  |
|  | Intersection Legs |  |
| 183 | District Code |  |


|  | [1] | Till\| | \|ITM |  | * |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 20] | 29] |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  | - | + |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| 11 | 1 | 1 | 1 | (1) |  |

23-24
25-26

Accident Type (HWY)

Number of Vehicles
DESCRIPTION

Highway District
Control Section
Mile Point

Highway Area

County
Township
Route Number
Accident Type (MSP)

Vehicle Type (V1)

CODE (IF ANY)
(See Master File)
F(5.3)
1 Interchange
2 Intersection
3 Non-above
4 Non-traffic

1 Overturned
2 Railroad Train
3 Parked Vehicle
4 Another Vehicle
5 Pedestrian
6 Fixed Object
7 Other Object
8 Animal
9 Pedal Cycle
10 Not Known

1 Head-on
2 Sideswipe -
same direct.
3 Sideswipe opposite direction
4 Angle
5 Left Turn
6 Right Turn
7 Rear-end
8 Backed Into
9 Parking
10 Other

1 Passenger Car
2 Truck
3 Motorcycle
4 School Bus
5 Commexcial Bus
6 Farm Equipment
7 Construction Equipment
8 Other Vehicle


FILE POSITION

35-36

37-38
39-40
41-42
43
44
45-46
47-48
49-52
53-56
57-58
59-60
61-62 63
64-65
66-69
70-72
73-75
76-78
79-80
81-84
85-88
89-90
91-92
93-94
95
96-97

DESCRIPTION

Vehicle Characteristic (VI)

CODE (IF ANY)
8 Bridge Rail or Deck
9 Tree
10 Signal
11 Building
12 Mailbox
13 Fence
14 Island or Curb
1 Under 1500 1bs.
2 1500-2499 lbs.
3 2500-3500 lbs.
4 More than 3500 lbs.
5 Carryall
6 Jeep
7 Pickup Truck
8 Dump Truck
9 Truck Tractor
10 Non-Vehicle

For File Positions 37-46 see codes for VI (above)

File Positions 47-78 contain an interpretation of the Veh. ID No. of VEH $\# 1$ by the
"Vindicator 83"
program. For a
list of the codes
for these positions,
the Vindicator 83
guide should be consulted.

File Positions 79110 contain an interpretation of the Vehicle ID No. of VEH \#2 by the "Yindicator 83" program. For a 1ist of the codes

FILE
POSITION
POSITION
98-101
102-104
105-107
108-110

111-112

113-114
115-116
117-118
119
120

121
122-123
124
12.5

126
127
128
129

130

131

DESCRIPTION
Weight (V2)
Wheelbase (V2)
Max Horsepower (V2)
Min Horsepower (V2)
Laneage Code
Lane Width
Shoulder Width Code
Posted Speed
Roadside Development Code
No-Passing Zone Code
Curve Code
Degree of Curve
Signalization

INT Type

Number of Legs
Number Aux Lanes Right
Number Aux Lanes Left
No Turn on Red

All Red Clearance

Left Turn Signal

CODE (IF ANY)
for these file positions, the
Vindicator 83 should be consulted.
(See Master File)
In Feet
(See Master File)
(See Master File)
$0=$ Yes $\quad 1=$ No

1 R 2 L

In Degrees
0 Unknown
1 No Signal
2 Flasher
3 Signal
0 Linknown
1 Cross
2 Tee
5 Offset
6 Wye
7 Other
8 Freeway Centerline
9 Directional Cross

0 A11 Turns Allowed
1 No Turns on Red Allowed

0 No Clearance Phase
1 Clearance Phase
0 No Control
1 Left Turn Phase
2 No Left Turn Phase

APRENDIX C

## PROGRAMMING

## PROGRAM

## CRUNCH

```
$RESET FREE
FILE 1(TITLE="BENAC/TEMP ON PACK",BLOCKSIZE=7378,
    *MAXRECSIZE=217,UNITS=CHARACTERS)
FILE 2(TITLE="BENAC/2L2WMR/OLD ON MIDAS",BLOCKSIZE=2170,
        *MAXRECSIZE=217,UNITS=CHARACTERS ,NEWFILE=TRUE)
        DIMENSION ISEG(2,52)
        DO 81 JK=1,99999
    6 READ (1,100, END=99)(ISEG(1,J),J=1,52)
    7READ(I,100,END=99)(ISEG(2,J),J=1,52)
C** IF(ISEG(1,1).NE.8.OR.ISEG(2,1).NE.8)GO TO 6
    IF(ISEG(1,2).NE.ISEG(2,2))GO TO 82
    100 FORMAT(II,I5,I6,I1,I9,2I4,17A6,A5,I5,25I3,T40,I1)
    IF (ISEG(1,52).NE.ISEG (2,52)) GOTO 82
    IF (ISEG(1,52).EQ.ISEG (2,52)) GOTO 80
    82 WRITE (2,100) (ISEG(1,JK),JK=1,51)
    DO 84 K=1,52
    ISEG (1,K)=ISEG (2,K)
    84 CONTINUE
        GOTO 7
    80 ISEG (1,7)=ISEG (2,7)
    DO }85I=27,5
    ISEG(1,I)=ISEG(I,I)+ISEG(2,I)
    85 CONTINUE
    GOTO 7
    81 CONTINUE
    99 WRITE(2,100)(ISEG(1,JK),JK=1,51)
    LOCK 2
    STOP
    END
```

