OVERVIEW OF GEOMETRIC DESIGN

HIGHWAY TERMINOLOGY, ALIGNMENT \& GEOMETRICS

November 2020

Class Instructors

- Mark Fisher, Engineer - Geometrics Unit fisherm@michigan.gov; (517) 335-1204
- William Taylor, Engineer - Geometrics Unit taylorw@michigan.gov; (517) 335-2992
- Imad Gedaoun, P.E., Supervisor - Geometrics Unit gedaouni@michigan.gov; (517) 335-2986

CLASS OBJECTIVES

GEOMETRIC DESIGN

What is Geometric Design?

- Physical Elements of Design
- Horizontal and Vertical Curves
- Grades
- Cross-Sectional Elements
- Cross-Slope and Superelevation
- Sight Distance
- Intersection and Interchange Design
- General Layout of the Roadway

FUNCTIONAL CLASS

AASHTO

- Provides Definitions for Various Functional Classes of Highways
- Design Criteria Vary According to the Type of Highway Facility
- Freeways
- Arterials
- Collectors
- Local Roads
- NHS/Non-NHS
- National Truck Network

DESIGN VEHICLES

- Physical Characteristics
- Operating Characteristics
- Classes
- Passenger Car
- Buses
- Trucks (WB-50, WB-62, WB-67)
- Recreational Vehicles
- Bicycles

Exhibit 2-16. Minimum Turning Path for Interstate Semitrailer
(WB-20 [WB-65 and WB-67]) Design Vehicle

IMPORTANT PRACTICES

Make Field Visits to Existing Locations

Get Old Plans and Look at Them

Obtain Traffic Volumes \& Review Safety
Keep Your Design Documents Up to Date
Get to Know Your Geometrics Area Engineer

REFERENCES

MDOT

- Road Design Manual
- Bridge Design Manual
- Bridge Design Guides
- Standard Plans
- Geometric Design Guides
- Sight Distance Guidelines
- Roundabout Design Aid
- T\&S Geometric Design Guidance
- DDI Guide

EMDOT

Michigan Department of Transportation

CaNo s.aft

PREPARED BY TRAFFIC AND SAFETY

EMDOT

REFERENCES

AASHTO

- Guide for the Development of Bicycle Facilities
- A Policy on Design Standards - Interstate

System

- A Policy on Geometric Design of Highways \& Streets
- Roadside Design Guide

DEFINITION OF TERMS

- Acceleration Lane - An auxiliary lane, including tapers, for the acceleration of vehicles entering another roadway.
- Arterial Road - A roadway which provides a high speed, high volume, network for travel between major points.
- Average Daily Traffic (ADT) - The average 24 hour traffic volume, based on a yearly total.
- Broken Back Curve - Two curves in the same direction joined by a short tangent distance.
- Collector Road - Roadway linking a local road to an arterial road, usually serving moderate traffic volumes.

DEFINITION OF TERMS

- Compound Curve - Two connecting horizontal curves in the same direction having different radii (no tangent).
- Crash Analysis - A site specific safety review of crash data performed to identify whether or not a specific geometric design element has either caused, or contributed, to a pattern or concentration of crashes at the location in question. The analysis is a critical component used in determining the appropriate application of geometric design criteria and in the evaluation of design exception approval requests.

DEFINITION OF TERMS

- Critical Grade - The grade and length that causes a typical truck or other heavy vehicle to have a speed reduction of 10 mph or greater.
- Cross Slope - Transverse slope rate of traveled lane or shoulder.

- Crown Runoff (also called Tangent Runout) - The distance necessary to remove adverse crown before transitioning into superelevation on curves. (Referred to as "C" distance in Standard Plan R-107 Series.)
- Deceleration Lane - An auxiliary lane that enables a vehicle to slow down and exit the highway with minimum interference from through traffic.

DEFINITION OF TERMS

- Design Hour Volume (DHV) - The hourly volume used to design a particular segment of highway.
- Design Speed - A selected speed used to determine the various geometric design features of the roadway.
- Directional Design Hour Volume (DDHV) - The directional distribution of traffic during DHV
- Free Access Highway - A highway, with no control of access, usually having at grade intersections, which may or may not be divided.
- Freeway - A divided arterial highway with full control of access and grade separations at intersections. (Limited Access).

DEFINITION OF TERMS

" Gore Area - The "V" area immediately beyond the divergence of two roadways bounded by the edges of those roadways. (2^{\prime} to 22^{\prime} points.)

- Grade Separation - A structure which provides for highway traffic to pass over or under another highway or the tracks of a railway.

- Horizontal Clearance - An operational offset which provides vehicle clearance for things such as mirrors on trucks and buses, and for opening curbside doors of parked vehicles. (1'6" minimum from face of curb.)

DEFINITION OF TERMS

- Interchange - A system of interconnecting roadways in conjunction with grade separations providing for the interchange of traffic between two or more intersecting roadways.
- Level of Service - A qualitative measure describing operational conditions within a traffic stream; generally described in terms of such factors as speed and travel time, freedom to maneuver, traffic interruptions, comfort and convenience, and safety. Levels of service are given letter designations from A to F, with LOS A representing the best operating conditions and LOS F the worst.

DEFINITION OF TERMS

- Local Road - A road which serves primarily to provide access to farms, residences, businesses or other abutting properties.

- Passing Lane Section (PLS) - Extra lane(s) to provide additional capacity and reduce delay caused by slow moving vehicles, such as recreational vehicles, during peak periods. These are often desirable in areas where slower vehicles are not necessarily the result of long steep grades.

DEFINITION OF TERMS

- Passing Relief Lane (PRL) - Common all-inclusive reference to a traffic lane provided for increased passing opportunities along a route, can be a Truck Climbing Lane (TCL) or a Passing Lane Section (PLS).
- Ramp - A connecting roadway between two intersecting roadways, usually at grade separations.
- Reverse Curve - Horizontal curves in the opposite direction joined by a short tangent distance or common point.

DEFINITION OF TERMS

- Rollover - Algebraic difference in rate of cross slope between traveled lane and shoulder.
- Service Road (also Frontage Road) - A local street or road usually parallel and adjacent to a controlled access highway for service to abutting properties.
- Sight Distance - The unobstructed distance that can be viewed along a roadway - usually referenced to decision points for drivers.

DEFINITION OF TERMS

- Spiral Curve Transition - A variable radii curve between a circular curve and the tangent. The radii of the transition and the curve are the same at the curve and increase to infinity at the tangent end of the transition.
- Superelevation - Tilting of the road surface on curves to help counter balance or offset the perceived "centrifugal force" on the vehicle.

DEFINITION OF TERMS

- Superelevation Transition (sometimes referred to as superelevation runoff) - The length of highway needed to change the pavement cross slope from a section with adverse crown removed to a fully superelevated section or vice versa. (Referred to as the "L" distance in Standard Plan R-107 Series.)
- Truck Climbing Lane (TCL) - An extra lane for heavy vehicles slowed by the presence of a long steep "critical grade" that provides passing opportunities for non-slowed vehicles.

QUESTIONS

3R / 4R WORK

4R PROJECTS

EXAMPLES OF 4R WORK

New Roadways or Bridges

Complete Removal and Replacement of Pavement (Including Subbase)

Major Alignment Improvements
Addition of Thru Lanes

Complete Bridge Deck or
Superstructure Replacement

EXAMPLES OF 4R WORK

Intermittent Grade

Modifications that
Leave the Existing
Pavement in Service
for Less than $\mathbf{5 0 \%}$
of the Total Project Length

3R PROJECTS

RESURFACING RESTORATION REHABILITATION

Code of Federal Regulations 23 CFR

"...work undertaken to extend the service life of an existing highway and enhance highway safety."

EXAMPLES OF 3R WORK

Resurfacing, Milling, or Profiling

Concrete Overlays and Inlays

Lane or Shoulder Widening (No Added Thru Lane)

Roadway Base Corrections

Minor Alignment Improvements
Roadside Safety Improvements

EXAMPLES OF 3R WORK

Signing, Pavement Markings, and Traffic Signals Intersection and Railroad Crossing Upgrades

Pavement Joint Repair

Passing Relief Lanes

Crush \& Shape and Resurfacing
Rubblize and Resurfacing

EXAMPLES OF 3R WORK

Intermittent Grade Modifications that Leave the Existing Pavement in Service for More than $\mathbf{5 0 \%}$ of the Total Project Length

Bridge 3R Work is Defined in Chapter 12 of the MDOT...

EXAMPLES OF 3R WORK

Deep or Shallow Overlays

Superstructure Repairs
Railing Replacements
Partial Deck or Superstructure Replacement
Deck Widening (No Added Through Lanes)
Substructure Repair or Replacement

COMBINED 3R \& 4R PROJECTS

RDM Section 3.08.01C

3R Standards Apply Where 3R Work is Performed

4R Standards Apply Where 4R Work is Performed

Note: The Applicable Standards Apply
Where Other Work Types are Performed
(CPM, M-Funded, Signal \& Signing Corridor Projects, Etc.)

4R ROAD GUIDELINES

Non-Freeway Reconstruction/New Construction

3R/4R Freeway Projects

RDM 3.11 \& RDM Appendix 3A
Design Criteria for Interstate Freeways Based on
"A Policy on Design Standards - Interstate System"
Non-Interstate Freeways Based on "AASHTO Green Book"

RDM APPENDIX 3A

Appendix 3A

GEOMETRIC DESIGN ELEMENTS New Construction / Reconstruction

Element		Urban	Rural				
Design Speed	Freeway	The greater of posted speed, or 60 mph .	The greater of posted speed, or 70 mph .				
	Non Freeway (Arterial)	The greater of posted speed, or 30 mph .	The greater of posted speed, or $40 \mathrm{mph} .$.				
	Collector Roads	Posted speed (minimum).	Posted speed (minimum)..				
Lane Width	Freeway	12 ft .	12 ft .				
	Non Freeway (Arterial)	12 ft , lanes are most desirable and should be used where practical. 11 ft . lanes are often used for low speed (45 mph design) Lane widths of 10 ft . may be used in more constrained areas where truck and bus volumes are relatively low and speeds are less than 35 mph . 12 ft . lanes on the National Network (NN). Design exceptions / variances are required to maintain existing narrower lanes. A high burden of justification is required in a design exception / variance to reduce existing lane widths less than or equal to 12'-0".	Design Speed, (mph)	Minimum Lane Width, ft.			
				Under 400	ADT, ve 1500 1500	1500 to 2000	$\begin{aligned} & \text { Over } \\ & 2000 \end{aligned}$
			40	11^{*}	11^{*}	11*	12
			45	11^{*}	11^{*}	11^{*}	12
			50	11***	11***	12	12
			60	12	12	12	12
			65	12	12	12	12
			70 75	12	12	12	12
			*12 ft. desirable				
	Collector Roads	Added turn lanes at intersections $10-12 \mathrm{ft}$. Where right-of-way is restricted. $11 \mathrm{ft}$. Industrial Areas 12 ft.	Design Speed, (mph)	Minimum Lane Width, ft.			
				ADT, vehicles/day			
				Under 400	$\begin{aligned} & 400 \text { to } \\ & 1500 \end{aligned}$	$\begin{gathered} 1500 \text { to } \\ 2000 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Over } \\ & 2000 \\ & \hline \end{aligned}$
			20	10^{*}	10^{*}	11^{*}	12
		Where shoulders are used, see guidelines for Rural Collectors	25 30	$10 *$ 10	10^{*} 10^{*}	11^{*} 11^{*}	12
			35	10^{*}	11^{*}	11^{*}	12
			40	10^{*}	11^{*}	11^{*}	12
			45	10^{*}	11**	11**	12
			50			11^{*}	12
			55	11^{*}	11^{*}	12	12
			60	11*	11*	12	12
			*12 ft. desirable				