PROGRAM ACCRATE

```
$RESET FREE
FILE l(TITLE="MIDAS/TAB/8082 ON MIDAS",FILETYPE=7)
FILE 2(TITLE="BENAC/2L2WMR/RATE/OLD ON PACK",BLOCKSIZE=4220,
    * MAXRECSIZE=422,UNITS=CHARACTERS,AREAS =100,AREASIZE=1000)
FILE 3(KIND=PRINTER)
FILE 4(KIND=REMOTE,MAKRECSIZE=22)
        DIMENSION Q(25),RSUM(25),RSQ(25),SSUM(25),R(25),STD(25),
    *RTOT(25),VARP (25) ,VARN (25), IACC (25),SEG (18),TACC (25)
        DO 70 I=1,25
        RSQ(I)=0.0
        RSUM(I) =0.0
        SSUM (I) =0.0
        70 CONTINUE
        DO 250 J=1.99999
        READ(1,100,END=99)IDIST,ICS,IFIL,IDATA,IFILL,IBEG,IEND,
    *SEG,IADT,IACC,IPASS
        IF(IDATA.NE.O)GO TO 250
        IF(IPASS.EQ.0)GO TO 250
    100 FORMAT(I1,I5,I6,I1,19,2I4,17A6,A5,I5,25I3,T40,I1)
    XLGT=FLOAT (IEND)/100-FLOAT (IBEG)/100
    RMVM=XLGT * FLOAT (IADT) * 365 * 30 / 1000000
    TMVM=TMVM+RNVM
    DO 240 L=1,25
C** IF(IADT.EQ.O.OR.KLGT.EQ.0)WRITE(4,400)IADT,XLGT,IBEG,IEND
    IF(IADT.EQ.0)GO TO 250
    IF(XLGT.EQ.O.0)GO TO 250
    400 FORMAT(2X,I5,2X,F5.2,2X,I4,2X,I4)
    R(L) = FLOAT (IACC(L)) / RMVM
    TACC (L) = TACC (L) +IACC (L)
    RSUM(L) = RSUM (L) + R(L)
    RSQ(L) = RSQ (L) + R(L) * * 2
    SSUM (L) = SSUM (L) + 1
    240 CONTINUE
    TOR=(IACC(7)+IACC(12)+IACC(17)) / RMVM
    WRITE(2,150)IDIST,ICS,IFIL,IDATA,IFILL,IBEG,IEND,
    *SEG,IADT,IACC,R,TOR
    150 FORMAT(Il,I5,I6,I1,I9,2I4,17A6,A4,I6,2513,26F7.2)
    250 CONTINUE
        99 CONTINUE
        WRITE (3,305)
    305 FORMAT(3X,"2L2W RUR MIDBLOCK NO PASSING ZONES"//,
    *X,"# SITES",3X,"ACC RATE",3X,"STD DEV",7K,"VARP",
    *5X,"VARN")
        DO 330 M=1,25
        STD (M)=SQRT (( (RSQ (M) -RSUM (M)**2/SSUM (M)))/(SSUM (M)-1))
        RTOT(M) = TACC(M) / TMVM
        VARP(M) = RTOT (M) + 1.96 * (STD (M)/SQRT(SSUM(M)))
    VARN (M) = RTOT (M) - 1.96 * (STD (M)/SQRT(SSUM (M)))
    WRITE (3,300) SSUM(M),RTOT (M),STD (M),VARP (M),VARN (M)
300 FORMAT(2X,F6.0,4(2X,F9.5))
330 CONTINUE
    CLOSE(2,DISP=CRUNCH)
    STOP
    END
```

PROGRAM

MERGE

```
$ RESET FREE
FILE 1(TITLE""BENAC/2L2WMR/RATE/OLDNEW ON MIDAS",FILETYPE=7)
FILE 2(TITLE="(TRAFFIC)BENAC/MSU ON TRAFFIC",FILETYPE=7)
FILE 3(KIND=REMOTE,MAXRECSIZE=22)
FILE 4(TITLE="BENAC/2L2WMR/MERGE ON PACK",MAXRECSIZE=183,
    *BLOCKSIZE=1830, UNITS=CHARACTERS,NEWFILE=TRUE)
        DIMENSION IBEG(7920),IEND(7920),ICS(7920),IADT(7920),LW(7920),
        * ISW(7920), IFREQ(7,7920),RATE(7,7920), IIBEG(7920), IIENO(7920),
        * DR(E,7920),OBU(5,7920),AINT(3,7920), IISHO(7920), IICLUR(2,7920),
        * IDI(7920), IICS(7920)
            ISEL=0
            IFLOP=0
    100 ISEL=ISEL+1
    105 READ(1, 101, END=98)IDIS,ICS(ISEL),IBEG(ISEL), IEND(ISEL),LW(ISEL),
        *ISW(ISEL),NOP, IADT(ISEL;,(IFREQ(I,ISEL),I=1,7),
        * (RATE(I,ISEL), I=1,7)
    101 FORMAT(I1,I5,T23,2I4,2X, 2I2,T40,I1,T138,I5,
        *T143,I3,T152,4I3,T176,I3,T191,I3,
        *T218,F7.2,T239, 4F7.2,T295,F7.2,T393,F7.2)
        IF(IOIS.EQ.1.OR.IDIS.EQ.2)IDI(ISEL)=1
        IF(IDIS.EQ.3.OR.IDIS.EQ.4)IDI(ISEL)=2
        IF(IDIS.EQ.5.OR.IDIS.EQ.G)IDI(ISEL)=3
        IF(IDIS.EQ.7.OR.IDIS.EQ,8)IDI(ISEL)=4
        IF(NOP.NE. 1)GO TO 105
    330 FORMAT(2X, "ICS= ",I5,"IEEG= ",I4,"IEND= ",I4)
        GO TO 100
    98 CONTINUE
    102 IFLOP=IFLOP+1
        READ(2,103, END=99)IICS(IFLOP), IIBEG(IFLOP), IISHO(IFLOP),
        *(IICUR(U1,IFLOP), JI=1,2),(DR(I,IFLOP),I=1,6),
        *(OBJ(I,IFLOP),I=1,5),(AINT(I,IFLOP),I=1,3), IIEND(IFLOP)
C** WRITE(3,335)IICS(IFLOP), IIBEG(IFLOP), IIEND(IFLOP)
    335 FORMAT(2X,"IICS=",I5,"IIBEG=",I4,"IIEND=",I4)
    103 FORMAT (3X, I5, I4, AG, AG, A2, GAG,4AG, A2, 2AG, A2, I4)
        GO TO 102
        99 CONTINUE
            DO 3 J=1,ISEL
            OO 4 JI=1, IFLOP
            IF(ICS(U).EQ.IICS(U1))GOTO 5
            GOTO 4
        5 IF(IBEG(J).EQ.IIBEG(J1))GOTO 6
            GOTO 4
        6 IF(IEND(J),EQ.IIEND(U1))GOTO 7
            GOTO 4
        7 WRITE(4,200)ICS(J), IBEG(J), IEND(J),
        *IADT(U),LW(J),ISW(J),
        * (IFREQ(U3,J), \3=1,7),(RATE(J4, J), \4= 1,7), IISHO(U1),
        *(IICUR(I,J1),I=1,2),(DR(J3,J1),J3=1,6) ,(OBJ(J3,J1),J3=1,5),
        * (AINT(U3,J1), \3= 1,3), IDI (U)
    200 FORMAT(I5,2I4,I5,2I2,7I3,7F7.2,A6, A6, A2, GAG,4AG, A2, 2AG, A2,
        *I!)
            WRITE(3,330)ICS(J),IBEG(J),IEND(J)
            CO TO 3
        4 CONTINUE
        3 CONTINUE
            LOCK 4
            STOP
            END
```


## RROGRAM

SPSS/VNDCTR

| RUN NAME | VIN/SPSS |
| :---: | :---: |
| FILE NAME | (MIDAS) BENAC/DELONG/FILE2 ON MIDAS |
| VARIABLE LIST | DIST, CS, MILE, AREA, RNUM, MSPACC, HWYACC, |
|  | NUMVEH, TYP1, DOIV1, OBHIT, TYP2, DOIV2,VWT1,VWT2,LC,RD, ZONE/ |
| INPUT FORMATS | $\begin{aligned} \text { FIXED } & (F 2.0, F 5 \cdot 0, F 4.0, F 1.0,4 X, F 3.0, F 2.0, F 1,0,2 F 2,0,5 X, F 1.0, \\ & F 2 \cdot 0,2 X, F 2 \cdot 0,5 X, F 1.0,21 X, F 4 \cdot 0,28 X, F 4.0,9 X, F 2.0, \\ & 6 X, 2 F 1,0) \end{aligned}$ |
| VAR LABELS | DIST,HIGHWAY DISTRICT/ |
|  | CS,CONTROL SECTION/ |
|  | MILE,MILE POINT/ |
|  | AREA,INT OR MID/ |
|  | RNUM,ROUTE NUMBER/ |
|  | MSPACC, MSP ACCIDENT/ |
|  | HWYACC, HIGHWAY ACCIDENT/ |
|  | NUMVEH, NUMBER OF VEHICLES/ |
|  | TYPI,VEH 1 TYPE/ |
|  | DOIVI, DEGREE OF INJURY VEHICLE $1 /$ |
|  | OBHIT, OBJECT HIT/ |
|  | TYP2,VEH 2 TYPE/ |
|  | DOIV2,DEGREE OF INJURY VEHICLE 2/ |
|  | VWTI, VEH WT I/ |
|  | VWT2,VEH WT 2/ |
| VAR LABELS | LC, LANEAGE CODE/ |
|  | RD,ROADSIDE DEVELOPMENT/ |
|  | ZONE,PASSING OR NOPASSING/ |
| RECODE | DIST ( 1 THRU 2=1) ( 3 THRU 4=2) (5 THRU 6=3) ( 7 THRU 8=4)/ |
| RECODE | VWTI (0=1) (1 THRU 1499=2) (1500 THRU 1999=3) |
|  | (2000 THRU 2499=4) (2500 THRU 2999=5) |
|  | (3000 THRU 3499=6) (3500 THRU 3999=7) |
|  | (4000 THRU 4499=8) (4500 THRU 1000000=9)/ |
| RECODE | VWT2 (0 THRU 1499=1) (1500 THRU 1999=2) |
|  | (2000 THRU 2499=3) (2500 THRU 2999=4) |
|  | (3000 THRU 3499=5) (3500 THRU 3999=6) |
|  | (4000 THRU 4499=7) (4500 THRU 1000000=8)/ |
| VALUE LABELS | DIST (1) 1-2 |
|  | (2) 3-4 |
|  | (3) 5-6 |
|  | (4) 7-8/ |
| VALUE LABELS | VWTI (1) 0 LBS |
|  | (2) LESS THAN 1500 LBS |
|  | (3) 1500-1999 LBS |
|  | (4) 2000-2499 LBS |
|  | (5) 2500-2999 LBS |
|  | (6) 3000-3499 LBS |
|  | (7) 3500-3999 LBS |
|  | (8) 4000-4499 LBS |
|  | (9) OVER 4500 LBS/ |
| VALUE LABELS | VWT2 (1) LESS THAN 1500 LBS |
|  | (2) 1500-1999 LBS |
|  | (3) 2000-2499 LBS |
|  | (4) 2500-2999 LBS |
|  | (5) 3000-3499 LBS |
|  | (6) 3500-3999 LBS |
|  | (7) 4000-4499 LBS |
|  | (8) OVER 4500 LBS/ |
| VALUE LABEL | TYP1 (1) PASSENGER CAR C-4 |