RDM APPENDIX 3A

Appendix 3A
 GEOMETRIC DESIGN ELEMENTS
 New Construction / Reconstruction

RDM APPENDIX 3A

Appendix 3A
GEOMETRIC DESIGN ELEMENTS
New Construction / Reconstruction

Element		Urban \& Rural	
Design	Freeway	HS-25/HL93	
Loading	Non Freeway	State Trunkline	HS-25/HL93
Structural		Local Roads Over Freeways and State Trunkline	HS-25/HL93
Capacity (Also see Bridge		Local Roads and Streets	Design according to county or city standards, HS20/HL93 min.
Design Manual)		Use HS-25/HL93 for all structures in an interchange regardless of route type	
Horizontal Curve Radius	Freeway	See Standard Plan R-107-Series and Section 3.04.03	
	Non Freeway (Arterial)		
	Collector Roads		
	Non Freeway (Arterial)		
	Collector Roads		

RDM APPENDIX 3A

Appendix 3A
GEOMETRIC DESIGN ELEMENTS
New Construction / Reconstruction

Maximum Grade			Maximum Grade (\%) for specified design speed (mph)																			
		Type of Terrain	50			55			60				65			70			75			
		Level	4			4			3				3			3			3			
		Rolling	5			5			4				4			4			4			
			Grades 1\% steeper may be provided in urban areas.																			
		Type of Terrain	Urban												Rural							
			30		35	40		45	50			55	60		40	45		50	55		60	
		Level	8		7	7		6	6			5	5		5	5		4	4		3	
		Rolling	9		8	8		7	7			6	6		6	6		5	5		4	
		Type of	Urban										Rural									
		Terrain	20	25	30	35	40	45	50		55	60	20	25	30	35	40	45	50	55	60	
		Level	9	9	9	9	9	8	7		7	6	7	7	7	7	7	7	6	6	5	
		Rolling	12	12	11	10	10	9	8		8	7	10	10	9	9	8	8	7	7	6	
Stopping Sight Distance	Follow $20116^{\text {th }}$ Edition of AASHTO "A Policy on Geometric Design of Highways and Streets" (AKA AASHTO Green Book). The MDOT Sight Distance Guidelines also provide detailed information on sight distance calculation.																					
Cross Slope	Traveled way cross slope $=2.0 \%$, Paved shoulder cross slope $=4.0 \%$ (Also see Section 6.05.05)																					
Superelevation Rate	AASHTO Method 5 "Curvilinear Relation" is used for new construction/reconstruction. Maximum rate of 7\%. (See Standard Plan R-107-Series.)																					
	AASHTO Method 1 "Straight Line Relation" is allowed when Method 5 is not feasible. Maximum rate of 6\%. (See Section 3.04.03)																					
	The above methods also apply to urban freeways and urban ramps, except the maximum rate is 5% for 60 mph design speed.																					
Vertical Clearance					NHS											Non NHS						
	Freeway				16'-0"											$14^{\prime}-6^{\prime \prime}$						
	Non Freeway (Arterial)				16'-0"											$14^{\prime}-6^{\prime \prime}$						
	For pedestrian bridges provide 1 ft . additional clearance over non-freeway and 17 ft . minimum under clearance over freeways. A vertical clearance of $23^{\prime}-0^{\prime \prime}$ is required for grade separations over railroads. (See Bridge Design Manual 7.01.08 and Bridge Design Guides 5.24.03-04.)																					

3R/4R GUIDELINES

Freeway Safety Considerations (3.11.03)

Design Speed

Ramp Geometrics and Taper Lengths

Vertical Curbs

Sight Distance

Crown Location/Pavement Cross Slope

3R/4R GUIDELINES

Safety Considerations (3.11.03)

Superelevation

Guardrail
and
Concrete Barrier

Attenuation

Shoulder and Slopes

3R/4R GUIDELINES

Safety Considerations (3.11.03)

Clear Zones
\&
Fixed Objects
Culvert End
Treatments

4R BRIDGE GUIDELINES

MDOT Bridge Design Guides

Cover Most Design Elements for Most 4R Work

MDOT Bridge Design Manual - Chapter 7

Deck Replacements and Underclearance Requirements

BRIDGE DESIGN GUIDE

(BDG 6.05.01A)

BRIDGE DESIGN GUIDE

BRIDGE DESIGN GUIDE

(BDG 6.05.03)

BRIDGE DESIGN GUIDE

(BDG 6.06.01)

BRIDGE DESIGN GUIDE

(BDG 6.06.02)

DRAWN BY: BLT	M[CHIGAN DEPARTMENT OF TRANSPORTATION BUREAU OF HIGHWAY DEVELOPMENT	ISSUED: 02/14/11
CHECKED BY: APPROVED BY \qquad	SUBSTRUCTURE CLEARANCES RURAL STATE TRUNKLINES	SUPERSEDES:08/15/03

NOTES:

* MLN]MUX DIUENS[ON [S THE CLEAR ZONE DISTANCE GJVEN IN BR[DGE DESIGN GU[DE 6.06.05. USE THE MIDDLE OF RANGE AT THE APPROPRIATE DESIGN ADT. VHERE ROADWAY IS ON A CURVE NITH A RADJUS OF 2860° OR LESS. DISTANCE TO TOE OF 1 ON 2 SLOPE SHOULD BE JNCREASED ON OUTSIDE OF CURVE PER BRIDGE DES[GN GUJOE 6.06.05A OR GUARDRA[L PROTECTJON OF SLOPE OR PJER SHOULD be provided.
+ IF distance to pjer or toe of 1 on 2 SLope is less than the clear zone distance provide GUARDRAJL PROTECTION OF PIER OR SLOPE.
approach slope facing traffic must be graded to 1 on 6 when the toe of the slope in front of the abutment is within the clear zone. see standard plan r-105-serjes.
** AT AUXILIARY LANE TAPER SEE BRIDGE DESIGN GULDE 6.06.01 AND CALCULATE CLEAR ZONE BASED ON THRU LANES. SEE SECTION 7.01 OF THE ROAD DESIGN MANUAL.
SECTIONS ARE APPLICABLE GENERALLY FOR STRUCTURES WITH APPROACHES ON F[LL OR WHEN DRAINAGE IS
 DITCH SECTION THROUGH STRUCTURE AS CALLED FOR ON EXPRESSNAY SECTION.
all dinensions are at richt angles to roadway

BRIDGE DESIGN GUIDE

(BDG 6.06.03)

BRIDGE DESIGN GUIDE

(BDG 6.06.04)

DRAWN BY: BLT		ISSUED: 08/15/03
CHECKED BY: VZ APPROVED BY: TGF	SUBSTRUCTURE CLEARANCES	SUPERSEDES: $11 / 27 / 01$

90° CROSSING OR MODERATELY SKEWED
COUNTY ROAD UNDER

CITY STREET UNDER
TRANSITION SLOPE AT FRONT OF ABUTMENT TO 1 ON 6 THPOUCH CONE APEAS IN ALL QUMORANTS. WHERE THERE IS NOT SUFFICIENT ROOM FOR 1 ON 6 SLOPES FOR FULL HEICHT OF EMBANMMENTS, BREAK
SLOPES STARTING WITH 1 ON 6 AT GROUND LINE AND EXTENDING TO INTERSECT THE 1 ON 2 SLOPES.
all dimensions are at right angles to county road.
**MINIMMM DIMENSION, MAY BE MODIFIED BY AGREEMENT WITH CITY OR SPECIAL CONDITIONS.

DECK REPLACEMENT GUIDELINES

MICHIGAN DESIGN MANUAL BRIDGE DESIGN - CHAPTER 7: LRFD

7.02.31 Deck Replacements (Cont.)

CLEAR ROADWAY WIDTHS AND DESIGN LOADING FOR DECK REPLACEMENTS			
Type of Roadway		Minimum Clear Roadway Width	Minimum Design Loading
Non-Interstate Freeway		A, C	HS-20
Interstate Freeway		B, C	HS-20
Arterial (Non-Freeway Trunkline)	Rural	Exhibit 7-3.	HS-20
	Rural	Urban	Exhibit 6-6.
Local (Non-Trunkline)	Rural	Exhibit 6-5., E	HS-20
	Urban	Exhibit 5-6.	HS-20

(A) The minimum clear roadway provided shall accommodate the pavement and full shoulders of the approach roadway or the minimum AASHTO requirements for lane and shoulder widths, whichever is greater.
(B) The minimum clear roadway provided shall accommodate the pavement and full shoulders of the approach roadway.
(C) For bridges in excess of $200^{\circ}-0^{\prime \prime}$ in length, where the nearest offset from the edge of traveled way to either curb or barrier is greater than $4^{\prime}-0^{\prime \prime}$ on the approaches, the nearest offset on the bridge shall be at least $4^{\prime}-0{ }^{\prime \prime}$ on each side. (12-5-2005)
(D) The minimum clear width on the bridge shall be the same as the curb-to-curb width of the street.
(E) The minimum clear roadway shall be the traveled way plus $1^{\prime}-0^{\prime \prime}$ to each curb face. However, consideration should be given to providing the same width as the curb-to-curb approach width if it is cost effective to do so.

DECK REPLACEMENT GUIDELINES

(BDM 7.02.31)

MICHIGAN DESIGN MANUAL BRIDGE DESIGN - CHAPTER 7: LRFD

The tables shown below are derived from A Policy on Geometric Design of Highways and Streets, 2011, 6th Edition published by AASHTO and do not include clearances for bridge rail offiset. See the Bridge Design Guides for MDOT offset criteria. (7-20-2015) (3-21-2016)

MINIMUM WIDTH OF TRAVELED WAY FOR RURAL ARTERIALS (FROM Exhibit 7-3.)				
Design Traffic Volume (veh/day)				
Design Speed(mph)	Under 400	400-1500	1500-2000	over 2000
Width of Traveled Way (ft)(a)				
40-45	22	22	22	24
50-55	22	22	24	24
60-75	24	24	24	24

| MINIMUM CLEAR ROADWAY WIDTHS FOR RURAL ARTERIAL BRIDGES BEING |
| :---: | :---: |
| RECONSTRUCTED (FROM Exhibit 7-3.) |

Design	Design Traffic Volumes (veh/day)			
Speed(mph)	Under 400	400-1500	1500-20	over 2000
	Width of Traveled Way (ft)			
20-30	$20^{\text {(a) }}$	20	22	24
35-40	$20^{\text {(a) }}$	22	22	24
45-50	20	22	22	24
55-60	22	22	24	24

On roadways to be reconstructed, a 22 ft traveled way may be retained where the alignment and safety records are satisfactory.
(a) A 18 ft minimum width may be used for roadways with design volumes under 250 veh/day.

DECK REPLACEMENT GUIDELINES

(BDM 7.02.31)

MICHIGAN DESIGN MANUAL
 BRIDGE DESIGN - CHAPTER 7: LRFD

Exhibit 6-6. MINIMUM ROADWAY WIDTHS FOR NEW AND RECONSTRUCTED BRIDGES
CARRYING RURAL COLLECTOR ROADS

Design Traffic Volume(veh/day)	Minimum Roadway Width of Bridge	Design Loading Structural Capacity
400 and Under	Traveled way +2 ft (each side)	HS -20
400 to 1500	Traveled way +3 ft (each side)	HS -20
1500 to 2000	Traveled way +4 ft (each side) ${ }^{(a)}$	HS -20
over 2000	Traveled way + shoulders ${ }^{(a)}$	HS -20

Where the approach traveled way plus shoulders is surfaced, that surfaced width shall be carried across all structures.
a) For bridges in excess of 100 ft in length, the minimum width of traveled way plus 3 ft on each side will be acceptable.

Exhibit 5-5. MINIMUM WIDTH OF TRAVELED WAY FOR LOCAL ROADS					
	Design Traffic Volumes (veh/day)				
Design Speed(mph)	Under 400	$400-1500$	$1500-2000$	over 2000	
	18	Width of Traveled Way (ft)			
15	18	20	20	22	
$20-40$	20	20	22	24	
$45-50$	22	22	22	24	
$55-60$	22	24	24		

Where the width of traveled way is shown as 24 ft , the width may remain 22 ft m on reconstructed
bridges where alignment and safety records are satisfactory.