(2) TRUCK
(3) MOTORCYCLE
(4) SCHOOL BUS
(5) COMMERCIAL BUS
(6) FARM EQUIPMENT
(7) CONSTRUCTION EQUIPMENT
(8) OTHER VEHICLE
(9) PEDESTRIAN
(10) pedacycle
(11) OTHERS/

VALUE LABEL TYP2(1)PASSENGER CAR
(2) TRUCK
(3) MOTORCYCLE
(4) SCHOOL BUS
(5) COMMERCIAL BUS
(6) FARM EQUIPMENT
(7) CONSTRUCTION EQUIPMENT
(8) OTHER VEHICLE
(9) PEDESTRIAN
(10) PEDACYCLE
(II) OTHERS/

INPUT MEDIUM N OF CASES *SELECT IF TASK NAME CROSSTABS

DISK UNKNOWN
(AREA EQ 3 AND TYPI EQ 1 AND ZONE EQ 0 AND MSPACC EQ 1) FREQUENCY OF VWTI ACCIDENTS IN PASSING ZONES TABLES=VWT1 BY MSPACC/

READ INPUT DATA
*SELECT IF (AREA EQ 3 AND TYP2 EQ 1 AND ZONE EQ 0 AND MSPACC EQ i)
CROSSTABS TABLES=VWT2 BY MSPACC/
(AREA EQ 3 AND TYPI EQ I AND ZONE EQ 0 AND MSPACC EQ 6) TABLES=VWT1 BY MSPACC/
(AREA EQ 3 AND TYPZ EQ 1 AND ZONE EQ 0 AND MSPACC EQ 6) TABLES=VWT2 BY MSPACC/
(AREA EQ 3 AND TYPI EQ 1 AND ZONE EQ 0 AND HWYACC EQ 1) TABLES=VWTl BY HWYACC/
(AREA EQ 3 AND TYP2 EQ 1 AND ZONE EQ 0 AND HWYACC EQ 1) TABLES $=$ VWT2 BY HWYACC/
(AREA EQ 3 AND TYPI EQ 1 AND ZONE EQ 1 AND MSPACC EQ 1) FREQUENCY OF VWTl\&VWT2 ACCIDENTS IN NO-PASSING ZONES TABLES=VWT1 BY MSPACC/
(AREA EQ 3 AND TYPZ EQ 1 AND ZONE EQ 1 AND MSPACC EQ 1) TABLES $=$ VWT2 BY MSPACC/
(AREA EQ 3 AND TYPI EQ 1 AND ZONE EQ 1 AND MSPACC EQ 6) TABLES=VWTI BY MSPACC/
(AREA EQ 3 AND TYPZ EQ 1 AND ZONE EQ 1 AND MSPACC EQ 6) TABLES=VWT2 BY MSPACC/
(AREA EQ 3 AND TYPI EQ 1 AND ZONE EQ 1 AND HWYACC EQ 1) TABLES=VWTl BY HWYACC/
(AREA EQ 3 AND TYP2 EQ 1 AND ZONE EQ 1 AND HWYACC EQ 1) TABLES=VWT2 BY HWYACC/

PROGRAM SESS/DISCRIMINANT

| RUN NAME <br> file name <br> VARIABLE LIST | SPSS TEST ON M-52 <br> SPSS/MERGE <br> CS, ADT, LW, SW, FREQ, RATE, PSHOULD, UPSHOULD, PPSHOULD, RCURVE, LCURVE, CCURVE, SCURVE, RCDV, NCDV, ECDV, RCDH, NCDH, ECDH, RCDT, NCDT, ECDT, RRDV, NRDV, ERDV, RRDH, NRDH, ERDH, RRDT, NRDT, ERDT, TREES, POLES, MAILBOX, GUARDRAIL, OVERPASS, EMBANK, DITCH, CULVERT, OTHERCB, TANS, CHEVS, ADVSP, OTHERS, MAJINTS , MAJINTF , MAJINTST, MININTS, MININTF, MININTST, INTLEG |
| :---: | :---: |
| INPUT FORMATS | FIXED (F5.0,8X,F5.0,2F2.0, 18X,F3.0.42X,F7.2,45F2.0) |
| VAR LABELS | CS, CONTROL SECTION/ <br> LW, LANE WIDTH/ |
|  | SW, SHOULDER WIDTH/ |
|  | PSHOULD, PAVED SHOLLDER/ |
|  | UPSHOULD, UNPAVED SHOULDER/ |
|  | PPSHOULD, PARTPAVEDSHOULD/ |
|  | RCURVE, RIGHT CURVE/ |
|  | LCURVE, LEFT CURVE/ |
|  | CCURVE, SAG CURVE/ |
|  | SCURVE, CRESTCURVE/ |
|  | RCDV, RES COMM DRIVE VERT/ |
|  | NCDV, NORM COMM DRIVE VERT/ |
|  | ECDV, EXT COMM DRIVE VERT/ |
|  | RCDH, RES COMM DRIVE HOR/ |
|  | NCDH, NORM COMM DRIVE HOR/ |
|  | ECDH, EXT COMM DRIVE HOR/ |
|  | RCDT, RES COMM DRIVE TAN/ |
|  | NCDT, NORM COMM DRIVE TAN/ |
|  | ECDT, EXT COMM DRIVE TAN/ |
|  | RRDV, RES RES DRIVE VERT/ |
|  | NRDV, NORM RES DRIVE VERT/ |
|  | ERDV, EXT RES DRIVE VERT/ |
|  | RRDH, RES RES DRIVE HOR/ |
|  | NRDH, NORM RES DRIVE HOR/ |
|  | ERDH, EXT RES DRIVE HOR/ |
|  | RRDT, RES RES DRIVE TAN/ |
|  | NRDT, NORM RES DRIVE TAN/ |
|  | ERDT, EXT RES DRIVE TAN/ |
|  | TANS, TANGENT SIGNS/ |
|  | CHEVS, CHEVRONS/ |
|  | ADVSP, ADVISORY SPEED/ |
|  | OTHERS, OTHER SIGNS/ |
|  | MAJINTS, MAJOR INT SIGNAL/ |
|  | MAUINTF, MAUOR INT FLASHER/ |
|  | MAUINTST, MAUOR INT STOP/ |
|  | MININTS,MIN INT SIGNAL/ |
|  | MININTF, MIN INT FLASHER/ |
|  | MININTST, MIN INT STOP/ |
|  | OTHEROB, OTHER OBJECTS/ |
|  | INTLEG, INTERSECTION LEGS/ |
| allocate | TRANSPACE $=3500$ |
| COMPUTE | CDRIVE=RCDV + $\mathrm{NCDV}+\mathrm{ECDV}+\mathrm{RCDH}+\mathrm{NCDH}+\mathrm{ECDH}+\mathrm{RCDT}+\mathrm{NCDT}+\mathrm{ECDT}$ |
| COMPUTE | RDRIVE = RRDV + NRDV+ERDV+RRDH+NRDH+ERDH+RRDT+NRDT+ERDT |
| COMPUTE | CDV $=$ RCDV+NCDV+ECDV |
| COMPUTE | $\mathrm{CDH}=\mathrm{RCDH}+\mathrm{NCDH}+\mathrm{ECDH}$ |
| COMPUTE | CDT $=$ RCDT+NCDT+ECDT |
| COMPUTE | RDV $=$ RRDV+NRDV+ERDV |
| COMPUTE | RDH $=$ RRDH + NRDH + ERDH |
| COMPUTE | - RDT $=$ RRDT+NRDT+ERDT |
| COMPUTE | VD=CDV+RDV |
| COMPUTE | HD $=\mathrm{CDH}+\mathrm{RDH}$ |
| COMPUTE | TD=CDT+RDT |
| COMPUTE | TDRIVE=VD+HD+TD |
| COMPUTE | SIGNS $=$ TANS+CHEVS+ADVSP |
| COMPUTE | OBSTP=TREES+POLES |
| COMPUTE | OBSDE =OITCH+EMBANK |
| COMPUTE | MAUINT=MAJINTS+MAJINTST+MAJINTF |
| COMPUTE. | MININT = MININTS +MININTST+MININTF |
| RECODE | ADT ( 0 THRU 50=1) (51 THRU 150=2) |
|  | ( 151 THRU 250=3)(251 THRU 350=4) |
|  | ( 351 THRU 450=5)(451 THRU 550=6) |
|  | (551 THRU 650=7) (651 THRU 750=8) |
|  | (751 THRU 2000=8)/ |
| RECODE | RATE $(000.00=1)(000.01$ THRU 100.00=2)/ |
| RECODE | $\operatorname{FREQ}(0=1)(1=2)(2=3)(3=4)(4=5)(5=6)(6=7)$ <br> (7 THRU 100=8)/ |
| recode | RCURVE ( 0 THRU $1=1$ )(2 THRU $3=2$ )( 4 THRU 5=3) |
|  | C-6 |

RECODE

## RECODE

## RECODE

 REcode
RECODE
RECODE
RECODE
RECODE
RECODE
RECODE
RECODE
RECODE
RECODE
RECODE
RECODERECODE
RECODE
RECODERECODE
RECODE
RECODE
RECODE
RECODE
RECODE
RECODE
RECODE
RECODE
RECODE

```
RECODE
```