Exhibit $5-6 . ~ M I N I M U M ~ C L E A R ~ R O A D W A Y ~ W I D T H S ~ A N D ~ D E S I G N ~ L O A D I N G S ~ F O R ~ N E W ~ A N D ~$			
RECONSTRUCTED BRIDGES CARRYING RURAL LOCAL ROADS			

VERTICAL CLEARANCE

Bridge Design Manual, Section 7.01.08 Road Design Manual, Section 3.12

VERTICAL CLEARANCE REQUIREMENT TABLE (8-20-2009) (6-22-2015)

Reufe Classilication Under the Structure	All Canstruction (Desiredt)	$\begin{gathered} \text { New } \\ \text { Canstruction } \\ \left(\text { Min }^{+}\right) \end{gathered}$	Road 4R Construction (Min+)	Eridge 4R Construction (Min ${ }^{*}$)	3R Canstruction (Min')
Freemays	16:3*	16:-9\%	16:-9\%		
NHS Acterials (Local 8 Trurkline)	$18^{\prime} \cdot 3^{*}$	$16.0{ }^{\circ}$	Maintain Existing ${ }^{+4}$ and $14^{\circ} \cdot \mathbf{- 0}^{\circ} \mathrm{Mr}$	16.-0\%	Maintain Existing" and $14^{-}-0^{-}$Min
Nan NHS Artarials (Local \& Trunkline)	16:3'	14-6 ${ }^{\circ}$	Maintain Existing ${ }^{4}$ and $14^{\prime} \cdot$. $^{\circ} \mathrm{Mn}$	Maintain Existing ${ }^{+}$ and 14'-6. Mn	Maintain Existing ${ }^{+1}$ and $14^{\prime}-0^{\prime \prime}$ Min
Collectors, Local Roads 8 Sperial Reules" ${ }^{11}$	$14^{\prime} \cdot 9^{*}$	14.6	Maintain Existing" ${ }^{*}$ and $14^{4}-0^{\circ} \mathrm{Mn}$	Maintain Existing" and $14^{-}-6^{\circ} \mathrm{Mn}$	Mainlain Existing" and $14^{-}-0^{-} \mathrm{Min}$

3R = Rehabilitation, Restoration, Resurfacing

- Minimum Vertical Clearance must be maintained over complete usable shoulder width.
** Existing vertical clearances greater than or equal to the minimums shown may be retained without a design exception. Vertical clearance reductions that fall below the minimums for new construction require a design exception. (6-22-2015)
... Existing vertical clearances may be retained (or increased) without a design exception unless a pattern of high load hits exist. Vertical clearance reductions below the standard (table value) require design exceptions. (5-27-2020)
(1) Special Routes are in Highly Urbanized Areas (where little if any undeveloped land exists adjacent to the roadway) where an altemate route of $16^{\prime}-\square^{\prime \prime}$ is available or has been designated. Bridges located over Special Routes in Highly Urbanized Areas can be found on the MDOT website at: http://mdotel.state.mi.us/public/design/files lenglishbridgemanual/Exempt Structures. pdf (5-28-2013)

Ramps and roadways connecting a Special Route and a $16^{\prime}-0^{\prime \prime}$ route require a vertical clearance minimum of $14^{\circ}-6^{*}$ (14 -9^{*} desired). Ramps and roadways connecting two $16^{\circ}-0^{*}$ routes require a vertical clearance minimum of $16^{\prime}-0^{*}$ ($16^{\prime}-3^{\prime \prime}$ desired). (8-20-2009)

$4 \mathbf{R}=\mathbf{R e c o n s t r u c t i o n}$

Information on the NHS systems can be obtained by contacting the Statewide Planning Section, Bureau of Transportation Planning or found on the MDOT website at
http://www.michigan,qov/mdol-nfc (11-28-2011)

Pedestrian bridges are to provide $1-0 "$ more underclearance than that required for a vehicular bridge. For Fraeways (Interstate and non Interstate), including Special Route Freeways, the desired underclearance shall be $17^{\prime}-3^{*}$ (minimum 17'-0"). (8-20-2009)

A vertical underclearance of $233^{\prime}-0^{*}$ is required for highway grade separations over railroads when constructing a new bridge or removing the existing superstructure. For preventative maintenance, rehabilitation and deck replacement projects the existing railroad vertical underclearance does not need to be increased unless requested by the Railroad. (11-28-2011)

Clearance signs are to be present for structures with underclearance of $16^{\circ}-0^{\circ}$ or less (show dimensions 2^{\prime} less than actual). See MDOT Traffic and Safety Siqn Design Placement, and Application Guidelines for additional information and guidelines.
(8-20-2009) (11-28-2011) (11-21-2013) (3-25-2019)

3R ROAD GUIDELINES

Design Guidelines for New/Reconstruct May not be Cost Effective

Freeway

- RDM Section 3.11
(3R/4R Freeway Guidelines)
- 3R Freeway Allowances

Non-Freeway

- RDM Section 3.09
(Non-Freeway 3R Minimum Design Guidelines)

3R GUIDELINES

Two Types of Non-Freeway 3R Guidelines

- NHS (National Highway System) - RDM 3.09.02A
- Non-NHS - RDM 3.09.02B

3R FREEWAY ALLOWANCES

FHWA Letter:

Michigan Division

315 W. Allegan Street, Room 201
Lansing, MI 48933
November 7, 2012
Mr. Gregory C. Johnson, P.E. Chief Operations Officer (B470) Michigan Department of Transportation Lansing, Michigan

Dear Mr. Johnson:

Our office has recently revised our stance regarding minimum design speed to be used on Federal-aid freeway 3 R projects, for those roadways on which the posted speed limit has been increased. This policy change will be relevant to over 100 miles of freeway on which MDOT and MSP have posted increased speed limits in previous years.

The revised policy is as follows: As advised by our HQ office, an increase in posted speed limit on a given freeway segment would not be factored into project design speed for future $3 R$ projects. The 3R project could be designed using the design speed that had been established for the latest reconstruction of that road segment or, if none, then for the original freeway construction. Of course, all 3R projects regardless of design speed continue to be subject to the safety review specified in MDOT's 3R guidelines.
This determination is consistent with AASHTO's "A Policy on Design Standards Interstate System" dated January 2005 which FHWA has adopted as a standard. The AASHTO policy states, "The standards used for horizontal alignment, vertical alignment, and widths of median, traveled way, and shoulders for resurfacing, restoration, and rehabilitation projects may be the AASHTO interstate standards that were in effect at the time of original construction or inclusion into the interstate system." The effect of this recent change is to extend that approach to freeways off the Interstate as well.

The FHWA design speed requirement for 4 R projects continues to be the upwardly-revised speed limit. Additionally, a 3 R project that includes some spot or segment of 4 R construction would likewise have to use the higher design speed for the part of the project that includes the 4R work.

3R FREEWAY ALLOWANCES

Design Speed:

"an increase in posted speed limit on a given freeway segment would not be factored into project design speed for future $3 R$ projects. The $3 R$ project could be designed using the design speed that had been established for the latest reconstruction of that road segment or, if none, then for the original freeway construction."

3R FREEWAY ALLOWANCES

Geometric Design Elements:

"The standards used for horizontal alignment, vertical alignment, and widths of median, traveled way, and shoulders for resurfacing, restoration, and rehabilitation projects may be the AASHTO interstate standards that were in effect at the time of original construction or inclusion into the interstate system."

3R FREEWAY ALLOWANCES

GEOMETRIC REQUIREMENTS FOR FREEWAY PROJECTS INVOLVING 3R WORK TYPES

Geometric Design Element		Minimum Required Standard*	Compliance Determination
Design Speed		Standard at the time of construction or the most recent 4 R project	Compliance Assumed
Horizontal Curve Radius (Rmin.)		Standard at the time of construction or the most recent 4R project	Compliance Assumed
Longitudinal Grade (Min./Max.)		Standard at the time of construction or the most recent 4R project	Compliance Assumed
Stopping Sight Distance (Horizontal and/or Vertical))		Standard at the time of construction or the most recent 4 R project	Compliance Assumed
Lane Width		Standard at the time of construction or the most recent 4 R project	Compliance Assumed
Shoulder Width		Standard at the time of construction or the most recent 4 R project	Compliance Assumed
Superelevation		Standard at the time of construction or the most recent 4R project	Compliance Assumed
Cross-Slope	(Excluding parabolic Parabolic cross-slopes still require a $\mathrm{DE} / \mathrm{DV}$)	Standard at the time of construction or the most recent 4 R project (Unless parabolic; Parabolic cross-slopes must be removed or a $D E / D V$ is required)	Compliance Assumed (Unless parabolic; Parabolic cross-slopes must be removed or a $D E / D V$ is required)
Structural Capacity		Standard at the time of construction or the most recent 4R project	Compliance Assumed
Vertical Clearance		Standard at the time of construction or the most recent 4R project	Compliance Assumed
Acceleration/Deceleration Length		Existing Length	Compliance Assumed

* If the project-wide Safety Review identifies a pattern of crashes associated with a particular design element (or elements), then that design element (or those elements) must be bought up to current standards (i.e. the existing design values may not be retained if they do not meet current standards).

3.09 .02 (continued)

Non-Fr

A. Non-Freeway, NHS

3.09.02 (continued)

Non-Fr

Geometric Elements	Non-Freeway, Non-NHS 3R Minimum Guidelines		
Design Speed	Posted Speed Minimum		
Shoulder Width NOTE: Minumum shoulder widths apply for posted speeds greater thant 45 mph . Restrictions such as right of way and roadside context senstivity issues may preclude the use of minimum shoulders within cify, village or township limits with posted speeds of 45 mph and less.	Current ADT Two-Way	Inside and Outside Shoulder Width	
	$\begin{gathered} \$ 750 \\ 750-2000 \\ >2000 \end{gathered}$	$2^{\prime-} 0^{\circ}$ (Gravel) $3^{\prime}-0^{\prime \prime}$ (Paved) $6^{\circ}-0^{*}\left(3^{3}-0^{*}\right.$ Paved)	
	MulE-Lane (Divided \& Undivided)	$\begin{aligned} & \text { Inside } \\ & \text { (Divided) } \end{aligned}$	Outside (Both sides for un-divided)
		3'-0* Paved	$6^{\prime}-0^{\prime \prime}\left(3^{3}-0^{*}\right.$ Paved)
	See Bridge Design Manual Appendix 12.02 for Bridge Widths		
Lane Width	ADT		Lane Width
	$\begin{aligned} & \leq 750 \\ & >750 \end{aligned}$	$\begin{aligned} & 10^{\prime}-0^{*} \\ & 11^{\prime}-0^{*} \end{aligned}$ $10^{6}-0^{*}$ lanes may be considered in urban areas for multi-lane un-divided (regardless of ADT) and multi-lane divided ($A D T<10,000$). $12^{2}-0^{*}$ lanes are desirable on the Priority Commercial Network (PCN) and the National Network (also known as the National Truck Network). Existing narrower lanes may be relained without Design Exceptions / Design Variances. Reduction of existing lane widths on the National Network to less than $12-0^{*}$ require a Design Exceptions / Design Variances request having a high burden of justification.	
Design Loading Structural Capacity (Existing Bridges to remain in place)	ADT (Design Year)		hum Design Loading
	0.750		H15
	> 750		HS15
Horizontal Curve Radius and Stopping Sight Distance	Existing curve radius and stopping sight distance may be retained if the design speed of the existing curve is not more than 15 mph (horizontal) or 20 mph (vertical) below the project design speed and there is no crash concentration. Otherwise standards for new construction apply. See $20116^{\text {a }}$ Edition AASHTO Green Book or MDOT Sight Distance Guidelines.		
Maximum Grade	Review crash data. Existing grade may be retained without crash concentration.		
Cross Slopes	Traveled way 1.5% - 2%, Shoulder see Section 6.05.05		
Superelevation Rate	Standard Plan R-107-Series or reduced maximum (6\%) Straight Line Superelevation Chart using the project design speed.		
Vertical Clearance	See Section 3.12.		