RECODE
( 6 THRU $7=4$ ) ( 8 THRU $9=5$ ) ( 10 THRU 50=6)/
LCURVE ( 0 THRU $1=1$ )( 2 THRU $3=2$ )( 4 THRU 5=3)
( 6 THRU 7=4)(8 THRU $9=5$ ) ( 10 THRU 50=6)/
CCURVE ( 0 THRU $1=1$ ) ( 2 THRL $3=2$ ) ( 4 THRU 5=3)
(6 THRU 7=4)(8 THRU $9=5$ ) ( 10 THRU 50=6)/
SCURVE (0 THRU $1=1$ )( 2 THRU $3=2$ )( 4 THRU 5=3) ( 6 THRU 7=4) ( 8 THRU $9=5$ ) ( 10 THRU 50 $=6$ )/
LW ( 0 THRU 7=1) (8 THRU 10=2) (11 THRU 12=3) ( 13 THRU 14=4) ( 15 THRU 20=5)/
SW (O THRU 2=1) (3 THRU $4=2$ ) ( 5 THRU 6=3) ( 7 THRU $8=4$ )
( 9 THRU 10 $=5$ )( 11 THRU 20=6)/
CDRIVE ( $0=1$ ) ( 1 THRU 2=2) (3 THRU 4=3)(5 THRU 6=4) ( 7 THRU 8=5)( 9 THRU 10=6)( 11 THRU 15:7) ( 16 THRU 20 $=8$ )( 21 THRU 25=9)(26 THRU 100=10)/
RDRIVE ( $0=1$ ) ( 1 THRU 2=2) (3 THRU $4=3$ ) ( 5 THRU $6=4$ ) ( 7 THRU 8=5) ( 9 THRU $10=6$ ) ( 11 THRU 15=7) ( 16 THRU 20 $=8$ ) ( 21 THRU 25=3)(26 THRU 100=10)/
$\operatorname{CDV}(0=1)(1$ THRU $2=2$ ) ( 3 THRU $4=3$ ) ( 5 THRU 6=4) ( 7 THRU $8=5$ ) ( 9 THRU 10=6) ( 11 THRU 15=7) ( 16 THRU 20=8)(21 THRU 25 $=9$ )( 26 THRU 100 $=10$ )/
$\operatorname{CDH}(0=1)(1$ THRU $2=2$ ) ( 3 THRU $4=3$ ) ( 5 THRU 6:4) ( 7 THRU $8=5$ ) ( 9 THRU $10=6$ )( 11 THRU $15=7$ ) ( 16 THRU 20=8) ( 21 THRU 25=9) (26 THRU 100=10)/
$\operatorname{CDT}(0=1)(1 \mathrm{THRU} 2=2)(3 \operatorname{THRU} 4=3)(5 \mathrm{THRU} 6=4)$ ( 7 THRU $8=5$ ) ( 9 THRU $10=6$ ) ( 11 THRU 15=7) ( 16 THRU 20=8) (21 THRU 25=9) (26 THRU 100=10)/
$\operatorname{RDV}(0=1)(1 \operatorname{THRU} 2=2)(3$ THRU 4=3)(5 THRU 6=4) ( 7 THRU $8=5$ ) ( 9 THRU $10=6$ ) ( 11 THRL $15=7$ ) ( 16 THRU 20=8) (21 THRU 25=9)(26 THRU 100=10)/
RDH $0=1$ ) ( 1 THRU 2=2)( 3 THRU 4=3)(5 THRU 6=4) ( 7 THRU 8=5) ( 9 THRU 10=6) ( 11 THRU 15=7) ( 16 THRU 20=8) (21 THRU 25=9) (26 THRU 100=10)/
TDRIVE $(0=1)(1$ THRU $2=2)(3$ THRU $4=3)(5$ THRU 6=4) ( 7 THRU 8=5) ( 9 THRU 10=6) ( 11 THRU 15=7) ( 16 THRU 20=8) (21 THRU 25 =9) ( 26 THRU 100=10)/
$\operatorname{VD}(0=1)(1 \operatorname{THRU} 2=2)(3$ THRU $4=3)(5$ THRU $6=4)$
( 7 THRU $8=5$ ) ( 9 THRU 10=6) ( 11 THRU 15=7)
( 16 THRU 20=8) ( 21 THRU 25=9)( 26 THRU 100=10)/
HD $(0=1)(1$ THRU $2=2)(3 \operatorname{THRU} 4=3)(5 \operatorname{THRU} 6=4)$
( 7 THRU 8=5) ( 9 THRU 10=6) ( 11 THRU 15=7)
( 16 THRU 20=8) ( 21 THRU 25=9) (26 THRU 100=10)/
$\operatorname{TD}(0=1)(1 \operatorname{THRU} 2=2)(3 \operatorname{THRU} 4=3)(5 \operatorname{THRU} 6=4)$
( 7 THRU $8=5$ ) ( 9 THRU $10=6$ ) ( 11 THRU 15=7)
(16 THRU 20=8)(21 THRU 25=9)(26 THRU 100=10)/
TREES $(0=1)(1 \quad$ THRU 2=2)(3 THRU $4=3)(5$ THRU 10=4) ( 11 THRU $99=5$ )/
POLES $(0=1)(1$ THRU 2=2)(3 THRU 4=3)(5 THRU 10=4) (11 THRU 99~5)/
$\operatorname{DITCH}(0=1)(1 \operatorname{THRU} 2=2)(3$ THRU $4=3)(5 \operatorname{THRU} 10=4) /$
MAILBOX $(0=1)(1 \operatorname{THRL} 2=2)(3$ THRU $4=3)(5 \operatorname{THRU} 6=4)$ ( 7 THRU $8=5$ )( 9 THRU 10=6)( 11 THRU 100=7)/
GUARDRAIL $(0=1)(1$ THRU $2=2)(3$ THRU $4=3)(5$ THRU 99=4)/
OVERPASS $(0=1)(1$ THRU 2=2)( 3 THRU $4=3$ ) ( 5 THRU $6=4$ ) ( 7 THRU $8=5$ ) ( 9 THRU 99=6)/
$\operatorname{CLLVERT}(0=1)(1 \operatorname{THRU} 2=2)(3$ THRU $4=3)(5 \operatorname{THRU} 6=4)$ ( 7 THRU $8=5$ ) ( 9 THRU $99=6$ )/
OTHEROB $(0=1)(1$ THRU $2=2)(3$ THRU $4=3)(5$ THRU 6=4) ( 7 THRU 8=5) ( 9 THRU 99=6)/
$\operatorname{OTHERS}(0=1)(1 \operatorname{THRU} 2=2)(3$ THRU 4=3)(5 THRU 6=4) ( 7 THRU 8=5) ( 9 THRU 99=6)/
SIGNS $(0=1)(1$ THRU $2=2$ ) ( 3 THRU $4=3$ ) ( 5 THRU 6=4) ( 7 THRU 8=5) ( 9 THRU $10=6$ ) ( 11 THRU 15=7) ( 16 THRU 20=8) (21 THRU 25=9)( 26 THRU 100=10)/
MAJINT $(0=1)(1$ THRU $2=2)(3$ THRU $4=3)(5$ THRU 6=4) ( 7 THRU $8=5$ ) ( 9 THRU $10=6$ ) ( $1+$ THRU 100=7)/
$\operatorname{MININT}(0=1)(1$ THRU $2=2)(3$ THRU 4=3)(5 THRU 6=4) ( 7 THRU 8=5)(9 THRU 10=6)( 11 THRU 15=7) ( 16 THRU 20=8) ( 21 THRU 100=9)/
MININTS $(0=1)(1 \operatorname{THRU} 2=2)(3 \operatorname{THRU} 4=3)(5$ THRU 6=4) ( 7 THRU 8=5) ( 9 THRU 10=6) ( 11 THRU 15=7) ( 16 THRU 20 $=8$ )( 21 THRU 100 $=9$ )/
MININTST $(0=1$ )( 1 THRU 2=2)(3 THRU 4=3)(5 THRU 6=4) ( 7 THRU $8=5$ ) ( 9 THRU 10=6) ( 11 THRU 15=7) ( 16 THRU 20=8)(21 THRU 100=9)/
$\operatorname{MININTF}(0=1)(1 \operatorname{THRU} 2=2)(3 \operatorname{THRU} 4=3)(5 \operatorname{THRU} 6=4)$ ( 7 THRU 8=5) (9 THRU 10=6) ( 11 THRU 15=7) ( 16 THRU 20=8) ( 21 THRU 100=9)/
INTLEG $(0=1)(1$ THRU $2=2)(3$ THRU $4=3)(5$ THRU 55=4)/
PSHOULO $(0=1)(1=2) /$
UPSHOULD $(0=1)(1=2) /$

| RECODE | $\operatorname{PPSHOULD}(0=1)(1=2) /$ |
| :---: | :---: |
|  | PSHOULD (2) $1 /$ |
| value labels | UPSHOULD (1) 0 |
|  | (2) $1 /$ |
| Value labels | PPSHOULD (1) 0 |
|  | ADT (1) $0-500{ }^{\text {(2) }}$ |
| VALUE LABELS | ADT (1) 0-500 |
|  | (2) 501-1500 |
|  | (3) 1501-2500 |
|  | (4) 2501-3500 |
|  | (5) 3501-4500 |
|  | (6) 4501-5500 |
|  | (7) 5501-6500 |
|  | (8) 6501-7500 |
|  | (9) 7501-20000/ |
|  | RATE (1) LOW |
|  | (2) HIGH/ |
|  | FREQ (1) 0 |
|  | (2) 1 |
|  | (3) 2 |
|  | (4) 3 |
|  | (5) 4 |
|  | (6) 5 |
|  | (7) 6 |
|  | (8) 7-100/ |
|  | RCURVE (1) 0-1 |
|  | (2) 2-3 |
|  | (3) 4-5 |
|  | (4) 6-7 |
|  | (5) 8-9 |
|  | (6) $10-50 /$ |
|  | LCURVE (1) 0-1 |
|  | (2) $2-3$ |
|  | (3) 4-5 |
|  | (4) 6-7 |
|  | (5) 8-9 |
|  | (6) 10-50/ |
|  | SCURVE (1) 0-1 |
|  | (2) 2-3 |
|  | (3) 4-5 |
|  | (4) 6-7 |
|  | (5) 8-9 |
|  | (6) $10-50 /$ |
|  | CCURVE (1) $0-1$ |
|  | (2) 2-3 |
|  | (3) 4-5 |
|  | (4) 6-7 |
|  | (5) 8-9 |
|  | (6) 10-50/ |
| Value labels | LW (1) 0-7 |
|  | (2) 8-10 |
|  | (3) 11-12 |
|  | (4) 13-14 |
|  | (5) 15-20/ |
|  | SW (1) 0-2 |
|  | (2) 3-4 |
|  | (3) 5-6 |
|  | (4) 7-8 |
|  | (5) 9-10 |
|  | (6) 11-20/ |
|  | CDRIVE(1) 0 |
|  | (2) 1-2 |
|  | (3) 3-4 |
|  | (4) 5-6 |
|  | (5) 7-8 |
|  | (6) 9-10 |
|  | (7) 11-15 |
|  | (8) 16-20 |
|  | (9) 21-25 |
|  | (10) 26-100/ |
|  | RDRIVE(1) 0 |
|  | (2) 1-2 |
|  | (3) 3-4 |
|  | (4) 5-6 |
|  | (5) 7-8 |
|  | (5) 9-10 |
|  | (7) 11-15 |
|  | (B) 16-20 |
|  | (9) 21-25 |