3R GUIDELINES

Non-Freeway Safety Considerations (3.09.03)
Signing
Evaluation of Guardrail and Bridge Rail

Tree Removal

(Crash Frequency, Curves, Sight Distance, Clear Zone, etc...)

Roadside Obstacles (Culvert Headwalls, Utility
Poles, etc...)

3R GUIDELINES

Non-Freeway Safety Considerations (3.09.03)

Cross Section Elements (Crown Location, Side Slopes)

Crown Location:

Existing pavement crown point location may be retained on a project where the rate of resurfacing is less than $4^{\prime \prime}$ in thickness. Otherwise, standard crown location should be used.

Side Slopes:

Side Slopes			Current ADT Two-Way	Foreslope
		Twolane	≤ 750	1:3
		Two-Lane	> 750	$1: 4$
			$\leq 10,000$	1:3
		Muti-Lane Undivided	> 10,000	1:4
		Multi-Lane Divided	All	1:4

3R BRIDGE GUIDELINES

MDOT Bridge Design Manual

Chapter 12 - Most Design Elements

Chapter 7 - Underclearance Requirements

3R BRIDGE GUIDELINES

(BDM 12.05.01)

12.05.01

Approved MDOT Railings

(5-1-2000) (11-25-2019) (9-28-2020)
Current MDOT approved railings are:
A. Bridge Barrier Railing, Type 6
(B-29-Series)
B. Bridge Barrier Railing, Type 7 (B-28-Series)
C. Bridge Railing, Aesthetic Parapet Tube (B-25-Series)
D. Bridge Railing, 2 Tube (B-21-Series)
E. Bridge Railing, Thrie Beam Retrofit (B-22\&23-Series)
F. Bridge Railing, 4 Tube (9-2-2003) (B-26-Series)
G. Bridge Railing, 3 Tube With Pickets (B-27-Series)
H. Bridge Railing, Concrete Block Retrofit (B-50-Series)
I. Bridge Barrier Railing, Type 6, Modified * (B-29-Series \& Bridge Design Guides)

* Type 6 modified (adhesive anchored) railing must only be used for non-NHS routes.

3R BRIDGE GUIDELINES

(BDM Appendix 12.02)

CLEAR ROADWAY WIDTHS AND DESIGN LOADING FOR BRIDGES BEING REHABILITATED (3-26-2012)			
Type of Roadway		Minimum Clear Roadway Width	Minimum Design Loading
Non-Interstate Freeway	A, B	HS-20	
Interstate Freeway Arterial (Non-Freeway Trunkline)	Rural	Urban	A, B
	Rural	U	HS-20
	Urban	Exhibit 6-7.	HS-20
Local (Non-Trunkline)	Rural	Exhibit 6-5., E	HS-20
	Urban	Exhibit 5-7.	H 15

(A) As constructed.
(B) Consideration should be given to carrying the full shoulders of the approach roadway across the structure if it is cost effective to do 50 .
(C) The minimum clear roadway should accommodate the traveled way plus $2^{\prime}-0^{\prime \prime}$ on each side. (12-5-2005)
(D) The minimum clear width on the bridge shall be the same as the curb--to-curb width of the street.
(E) The minimum clear roadway shall be the traveled way plus $1^{1}-0$ " to each curb face. However, consideration should be given to providing the same width as the curb-to-curb approach width if it is cost effective to do so .

3R BRIDGE GUIDELINES

(BDM Appendix 12.02)

The tables shown in this appendix are derived from A Policy on Geometric Design of Highways and Streets, 2011, 6th Edition, published by AASHTO and do not include clearances for bridge rail offset. See the Bridge Design Guides for MDOT offset criteria. (3-26-2012) (7-20-2015) (3-21-2016)

Exhbit 6-7. STRUCTURAL CAPACITIES AND MINIMUM ROADWAY WIDTHS FOR BRIDGES BEING REHABILITATED CARRYING RURAL COLLECTOR ROADS		
Design Traffic Volume(veh/day)	Design Loading Structural Capacity	Minimum Clear Roadway Width (ft$)^{(a)}$
Under 400 400 to 1500 1500 to 2000 over 2000	$\begin{aligned} & \text { H } 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 22 \\ & 22 \\ & 24 \\ & 28 \\ & \hline \end{aligned}$

(a) Clear width between curbs or ralings, whichever is the lesser, shall be equal to or greater than the approach traveled way width, wherever practical.

The values in Exhibit 6-7. do not apply to structures with a total length greater than 100 ft . These structures should be analyzed individually by taking into consideration the clear width provided, safety, traffic volumes, remaining life of the structure, design speed, and other pertinent factors.

Exhibit 6-5. Minimum WIDTH OF TRAVELED WAY FOR COLLECTOR ROADS				
Design	Design Traffic Volumes (veh/day)			
Speed(mph)	Under 400	$400-1500$	$1500-2000$	over 2000
	Width of Traveled Way (ft)			
$20-30$	$20^{(a)}$	20	22	24
$35-40$	$20^{(a)}$	22	22	24
$45-50$	20	22	22	24
$55-60$	22	22	24	24

(a) A 18 ft minimum width may be used for roadways with design volumes under 250 veh/day.

On roadways to be reconstructed, a 22 ft traveled way may be retained where the alignment and safety records are satisfactory.

3R BRIDGE GUIDELINES

(BDM Appendix 12.02)

Exhibit 5-5. MINIMUM WIDTH OF TRAVELED WAY FOR LOCAL ROADS				
	Design Traffic Volumes (veh/day)			
Design Speed(mph)	Under 400	$400-1500$	1500	-2000
over 2000				
	18	20	20	22
15	18	20	22	24
$20-40$	20	22	22	24
$45-50$	22	22	24	24
$55-60$		Width of Traveled Way (ft)		

Where the width of traveled way is shown as 24 ft , the width may remain 22 ft m on reconstructed bridges where alignment and safety records are satisfactory.

VERTICAL CLEARANCE

Bridge Design Manual, Section 7.01.08
 Road Design Manual, Section 3.12
 VERTICAL CLEARANCE REQUIREMENT TABLE ($8-20-2009$) (6-22-2015)

Reufe Classification Under the Structure	All Canstuction (Desiredt)	$\begin{gathered} \text { New } \\ \text { Canstruction } \\ \left(\text { Min }^{+}\right) \end{gathered}$	$\begin{aligned} & \text { Road 4R } \\ & \text { Canstruction } \\ & \left(\text { Min }^{+}\right) \end{aligned}$	Brictue 4R Construction (Min^{*})	3R Canstruction (Mn')
Freenays	16:3*	16-0\%	16-0\%	$10^{\circ}-0^{\circ}$	16-0\% ${ }^{\text {a }}$
NHS. Anterials (LDcal δ Trunkline)	$16^{1 / 3}$	$10^{\circ}-0^{\circ}$	Maintain Existing ${ }^{+1}$ and $14^{-}-\boldsymbol{\theta}^{\circ} \mathrm{Mn}$	$10^{10 \%}$	Maintain Existing" and 14-0 0^{-}Min
Nan NHS Attarials (Local \& Trunkline)	16:3'	14-6	Maintain Existing" and $14^{\circ}-\boldsymbol{\sigma}^{\circ} \mathrm{Mn}$	Maintain Existing ${ }^{+}$ and $14^{-6} 6^{4} \mathrm{Mn}$	Maintain Existing ${ }^{4 *}$ and $144^{\circ}-0^{\prime \prime} \mathrm{Min}$
Collectors, Local Roads 8 Sperial Reuies ${ }^{14}$	14.9**	14'6 ${ }^{\circ}$	Maintain Existing" ${ }^{*}$ and $14^{-}-0^{\circ} \mathrm{Mn}$	Maintain Existing" and $14^{-6} \mathrm{Gn}$	Maintain Existing"* and $14^{-} 0^{-1}$ Min

3R = Rehabilitation, Restoration, Resurfacing

- Minimum Vertical Clearance must be maintained over complete usable shoulder width.
* Existing vertical clearances greater than or equal to the minimums shown may be retained without a design exception. Vertical clearance reductions that fall below the minimums for new construction require a design exception. (6-22-2015)
... Existing vertical clearances may be retained (or increased) without a design exception unless a pattern of high load hits exist. Vertical clearance reductions below the standard (table value) require design exceptions. (5-27-2020)
(1) Special Routes are in Highly Urbanized Areas (where little if any undeveloped land exists adjacent to the roadway) where an alternate route of $16^{\prime}-0^{\prime \prime}$ is available or has been designated. Bridges located over Special Routes in Highly Urbanized Areas can be found on the MDOT website at http://mdotef.state.mi.us/public/design/files lenglishbridgemanual/Exempt Structures. pdf (5-28-2013)

Ramps and roadways connecting a Special Route and a $16^{\prime}-0^{\prime \prime}$ route require a vertical clearance minimum of $14^{\circ}-6^{*}$ (144-9 9^{\prime} desired). Ramps and roadways connecting two $16^{\circ}-0^{*}$ routes require a vertical clearance minimum of $16^{\prime}-0^{*}$ ($16^{\prime}-3^{\prime \prime}$ desired). (8-20-2009)

$4 \mathbf{R}=\mathbf{R e c o n s t r u c t i o n}$

Information on the NHS systems can be obtained by contacting the Statewide Planning Section, Bureau of Transportation Planning or found on the MDOT website at
http://www.michigan,qov/mdol-nfc (11-28-2011)

Pedestrian bridges are to provide $1-0 "$ more underclearance than that required for a vehicular bridge. For Freeways (Interstate and non Interstate), including Special Route Freeways, the desired underclearance shall be $17^{\prime}-3^{\prime}$ (minimum 17'-0'). (8-20-2009)

A vertical underclearance of $23^{\prime}-0^{*}$ is required for highway grade separations over railroads when constructing a new bridge or removing the existing superstructure. For preventative maintenance, rehabilitation and deck replacement projects the existing railroad vertical underclearance does not need to be increased unless requested by the Railroad. (11-28-2011)

Clearance signs are to be present for structures with underclearance of $16^{\circ}-0^{\circ}$ or less (show dimensions $2^{\prime \prime}$ less than actual). See MDOT Traffic and Safety Siqn Design Placement, and Application Guidelines for additional information and guidelines.
(8-20-2009) (11-28-2011) (11-21-2013) (3-25-2019)

QUESTIONS

DESIGN SPEED

DESIGN SPEED (RDM 3.06)

Design Speed

- Selected Speed
- Used to Determine Various Geometric Design Features of the Roadway

Once Selected...

- All Pertinent Design Features Should be Related to It to Obtain a Balanced Design

DESIGN SPEED (RDM 3.06)

Design Roadway Geometrics for 4R Projects Based on an MDOT Recommended Project Design Speed 5 mph Greater than the Posted Speed

Research shows that Operating Speeds are Typically Greater than the Posted Speeds.

DESIGN SPEED

3R / 4R Freeway Projects

Recommended Design Speed: 5 mph Greater than Posted Speed
Minimum Design Speed: The Greater of Posted Speed, or 70 mph
3R Freeway Allowance: The Design Speed at the Time of Construction or the Last 4R Project

"Urban" Freeway Projects

Recommended Design Speed: 5 mph Greater than Posted Speed Minimum Design Speed: The Greater of Posted Speed, or 60 mph 3R Freeway Allowance: The Design Speed at the Time of Construction or the Last 4R Project

Freeway Clear Zones

Design Speed - 70 mph

DESIGN SPEED (RDM Appendix 3A)

DESIGN SPEED Non-Freeway, NHS, 3R (3.09.02 A)

MICHIGAN DESIGN MANUAL

ROAD DESIGN
3.09 .02 (continued)

DESIGN SPEED

Non-Freeway, Non-NHS, 3R (3.09.02 B)
MICHIGAN DESIGN MANUAL ROAD DESIGN

3.09 .02 (continued)

Posted Speed Minimum

of-way exiats to inctude shoulberz. At lower speedd, minimum shoulders are deairable.	Mult-Lane (Divided \&Undivided)	$\begin{gathered} \text { Inside } \\ \text { (Divided) } \\ \hline \end{gathered}$	Outside (Both sides for un-divided)
		3-0. Paved	$8^{1}-0^{\prime \prime}\left(33^{\prime}-0^{\prime \prime}\right.$ Paved)
Lane Width	ADT	Lane Wdth	
	5750	10^{--8}	
	750	$11^{1-a^{\prime}}$	
		100-0" lanes may be considered in urban areas for multi-lane un-divided (regardless of ADT) and multi-lane divided (ADT $<10,000$).	
		$12^{-}-0^{*}$ lanes are desirable on the Prionity Commercial Network (PCN) and the National Netwock (also known as the National Truck Nehwork). Existing narrower lanes may be retained without design exceptions. Reduction of existing lane wioths onthe National Network to less than $12-0^{\prime}$ require a design exception request having a high burden of justification.	
Bridge Width, Structural Capacity \& Horizontal Clearances	$\begin{gathered} \text { ADT } \\ \text { (Design Year) } \end{gathered}$	Minimum Design Loading	Usable Width
	0-750	H15	Wiath of traveed way.
	751-1500	HS15	Wicth of traveled way.
(Existing Bridges to remain in place)	1501-2000	HS15	Wdth of traveled way plus $\%$ each side
	2001-4000	HS15	Wdith of traveled way plus 2 each side.
	>4000	HS15	Wdth of traveled way plus 3 each side
Horizontal / Vertical Alignment and Stopping Sight Distance			
Grade	Review crash data. Evisting grade may be retained without crash concentration		
Cross Stopes	Traveled way $1.5 \%-2 \%$, Shoulder see Section 6.05 .05		
Superelevation	Standard Plan R-107-Series or reduced maximum (e\%) Straight Line Superelevation Chart using the project design speed.		
Vertical Clearance	See Section 3.12		

DESIGN SPEED (RDM 3.06)

Geometric Design Elements that Do Not Meet Current Standards (or Allowances) Based on Minimum Design Speeds Require:

- A Formal Safety Review
- A Crash Analysis
- Documented Justification in the Form of:
- A Design Exception (Form DE26)
- A Design Variance (Form DV26)
> "If the highest attainable design corresponds to criteria for speeds less than the minimum design speed, a design exception or design variance must be submitted for approval."

DESIGN SPEED (RDM 3.06)

Documentation Required for Each Geometric Element

No Blanket Design Exceptions

A Design Speed Reduction for Individual Geometric Elements Does Not Redefine the Overall "Project Design Speed"

DESIGN SPEED (RDM 3.06)

Additional Allowances to Retain Existing Horizontal and Vertical Alignments and Stopping Sight Distances Based on a Range of Reduced Design Speeds are Provided Under the 3R Non-Freeway Guidelines (3.09.02A \& 3.09.02B)

QUESTIONS

SIGHT DISTANCE

SIGHT DISTANCE

SIGHT DISTANCE GUIDELINES

According to the 2004 AASHTO, 2005 MMUTCD, and Michigan Department of Transportation Guidelines

SIGHT DISTANCE

"Sight distance is the distance along a roadway throughout which an object of specified height is continuously visible to the driver. This distance is dependent on the height of the driver's eye above the road surface, the specified object height above the road surface, and the height and lateral position of sight obstructions within the driver's line of sight."

(2011 AASHTO, Section 3.2.6)

SIGHT DISTANCE

Four Types

Stopping Sight Distance
Passing Sight Distance

Decision Sight Distance

Intersection Sight Distance

SIGHT DISTANCE

Stopping Sight Distance...

...is the minimum sight distance required along a roadway to enable a vehicle traveling at or near the design speed to stop before reaching a stationary object in its path.

(2011 AASHTO, Section 3.2.2)

Brake Reaction Distance + Braking Distance

SIGHT DISTANCE

Stopping Sight Distance

BRAKE REACTION DISTANCE 1.47 Vt

BRAKING DISTANCE $1.075 \mathrm{~V}^{2} / \mathrm{a}$

$$
\mathrm{V}=\mathrm{Design} \text { Speed (mph) }
$$

$t=$ Brake Reaction Time (2.5 seconds assumed)

$$
a=\text { Deceleration Rate }\left(11.2 \mathrm{ft} / \mathrm{s}^{2} \text { assumed }\right)
$$

Simplified...

$$
\mathrm{SSD}=3.675 \mathrm{~V}+0.096 \mathrm{~V}^{2}
$$

SIGHT DISTANCE

Exhibit 4 Parameters Considered in Determining the Length of a Crest Vertical Curve to Provide Sight Distance (2004 AASHTO, Exhibit 3-70, 268)

HEIGHT OF EYE 3.5 ft

HEIGHT OF OBJECT
2.0 ft

SIGHT DISTANCE

Design Speed (mph)	Brake Reaction Distance (ft)	Braking Distance on Level (ft)	Stopping Sight Distance	
			Calculated (ft)	Design (ft)
15	55.1	21.6	76.7	80
20	73.5	38.4	111.9	115
25	91.9	60.0	151.9	155
30	110.3	86.4	196.7	200
35	128.6	117.6	246.2	250
40	147.0	153.6	300.6	305
45	165.4	194.4	359.8	360
50	183.8	240.0	423.8	425
55	202.1	290.3	492.4	495
60	220.5	345.5	566.0	570
65	238.9	405.5	644.4	645
70	257.3	470.3	727.6	730
75	275.6	539.9	815.5	820
80	294.0	614.3	908.3	910
Exhibit 1. Stopping Sight Distance (2004 AASHTO Exhibit 3-1, 112				

SIGHT DISTANCE

Horizontal Sightline Offset...

...is the minimum distance required between the roadside and an obstruction, measured from the centerline of the inside lane to the face of the obstruction.
(2011 AASHTO, Section 3.3.12)

$\mathrm{HSO}=\mathrm{R}[1-\cos ((28.65 S) / \mathrm{R})]$

$\mathrm{R}=$ Radius of Curve (feet)
HSO $=$ Horizontal Sightline Offset (feet)
SSD $=$ Stopping Sight Distance $($ feet $)$

SIGHT DISTANCE

HEIGHT OF SIGHT LINE

2.75 ft

SIGHT DISTANCE

Decision Sight Distance...

"....is the distance required for a driver to detect an unexpected or otherwise difficult-to-perceive information source or condition in a roadway environment that may be visually cluttered, recognize the condition or its threat potential, select an appropriate speed and path, and initiate and complete complex maneuvers."
(2011 AASHTO, Section 3.2.3)

SIGHT DISTANCE

Decision Sight Distance

Avoidance Maneuvers
A and B
$\mathrm{d}=1.47 \mathrm{Vt}+1.075 \mathrm{~V}^{2} / \mathrm{a}$

Avoidance Maneuvers

C, D, and E
$\mathrm{d}=1.47 \mathrm{Vt}_{\mathrm{m}}$

$$
\mathrm{V}=\text { Design Speed (mph) }
$$

$t=$ Pre-maneuver Time (See Exhibit 3-3)
$a=$ Deceleration Rate ($11.2 \mathrm{ft} / \mathrm{s}^{2}$ assumed)
$\mathrm{t}_{\mathrm{m}}=$ Total Pre-Maneuver and Maneuver Time

HEIGHT OF EYE
3.5 ft

HEIGHT OF OBJECT
2.0 ft

SIGHT DISTANCE

Quick Chart for Decision Sight Distance					
Design Speed (mph)	Decision Sight Distance (ft)				
	Avoidance Maneuver				
	A	B	C	D	E
30	220	490	450	535	620
35	275	590	525	625	720
40	330	690	600	715	825
45	395	800	675	800	930
50	465	910	750	890	1030
55	535	1030	865	980	1135
60	610	1150	990	1125	1280
65	695	1275	1050	1220	1365
70	780	1410	1105	1275	1445
75	875	1545	1180	1365	1545
80	970	1685	1260	1455	1650
Avoidance Maneuver A: Stop on Rural Road - $(t=3.0 \mathrm{sec})$ Avoidance Maneuver B: Stop on Urban Road $-(t=9.1 \mathrm{sec})$ Avoidance Maneuver C: Speed/Path/Direction Change on Rural Road (t_{m} varies between 10.2 and 11.2 sec)					
Avoidance Maneuver D: Speed/Path/Direction Change on Suburban Road (t_{m} varies between 12.1 and 12.9 sec)					
Avoidance Maneuver E: Speed/Path/Direction Change on Urban Road (t_{m} varies between 14.0 and 14.5 sec)					

SIGHT DISTANCE

Passing Sight Distance...

...is the distance required for a passing vehicle to be able to see a sufficient distance ahead, clear of traffic, to complete the passing maneuver without cutting off the passed vehicle before meeting an opposing vehicle.

(2011 AASHTO, Section 3.2.4)

Minimum Passing Sight Distance is the Sum of

Four Distances

$$
d_{1}+d_{2}+d_{3}+d_{4}
$$

SIGHT DISTANCE

Passing Sight Distance $-d_{1}$

Distance Traversed During Perception and Reaction Time and During the Initial Acceleration to the Point of Encroachment on the Opposing Lane.

$$
\begin{aligned}
\mathbf{d}_{1} & =1.47 t_{\mathbf{i}}\left[\mathbf{v}-\mathbf{m}+\left(\mathbf{a t}_{\mathbf{i}} / 2\right)\right] \\
t_{i} & =\text { Time of Initial Maneuver }(\mathrm{sec}) \\
\mathrm{a} & =\text { Average Acceleration }(\mathrm{mph} / \mathrm{s}) \\
\mathrm{v} & =\text { Average Speed of Passing Vehicle }
\end{aligned}
$$

$\mathrm{m}=$ Difference in Speed of Passed Vehicle and Passing Vehicle (mph)

SIGHT DISTANCE

Passing Sight Distance $-\mathbf{d}_{2}$

Distance Traveled while the Passing Vehicle Occupies the Left Lane.

$$
d_{2}=1.47 \mathrm{vt}_{2}
$$

$\mathrm{t}_{2}=$ Time Passing Vehicle Occupies the Left Lane

$$
\mathrm{v}=\text { Average Speed of Passing Vehicle }
$$

SIGHT DISTANCE

Passing Sight Distance - \mathbf{d}_{3}

Distance Between the Passing Vehicle at the End of its Maneuver and the Opposing Vehicle

$$
d_{3}=100 \text { to } 250 \mathrm{ft}
$$

Length was Found in the Passing Study to Vary

SIGHT DISTANCE

Passing Sight Distance - d_{4}

Distance Traversed by an Opposing Vehicle for Two-Thirds of the Time the Passing Vehicle Occupies the Left Lane, or $2 / 3$ of d_{2}

$$
d_{4}=2 d_{2} / 3
$$

SIGHT DISTANCE

SIGHT DISTANCE

Design Speed (mph)	Assumed Speeds (mph)		Passing Sight Distance (ft)	
	Passed Vehicle	Passing Vehicle	From Exhibit 9	Rounded for Design
20	18	28	706	710
25	22	32	897	900
30	26	36	1088	1090
35	30	40	1279	1280
40	34	44	1470	1470
45	37	47	1625	1625
50	41	51	1832	1835
55	44	54	1984	1985
60	47	57	2133	2135
65	50	60	2281	2285
70	54	64	2479	2480
75	56	66	2578	2580
80	58	68	2677	2680

Exhibit 10 Passing Sight Distance for Design of Two-Lane Highways
(2004 AASHTO, Exhibit 3-7, 124)

HEIGHT OF EYE
3.5 ft

HEIGHT OF OBJECT
3.5 ft

SIGHT DISTANCE

Passing Sight Distance - Pavement Markings

Warrants for Placing No-Passing Zone Markings On
Existing and Proposed Highways

85th- Percentile or Posted or Statutory Speed Limit (mph)	Minimum Passing Sight Distance (ft)
25	450
30	500
35	550
40	600
45	700
50	800
55	900
60	1000
65	1100
70	1200

Exhibit 12 Minimum Passing Sight Distances for Pavement Marking Criteria
(2011 MMUTCD, Table 3B-1, page 352)

SIGHT DISTANCE

Intersection Sight Distance...