(10) 26-100/
TDRIVE(1) 0
(2) 1-2
(3) 3-4
(4) 5-6
(5) 7-8
(6) $9-10$
(7) 11-15
(B) $16-20$
(9) 21-25
(10) 26-100/
VD(1) 0
(2) 1-2
(3) 3-4
(4) 5-6
(5) 7-8
(E) $9-10$
(7) 11-15
(8) 16-20
(9) 21-25
(10) 26-100/
HD(1) 0
(2) 1-2
(3) 3-4
(4) 5-6
(5) 7-8
(5) 9-10
(7) 11-15
(8) $16-20$
(9) 21-25
(10) 26-100/
Value label to(1) 0
(2) 1-2
(3) 3-4
(4) 5-6
(5) 7-8
(6) $9-10$
(7) $11-15$
(8) 16-20
(9) 21-25
(10) 26-100/
$\operatorname{cov}(1) 0$
(2) 1-2
(3) 3-4
(4) 5-6
(5) 7-8
(6). $9-10$
(7) 11-15
(8) 16-20
(9) 21-25
(10) 26-100/
CDH(1) 0
(2) 1-2
(3) 3-4
(4) 5-6
(5) 7-8
(6) 9-10
(7) 11-15
(8) $16-20$
(9) 21-25
(10) 26-100/
VALUE LABEL

| $\operatorname{CDT}(1)$ | 0 |
| :--- | :--- |
| (2) | $1-2$ |
| (3) | $3-4$ |
| (4) | $5-6$ |
| (5) $7-8$ |  |
| (6) | $9-10$ |
| (7) $11-15$ |  |
| (8) $16-20$ |  |
| (9) $21-25$ |  |
| (10) $26-100 /$ |  |
| $\operatorname{RDV}(1)$ | 0 |
| (2) $1-2$ |  |
| (3) $3-4$ |  |
| (4) $5-6$ |  |
| (5) $7-8$ |  |
| (6) $9-10$ |  |
| (7) $11-15$ |  |
| (8) $16-20$ |  |
| (9) $21-25$ |  |

(10) 26-100/

RDH (1) 0
(2) 1-2
(3) 3-4
(4) 5-6
(5) 7-8
(6) $9-10$
(7) 11-15
(8) $16-20$
(9) 21-25
(10) $26-100 /$

VALUE LABELS
TREES (1) 0
(3) 3-4
(4) 5-10
(5) 11-50/

POLES (1) 0
(2) 1-2
(3) 3-4
(4) 5-10
(5) 11-50/

OITCH (1) 0
(2) 1-2
(3) 3-4
(4) $5-10$
(5) 11-50/

MAILBOX (1) 0 (2) 1-2
(3) 3-4
(4) 5-10 (5) 11-50/

GUARDRAIL (1) 0
(2) 1-2
(3) 3-4
(4) 5-99/

OVERPASS (1) 0
(2) 1-2
(3) 3-99/

CULVERT (1) 0
(2) 1-2
(3) 3-4
(4) 5-6
(5) 7-8
(6) 9-99/

OTHEROB (1) 0
(2) 1-2
(3) 3-4
(4) 5-6
(5) 7-8
(6) 9-99/

SIGNS (1) 0
(2) 1-2
(3) 3-4
(4) 5-6
(5) 7-8
(6) 9-10
(7) 11-15
(8) 16-20
(9) 21-25
(10) $26-100 /$

OTHERS (1) 0
(2) 1-2
(3) 3-4
(4) 5-6
(5) 7-8
(6) 9-99/

MAJINT (1) 0
(2) 1-2
(3) 3-4
(4) 5-6
(5) 7-8
(6) 9-10
(7) 11-100/

MININT(1) 0
(2) 1-2
(3) 3-4
(4) 5-6
(5) 7-8
(6) $9-10$
(7) 11-15
(8) 16-20
(9) 21-100/

MININTS(1) 0
(2) 1-2
(3) 3-4
(5) 7-8
(6) $9-10$
(7) 11-15
(8) 16-20
(9) 21-100/

MININTST(1) O
(2) 1-2
(3) 3-4
(4) 5-6
(5) 7-8
(6) $9-10$
(7) 11-15
(8) $16-20$
(9) 21-100/

MININTF (1) 0
(2) 1-2
(3) 3-4
(4) 5-5
(5) 7-8
(6) $9-10$
(7) $11-15$
(8) $16-20$
(9) 21-100/

INTLEG (1) 0
(2) $1-2$
(3) $3-4$

INPUT MEDIUM DISK
N OF CASES UNKNOWN
TABLES=RATE BY TREES, POLES,SIGNS,ADVSP,TANS,CHEVS/
TABLES=RATE BY TREES BY SIGNS/
3,4,5
READ INPUT DATA FINISH


[^0]:    (1) Evaluation of Accidents in Passing and No Passing Zones (preliminary); Michigan Department of Transportation, January 1981.

[^1]:    (5) Ibid.

[^2]:    (7) "Freeway Traffic Accident Analysis and Safety Study," by B.F.K. Mullins and C.J. Keese, HRB Bulletin 291, 1961, p. 46 (76).

[^3]:    * Zone $1=$ State Districts 1 and 2; $2=$ Districts 3 and 4;

    3 = Districts 5 and 6; $4=$ Districts 7 and 8.

[^5]:    (8) Safety Impacts of Vehicle Design and Highway Geometry, a dissertation by Koji Kuroda, Michigan State University, 1984.

[^6]:    * Values taken from "Safety Impacts of Vehicle Design and Highway Geometry, a Digaertation by Koji Kuroda,