...is the sight distance needed to allow the drivers of stopped vehicles to decide when to enter or cross an intersecting roadway. (2011 AASHTO, Section 9.5)

SIGHT DISTANCE

Intersection Sight Distance

$$
\mathrm{ISD}=1.47 \mathrm{~V} \mathrm{t}_{\mathrm{g}}
$$

$$
\mathrm{V}=\text { Design Speed of Major Road (mph) }
$$

$\mathrm{t}_{\mathrm{g}}=$ Time Gap for Minor-Road Vehicle to Cross the Major Road (sec)

SIGHT DISTANCE

Design Vehicle	Time Gap (t) (seconds) at Design Speed of Major Road
Passenger Car	7.5
Single-Unit Truck	9.5
Combination Truck	11.5
Note Time gaps shown are for a stopped vehicle to turn left onto a two-lane road with no median and	
approach grades of 3 percent or less. The table values require adjustment as follows:	
For Two-Way Roadways with More than Two Lanes:	
Add 0.5 seconds for passenger cars or 0.7 seconds for trucks for each additional lane, from the	
left, in excess of one, to be crossed by the left-turning vehicle.	
For Minor Road Approach Grades: If the rear wheels of the design vehicle are located on an upgrade which exceeds 3 percent, Add 0.2 seconds for each percent of grade.	

Exhibit 16 Time Gap for Case B1 - Left-Turn from Stop

 (2004 AASHTO, Exhibit 9-54, 660)
SIGHT DISTANCE

Design Vehicle	Time Gap (t \mathbf{t}_{g} (seconds) at Design Speed				
of Major Road		$	$	Passenger Car	6.5
:---:	:---:				
Single-Unit Truck	8.5				
Combination Truck	10.5				
Note: Time gaps shown are for a stopped vehicle to turn right onto or cross a two-lane road with no median and approach grades of 3 percent or less. The table values require adjustment as follows:					
For Roadways with More than Two Lanes: For crossing a major road with more than two lanes, add 0.5 seconds for passenger cars or 0.7 seconds for trucks for each additional lane to be crossed, and for narrow medians that cannot store the design vehicle.					
For Minor Road Approach Grades: If the rear wheels of the design vehicle are located on an upgrade which exceeds 3 percent, add 0.1 seconds for each percent of grade.					

Exhibit 19 (2004 AASHTO, Exhibit 9-57, 664)
Time Gap for Case B2 - Right-Turn from Stop and Case B3 - Crossing Maneuver

SIGHT DISTANCE

Quick Charts for Intersection Sight Distance

Design Speed (mph)	Stopping Sight Distance (ft)	Intersection Sight Distance for Passenger Cars (ft)	
		Calculated	Design
15	80	165.4	170
20	115	220.5	225
25	155	275.6	280
30	200	330.8	335
35	250	385.9	390
40	305	441.0	445
45	360	496.1	500
50	425	551.3	555
55	495	606.4	610
60	570	661.5	665
65	645	716.6	720
70	730	771.8	775
75	820	826.9	830
80	910	882.0	885
7			

Note: The given intersection sight distance values are for a stopped passenger car to turn left onto a two-lane road with no median and minor road approach grades of 3 percent or less. For other conditions, the sight distance must be recalculated.

Design Intersection Sight Distance - Case B1 - Left-Turn from Stop
(2004 AASHTO, Exhibit 9-55, 661)

SIGHT DISTANCE

Design Speed (mph)	Stopping Sight Distance (ft)	Intersection Sight Distance for Passenger Cars (ft)	
		Calculated	Design
15	80	143.3	145
20	115	191.1	195
25	155	238.9	240
30	200	286.7	290
35	250	334.4	335
40	305	382.2	385
45	360	430.0	430
50	425	477.8	480
55	495	525.5	530
60	570	573.3	575
65	645	621.1	625
70	730	668.9	670
75	820	716.6	720
80	910	764.4	765
Note: The given intersection sight distances are for a stopped passenger car to turn right onto, or cross, a two-lane road with no median and minor road approach grades of 3 percent or less. For other conditions, the sight distance must be recalculated.			
Design Intersection Sight Distance - Case B2 - Right-Turn from Stop and Case B3 - Crossing Maneuver (2004 AASHTO, Exhibit 9-58, 664)			

SIGHT DISTANCE

$$
\begin{array}{ll}
3.5^{\prime} & \text { EYE HEI GHT } \\
3.5^{\prime} & \text { OBJECT HEI GHT }
\end{array}
$$

(5.5'T0 6. Ø' TYP.)

Figure 1. Measurement of Intersection Sight Distance

QUESTIONS

Problem 1: Non-Freeway, Non-NHS Corridor with a 3R Work Type
Undivided, Two-Lane Roadway
$\mathrm{ADT}=12,500$
Level Terrain
Posted Speed Limit is 55 mph 2350' Radius Horizontal Curve
a). What is the minimum allowable design speed?
b). Minimum required Stopping Sight Distance?
c). Minimum required Horizontal Sightline Offset (HSO)?
d). Minimum required Intersection Sight Distance?

Left-Turns:

Right-Turns/Crossing:

Problem 1: Non-Freeway, Non-NHS Corridor with a 3R Work Type

(Solutions) Undivided, Two-Lane Roadway
ADT $=12,500$
Level Terrain
Posted Speed Limit is 55 mph
2350' Radius Horizontal Curve
a). What is the minimum allowable design speed?

```
55 mph (minimum)
(RDM 3.09.02B)
(60 mph still preferred, if feasible).
```

b). Minimum required Stopping Sight Distance?

$$
495 \text { ' for } 55 \mathrm{mph}
$$ (570'for 60 mph$)$

c). Required Horizontal Sightline Offset (HSO)?

```
13.0' for 55 mph
(17.3'for 60 mph)
```

d). Required Intersection Sight Distance?

Left-Turns:

610'for 55 mph
(665'for 60 mph)
(MDOT Sight Distance Guidelines)
Right-Turns/Crossing: 530' for 55 mph
(575'for 60 mph$)$

Problem 2: Non-Freeway, NHS Corridor with a 4R Work Type

 Divided Roadway, 36' Median Width, 3 Lanes in Each Direction ADT $=36,000$Level Terrain
Posted Speed Limit is 45 mph
1800’ Radius Horizontal Curve
a). What is the MDOT recommended design speed?
b). What is the minimum allowable design speed?
c). Required Stopping Sight Distance?
d). Required Horizontal Sightline Offset (HSO)?
e). Required Intersection Sight Distance?

* (Assume the Design Vehicle is a Passenger Car)
* (Further assume a design speed of 50 mph is utilized)

Left-Turns:

Right-Turns/Crossing:

Problem 2: Non-Freeway, NHS Corridor with a 4R Work Type
(Solutions) $\quad \mathrm{ADT}=36,000$
Level Terrain
Posted Speed Limit is 45 mph
1800’ Radius Horizontal Curve
a). What is the MDOT recommended design speed?

```
50 mph
(RDM 3.06)
```

b). What is the minimum allowable design speed?

$$
45 \mathrm{mph}
$$

(RDM Appendix 3A)
c). Required Stopping Sight Distance?

```
425, (50 mph design speed.)
360'(45 mph design speed)
```

d). Required Horizontal Sightline Offset (HSO)?
12.5’ (50 mph design speed)
9.0' $(45$ mph design speed $)$ (MDOT Sight Distance Guidelines)
e). Required Intersection Sight Distance?

* (Assumed Design Vehicle is a Passenger Car)
* (Assumed design speed is 50 mph)

Right-Turns/Crossing:

$(6.5$ sec. $)(1.47)(50)=480$ 'for Right-Turn Movement
(MDOT Sight Distance Guidelines)
$(6.5 \mathrm{sec} .+0.5 \mathrm{sec}).(1.47)(50)=515$ ' for Crossing Movement

- Use 515' to cover both movements

Left-Turns/Crossing:
$(6.5$ sec. +0.5 sec. $)(1.47)(50)=515$ ' for Crossing Movement
(MDOT Sight Distance Guidelines)
$(7.5 \mathrm{sec}).(1.47)(50)=555^{\prime}$ for Left-Turn Movement

- Use 555' to cover both movements

HORIZONTAL ALIGNMENT

HORIZONTAL ALIGNMENT

Major Factor in Determining

Safety

Driving Comfort

Highway Capacity

HORIZONTAL ALIGNMENT

Important Factors to Consider...

Passing Sight Distance on Two-Lane, Two-Way Roadways Should be Maximized

Curves Should be as Flat as Possible and Abrupt Changes in Alignment Avoided

HORIZONTAL ALIGNMENT

Important Factors to Consider...

Broken Back Curves Should be Avoided

Minimum Distance Between Curves Should be the Sum of the Transitions Plus Crown Runout Lengths

HORIZONTAL ALIGNMENT

Minimum Radius

- Limiting Value of Curvature for a Given Design Speed
- Determined from the Maximum Rate of Superelevation and the Maximum Side Friction Factor
- To be Avoided Wherever Practical

HORIZONTAL ALIGNMENT

Minimum Radius

$$
\mathrm{R}_{\min }=\frac{\mathrm{V}^{2}}{15\left(0.01 e_{\max }+f_{\max }\right)}
$$

$\mathrm{R}=$ Radius (feet)
$\mathrm{V}=$ Design Speed (mph)
$e=$ Rate of Superelevation (\%)
$f=$ Side Friction Factor (From AASHTO)

HORIZONTAL ALIGNMENT

Minimum Radius

HORIZONTAL ALIGNMENT

Minimum Radius

Straight
Line
Method

HORIZONTAL ALIGNMENT

Minimum Curve Length

Minimum

15 x Design Speed

Preferred $30 \times$ Design Speed

HORIZONTAL ALIGNMENT

Compound Curves

Use With Caution

Open Highway - Ratio of Flatter Radius to Sharper Radius 1.5 to 1

Ramps - Ratio of Flatter Radius to Sharper Radius 2 to 1

Sharper Curves in Advance of Flatter Curves

HORIZONTAL ALIGNMENT

Remember the Four Types...

Stopping Sight Distance

Passing Sight Distance
Decision Sight Distance
Intersection Sight Distance
"The designer must be aware that both horizontal and vertical alignments need to be considered when designing for sight distance."

HORIZONTAL ALIGNMENT

Stopping Sight Distance

$$
\mathrm{SSD}=\frac{\mathrm{R} \cos ^{-1}\left(1-\frac{\mathrm{HSO}}{\mathrm{R}}\right)}{28.65}
$$

Horizontal Sightline Offset

$$
\mathrm{HSO}=\mathrm{R}[1-\cos ((28.65 \mathrm{SSD}) / \mathrm{R})]
$$

$$
\begin{gathered}
\text { R = Radius of Curve (feet) } \\
\text { HSO }=\text { Horizontal Sightline Offset (feet) } \\
\text { SSD }=\text { Stopping Sight Distance }(\text { feet })
\end{gathered}
$$

HORIZONTAL ALIGNMENT

HEIGHT OF SIGHT LINE
2.75 ft

COMPONENTS FOR DETERMINING HORIZONTAL SICHT DISTANCE

HORIZONTAL ALIGNMENT

Design Speed	Stopping Sight Distance (Design)
25	155
30	200
35	250
40	305
45	360
50	425
55	495
60	570
65	645
70	730
75	820

HORIZONTAL ALIGNMENT

Intersection Sight Distance

- Generally, 7.5 Seconds of Entering Sight Distance is Used
- Passenger Vehicle Stopped on a Minor Road, Grade $\mathbf{3 \%}$ Max, Turning Left on a Two-Lane Roadway
- Additional 0.5 Seconds Added for Each Lane

Clear Vision

For At Grade Intersections it is Very Important for Safety Reasons, Particularly on High Speed Trunklines

HORIZONTAL ALIGNMENT

HORIZONTAL ALIGNMENT

Spirals

IRAL TRANSITIONS SHOULD BE USED ON NEW ALIGNMENTS, BASED ON E deSign speed of the curve and the radius as shown in the bLE. THE TABLE GIVES THE MAXIMUM RADIUS IN WHICH A SPIRAL OULD BE USED.

HORIZONTAL ALIGNMENT

Standard Plan R-107

SPIRAL CURVE TRANSITIONS			
$\begin{aligned} & \text { DESIGN } \\ & \text { SPEED } \\ & \text { (MPH) } \end{aligned}$	$\begin{aligned} & \hline \text { MAXIMUM } \\ & \text { RADIUS } \\ & (\text { FEET } \end{aligned}$	$\begin{aligned} & \hline \text { DEIGN } \\ & \text { SPEED } \\ & \text { (MPH) } \end{aligned}$	MAX [MUM RADIUS (FEET)
30	456	60	1822
35	620	65	2138
40	810	70	2479
45	1025	75	2846
50	1265	80	3238
55	1531	¢	¢\%)

HORIZONTAL ALIGNMENT

- Horizontal Deflections
- Undesirable - Should be Avoided Wherever Practical
- Should Not be Used on New Construction
- Should be Limited to 3R Jobs (i.e. Existing Deflections)
- Should be Limited to Low-Speed Roads (i.e. Posted Speeds of 45 mph or Less)
- Deflections Should Not Exceed the Rates Given in Geometric Design Guide GEO-650 (i.e. $\mathrm{L}=\mathrm{W}^{*} \mathrm{~V}$ or $1 /$ Design Speed)

QUESTIONS

VERTICAL ALIGNMENT

VERTICAL ALIGNMENT

Based on Several Factors

Design Speed
Existing Terrain
Drainage Considerations
Bridge Elevations \& Locations
Cross Road Elevations \& Locations
Earthwork Balance
Coordination with Horizontal Alignment

VERTICAL ALIGNMENT

Establishes the Profile Grade of the Roadway
Two Basic Components

GRADES

Maximum Grades Depend On :

- Functional Class of the Roadway
- Urban or Rural
- Design Speed
- Terrain
- Scope of Work

GRADES

Minimum Grades: (RDM 3.03.02D)

- Typically Dictated by/Related to Drainage Considerations
- Uncurbed Roadways
- Minimum Longitudinal Grade of 0\% (level) Acceptable
- Independent Ditches When Grade < 0.30\%
- Curbed Roadways
- Minimum Longitudinal Grade of 0.30%
- Desirable Minimum of 0.50%

GRADES
 (RDM Appendix 3A)

Appendix 3A
GEOMETRIC DESIGN ELEMENTS New Construction / Reconstruction

		Maximum Grade (\%) for specified design speed (mph)																	
त	Type of Terrain	50			55			60			65			70			75		
3	Level	4			4			3			3			3			3		
¢	Rolling	5			5			4			4			4			4		
		Grades 1\% steeper may be provided in urban areas. Curbed roadway 0.3\% min, 0.5% desirable minimum																	
	Type of	Urban											Rural						
		30		35	40		45	50		55	60		40	45		50	55		60
	Level	8		7	7		6	6		5	5		5	5		4	4		
	Rolling	9		8	8		7	7		6	6		6	6		5	5		4
		Curbed roadway 0.3\% min , 0.5\% desirable minimum																	
	Type of	Urban									Rural								
	Terrain	20	25	30	35	40	45	50	55	60	20	25	30	35	40	45	50	55	60
	Level	9	9	9	9	9	8	7	7	6	7	7	7	7	7	7	6	6	5
	Rolling	12	12	11	10	10	9	8	8	7	10	10	9	9	8	8	7	7	6

Stopping Sizint Follow current edition of AASHTO "A Policy on Geometric Design of Highways and Streets" (AKA AASHTO Green Book). The MDOT Sight Dist Distance Cross Slope

Superelevation es also provide detaled information on sight distance calculation
Traverinacross slope $=2.0 \%$, Paved shoulder cross slope $=4.0 \%$ (Also see Section 6.05.05)

AASHTO Method 1 "Straight Linemvn_or (see Section 3.04.03)

	NHS	Non NHS
Freeway	$16^{\prime}-0^{\prime \prime}$	14'-6"
Non Freeway (Arterial)	$16^{\prime}-0^{\prime \prime}$	$14^{\prime}-6^{\prime \prime}$
Collectors \& "Special Routes"	$14^{\prime}-6^{\prime \prime}$ (1 ft greater than Michigan legal vehicle height.)	$14^{\prime}-6^{\prime \prime}$
For pedestrian bridges provide 1 ft . additional clearance over non-freeway and 17 ft . minimum under clearance over freeways. A vertical clearance of $23^{\prime}-0^{\prime \prime}$ is required for grade separations over railroads. (See Bridge Design Manual 7.01.08 and Bridge Design Guides 5.24.03-04.)		

Horizontal
Clearance /
See definition of terms in this chapter. Also, see Bridge Design Guides, Section 6
Bridge Width

GRADES

Tangent Grade Lines are Connected \& Smoothed Out by Use of Parabolic Vertical Curves.

VERTICAL CURVES (RDM 3.03.02)

VERTICAL CURVES (RDM 3.03.02)

$\mathrm{A}=$ Algebraic Difference in Gradients, $\mathrm{g}_{2}-\mathrm{g}_{1}$ (In Percent)
$\mathrm{L}=$ Total Length of Vertical Curve (In Feet)
K = Rate of Vertical Curvature, L/A
VPC $=$ The Vertical Point of Curvature
VPI = The Vertical Point of Intersection
$\mathrm{VPT}=$ The Vertical Point of Tangency

VERTICAL CURVES (RDM 3.03.02)

AASHTO Controls (Crest)

Based on Stopping Sight Distance
Minimum Length Must Provide Sight Distance S
Assumes 3.5’ \& 2.0' Eye/Object Heights

Figure 1.0: Sight Distance Possibilities

SIGHT DISTANCE

Exhibit 3-70. Parameters Considered in Determining the Length of a Crest Vertical Curve to Provide Sight Distance

HEIGHT OF EYE 3.5 ft

HEIGHT OF OBJECT
2.0 ft

CREST VERTICAL CURVES

$$
\mathrm{S}<\mathrm{L} \quad \mathrm{~L}=\frac{\mathrm{AS}^{2}}{100\left(\sqrt{2 \mathrm{~h}_{1}}+\sqrt{2 \mathrm{~h}_{2}}\right)^{2}}
$$

$$
(3-41)
$$

S $>\mathbf{L}$

$$
\begin{equation*}
\mathrm{L}=2 \mathrm{~S}-\frac{200\left(\sqrt{\mathrm{~h}_{1}}+\sqrt{\mathrm{h}_{2}}\right)^{2}}{\mathrm{~A}} \tag{3-42}
\end{equation*}
$$

L = Length of Vertical Curve (ft) $\quad \mathrm{S}=$ Sight Distance (ft)
A = Algebraic Difference in Grades (percent) $\quad h_{1}=$ Height of Eye Above Roadway Surface (ft)

$$
\mathrm{h}_{2}=\text { Height of Object Above Roadway Surface (ft) }
$$

VERTICAL CURVES

AASHTO Controls (Crest)

$$
\mathbf{S}<\mathbf{L}
$$

$(3-43)$

$$
\mathrm{L}=2 \mathrm{~S}-\frac{2158}{\mathrm{~A}}
$$

S $>\mathbf{L}$

SSD CREST CURVES

US Customary				
	Stopping Design speed sight (mph)	distance (ft)	Rate of vertical curvature, K^{a}	
15	80	Calculated	Design	
20	115	3.0	3	
25	155	6.1	7	
30	200	11.1	12	
35	250	29.0	19	
40	305	43.1	29	
45	360	60.1	44	
50	425	83.7	81	
55	495	113.5	114	
60	570	150.6	151	
65	645	192.8	193	
70	730	246.9	247	
75	820	311.6	312	
80	910	383.7	384	

VERTICAL CURVES AASHTO Controls (Sag)

- Based on Headlight Illumination Sight Distance
- Minimum Length Must Provide Adequate Sight Distance
- Assumes 2.0’ Object Height

- Assumes 2.0’ Headlight Height with $1{ }^{\circ}$ Upward Divergence of Light Beam

SAG VERTICAL CURVES

(AASHTO Equations 3-47 through 3-50)

When S < L

$$
\mathrm{L}=\frac{\mathrm{AS}^{2}}{200\left[2.0+\mathrm{S}\left(\tan 1^{\circ}\right)\right]} \quad \text { or } \quad \frac{\mathrm{AS}^{2}}{400+3.5 \mathrm{~S}}
$$

When $\mathrm{S}>\mathrm{L}$

$$
\mathrm{L}=2 \mathrm{~S}-\frac{200\left[2.0+\mathrm{S}\left(\tan 1^{\circ}\right)\right]}{\mathrm{A}} \text { or } 2 \mathrm{~S}-\frac{400+3.5 \mathrm{~S}}{\mathrm{~A}}
$$

L = Length of Sag Vertical Curve (ft) $\quad \mathrm{S}=$ Light Beam Distance (ft) A = Algebraic Difference in Grades (percent)

SSD SAG CURVES

US Customary			
Design speed (mph)	Stopping sight distance	Rate of vertical curvature, K^{a}	
	(ft)	Calculated	Design
15	80	9.4	10
20	115	16.5	17
25	155	25.5	26
30	200	36.4	37
35	250	49.0	49
40	305	63.4	64
45	360	78.1	79
50	425	95.7	96
55	495	114.9	115
60	570	135.7	136
65	645	156.5	157
70	730	180.3	181
75	820	205.6	206
80	910	231.0	231

VERTICAL ALIGNMENT

General Controls

- Minimum Desirable Length of Vertical Curves Should be 3 X Design Speed
- Smooth Grade Line with Gradual Changes
- Avoid
- Hidden Dips/Roller Coaster Profile
- Avoid Broken Back Vertical Curves
- Desirable to Reduce Grades at At-Grade Intersections on Roadways with Moderate to Steep Grades

VERTICAL ALIGNMENT

General Controls (Continued)

- Sag Vertical Curves Should Be Avoided in Cuts Unless Adequate Drainage Can Be Provided

Feathering (RDM 6.03.11C)

- Where Discontinuing HMA Resurfacing...
...Transition at a Rate of $3 / 4$ " Vertical per 25^{\prime} Linear

VERTICAL ALIGNMENT

- Vertical Deflections
- Undesirable - Should be Avoided Wherever Practical
- Should Not be Used on New Construction
- Should be Limited to 3R Jobs
- Should be Limited to Low-Speed Roads (i.e. Posted Speeds of 45 mph or Less)
- Maximum 1\% Algebraic Grade Differential

QUESTIONS

COORDINATION OF HORIZONTAL AND VERTICAL ALIGNMENT

COORDINATION OF HORIZONTAL \& VERTICAL ALIGNMENT

- Curve and Grade Should be in Proper Balance
- Vertical Curvature Imposed on Horizontal Curvature or Vice Versa
- Sharp Horizontal Curvature Should Not Be Introduced At or Near the Top of a Pronounced Crest Curve

COORDINATION OF HORIZONTAL \& VERTICAL ALIGNMENT

- Sharp Horizontal Curvature Should Not Be Introduced At or Near the Bottom of a Steep Grade Near the Low Point of a Pronounced Sag Curve
- Horizontal Curvature and Profile Should Be Made as Flat as Possible at Intersections

Ramps

- Design Speed of Vertical Alignment Must Meet or Exceed Design Speed of Horizontal Alignment

PLAN

Tangent Alignment

PROFILE

Avoid designing little local dips in an otherwise long, uniform grade. These dips usually result from a desire to balance cut and fill and to reduce overhaul.

Profile with tangent alignment

$$
-A-
$$

$$
\begin{aligned}
& \text { PROFILE } \\
& \text { This combination is deficient for two reosons. The tangent between } \\
& \text { the curves is too short, and the reverse occurs on a crest. } \\
& \text { Short tangent on a crest between two horizontal curves } \\
& \text {-D- }
\end{aligned}
$$

PLAN

This combination presents a poor appearance - the horizontal curve looks like a sharp angle.

Sharp angle appearance

$$
-E-
$$

PLAN

PROFILE

When horizontal and vertical curves coincide, a very satisfactory oppearonce results.

Coinciding curves in horizontal and vertical dimension

$$
-\mathrm{F}-
$$

Very long flat curves, even where not required by a design speed and regardless of profile, also have a pleasing appearance when the central angle is very small.

Horizontal alignment with small central angles. - $\mathrm{H}-$

The upper line is an example of poor design because the alignment consists of a long tangent with short curves, whereas the balance between the curves and tangents in the lower alignment is the preferred design.

Horizontal alignment should be balanced

QUESTIONS

LANE WIDTH

LANE WIDTH

Lane Width Impacts

Driver's Safety and Comfort

- Wider Lanes Provide for More Desirable Lateral Clearance (Especially Commercial Vehicles on Two-Lane, Two-Way Roads)

Highway Level of Service

- Narrow Lanes Force Drivers to Operate with Less than Desirable Lateral Clearances Between Opposing Traffic, Adjacent Traffic and Roadside Obstacles

LANE WIDTH

Lane Width Impacts

Highway Capacity (Two Lane Rural Roads)

- 12' Lane Width (or More) - Usually Will Not Reduce Capacity
- 11' Lane Width - Capacity Reduction of 7\%
- 10’ Lane Width - Capacity Reduction of 16\%

Additional Costs to Provide 12' Lanes Over Narrower
Lanes is Partially Offset by Reduced Surface and Shoulder Maintenance

LANE WIDTH

Appendix 3A

GEOMETRIC DESIGN ELEMENTS
New Construction / Reconstruction

3R FREEWAY ALLOWANCES

GEOMETRIC REQUIREMENTS FOR FREEWAY PROJECTS INVOLVING 3R WORK TYPES

Geometric Design Element		Minimum Required Standard*	Compliance Determination
Design Speed		Standard at the time of construction or the most recent 4 R project	Compliance Assumed
Horizontal Curve Radius (Rmin.)		Standard at the time of construction or the most recent 4R project	Compliance Assumed
Longitudinal Grade (Min./Max.)		Standard at the time of construction or the most recent 4R project	Compliance Assumed
Stopping Sight Distance (Horizontal and/or Vertical))		Standard at the time of construction or the most recent 4 R project	Compliance Assumed
Lane Width		Standard at the time of construction or the most recent 4 R project	Compliance Assumed
Shoulder Width		Standard at the time of construction or the most recent 4 R project	Compliance Assumed
Superelevation		Standard at the time of construction or the most recent 4R project	Compliance Assumed
Cross-Slope	(Excluding parabolic Parabolic cross-slopes still require a $\mathrm{DE} / \mathrm{DV}$)	Standard at the time of construction or the most recent 4 R project (Unless parabolic; Parabolic cross-slopes must be removed or a $D E / D V$ is required)	Compliance Assumed (Unless parabolic; Parabolic cross-slopes must be removed or a $D E / D V$ is required)
Structural Capacity		Standard at the time of construction or the most recent 4R project	Compliance Assumed
Vertical Clearance		Standard at the time of construction or the most recent 4R project	Compliance Assumed
Acceleration/Deceleration Length		Existing Length	Compliance Assumed

* If the project-wide Safety Review identifies a pattern of crashes associated with a particular design element (or elements), then that design element (or those elements) must be bought up to current standards (i.e. the existing design values may not be retained if they do not meet current standards).

LANE WIDTH

Non-Freeway, NHS, 3R (3.09.02 A)

LANE WIDTH

Non-Freeway, Non-NHS, 3R (3.09.02 B)

LANE WIDTH

Freeway Ramps:

- 16' Lane Width Used for One-Lane Ramps
- 12' Lane Width Used for "Slip" Ramps
- 12’ Lane Widths Used for Multi-Lane Ramps
- Greater Lane Widths May Be Required to Accommodate Off-Tracking of Large Vehicles on Small Radius Curves

Collector-Distributor (C-D) Roads:

- 16’ Lane Width Used for One-Lane C-D Roads
- 12' Lane Widths Used for Multi-Lane C-D Roads

LANE WIDTH

Note: $\mathrm{A}=$ predominantly P vehicles, but some consideration for SU trucks.
$B=$ sufficient SU vehicles to govern design, but some consideration
for semitrailer combination trucks.
$C=$ sufficient bus and combination-trucks to govern design.
Note: $\mathrm{A}=$ predominantly P vehicles, but some consideration for SU trucks
$B=$ sufficient $S U$ vehicles to govern design, but some consideration for semitrailer combination trucks.
$C=$ sufficient bus and combination-trucks to govern design
Exhibit 3-51. Design Widths of Pavements for Turning Roadways

QUESTIONS

SHOULDER WIDTH

SHOULDER WIDTH

Advantages of Using Paved or Improved Shoulders

- Accommodates Stopped Vehicles
- Provides Increased Lateral Clearance
- Provides Lateral Support for Subbase, Base, and Surface Courses
- Provides for Mail Delivery, Bus Stops, Possible Bike Paths
- Sight Distance is Improved in Cut Section, Thereby Potentially Improving Safety
- Space is Provided for Maintenance Operations such as Snow

Removal and Storage

SHOULDER WIDTH

- Shoulder - Measured from the edge of the traveled way to the intersection of the shoulder slope and foreslope planes (the hinge point).

- Hinge Point - The point of intersection between the shoulder slope and the foreslope.

SHOULDER WIDTH

- Shoulder Drop-Off - Condition where edge of pavement is higher than the abutting shoulder
- Shoulder Ribbon - Paved shoulder (usually HMA material) placed normally on a two-lane, two-way roadway, typically 3 ' wide, used to mitigate shoulder drop-off.

Usable Shoulder - (AASHTO 2011 Definition)

"...the actual width that can be used when a driver makes an emergency or parking stop."
May include rounding at hinge point if foreslope is 1:4 or flatter. Valley gutter and the gutter pan of Type G curb \& gutter can be considered part of the useable shoulder.
Gutter pans of mountable curb \& gutter types (Types B \& D) may be considered part of the usable shoulder width where constrained conditions exist.

SHOULDER WIDTH

To Construct Hard Surfaced Shoulders Adjacent to Travel Lanes on State Trunklines

To Place a Strip of Aggregate (Gravel) Between the Edge of Paved Shoulder and the Shoulder Hinge Point (minimum 1' in width) for Stabilization

SHOULDER WIDTH

New Urban or Rural Construction Projects Should Include Full Shoulders, Where Practical

Flush Shoulders are Required for New Urban Freeways, however, this May Not Apply to Urban Freeway Reconstruction

SHOULDER WIDTH

Freeway Design Criteria

Road Design Manual (Appendix 3A \& Appendix 6A) (section 3.11.01)

- Standards Do Not Differ between New Construction and Reconstruction. An Allowance is Provided for 3R Work Types.
- 3 or More Lanes Directional - Median Shoulder Width Should be the Same as the Right Shoulder Width
- Truck Traffic Exceeds 250 DDHV - Use 12’ Paved Width Shoulders on Non-Interstate Freeways; Consider Using 12’ Paved Width Shoulders on Interstate Freeways (Confer with Geometrics Unit)
- Ramp Gores Should be Paved to the 22’ Point

SHOULDER WIDTH

Appendix 3A

SHOULDER WIDTH

Non-Freeway Design Criteria
Road Design Manual Appendix 3A (4R) \& 3.09.02 (3R)

Widths are Determined by

Type of Work: 4R or 3R
Highway Classification
Average Daily Traffic
Design Speed

SHOULDER WIDTH

Non-Freeway, 4R (Appendix 3A)

SHOULDER WIDTH

Non-Freeway, 3R, NHS

(3.09.02 A)

SHOULDER WIDTH

Non-Freeway, 3R, Non-NHS

(3.09.02 B)

3.09.02 (continued)	MICHIGAN DESIGN MANUAL ROAD DESIGN				Inside and Outside Shoulder Width		
	Shoulder Width Minimum shoulder widths apply for: Rural: Posted speeds greater than 45 mph . Urban: Posted speeds greater than 45 mph where sufficient right-of-way exists to include shoulders. At lower speeds, minimum shoulders are desirable.			Current ADT Two-Way			
						$2^{\prime}-0$ " (Gravel)	
				$750-2000$		3'-0" (Paved)	
						-0" (3'00' Paved)	
Lane Wath				Multi-Lane (Divided \& Undivided)	Inside (Divided)	Outside (Both sides for un-divided)	
				3'-0' Paved	$6^{\prime}-0^{\prime \prime}\left(3^{\prime}-0^{\prime \prime}\right.$ Paved)		
			Usable Went				
	$\xrightarrow{0 .-750}$	$\underset{\text { H15 }}{\substack{\text { H515 }}}$	Went of taves way				
	-	${ }_{\text {HSt15 }}$	Weth of traneded way pus				
	2001-4000	HS15					
	>4000	HS15	Weth of trovetes way p lus 3 each 5 bie				
$\begin{gathered} \text { Horizontal / Vertical } \\ \text { Alignment and Stopping } \\ \text { Sight Distance } \end{gathered}$							
$\frac{\text { Crass }}{\text { copees }}$	Review crash data. Evisting grade may be retained without crash concentration.						
Superelevation	Standard Plan R-107-Series or reduced maximum (6\%) Straight Line SuperelevationChart using the project design speed.						
Veritial cleasane	See Section 3.12						

SHOULDER WIDTH

Adjacent to Truck Climbing Lanes and Passing Relief Lanes Road Design Manual 3.09.05

Adjacent to Right Turn Lane

4'/(3' Paved) Shoulder or Curb \& Gutter

Adjacent to Auxiliary Lanes of 1.0 Mile or Less (Freeway)
2011 AASHTO Page 10-76

SHOULDER WIDTHS

APPLICATION	MINIMUM REQUIRED SHOULDER WIDTH	REFERENCE
3RI4R Frocemay (Typical Wadth)	Variabie: As specifed in the Michigan Road Design Marual: Chapter 3, Appendix 3-A; Chapter E, Appendix 6.A	Michigan Road Design Manual: Chapter 3, Appendix 3-A; Chapter Ei, Appendix 6.A
4R Non-Freeway (Typical Width)	Variatile: As specifed in the Micrigan Road Deslign Manual: Chapter 3. Appendix 3-A.	Michigan Rood Design Manual: Chapter 3, Appendix 3.A.
3R Non-Freeway, NHS (Typical Width)	Variatia: As specifed in the Michigan Raad Design Manual: Sectian 3.09.02A	Michigan Road Design Manual: Section 3.09.02A
3R Non-Fineway, Non-NHS (Typical Width)	Variable: As specifed in the Michioan Raad Deaign Manual: Section 3.09.028	Michigan Road Desion Manual: Sedtion 3.09 .028
Alocliary Lane (Less than or oqual to one mie in langht)	Width should dessimbly match the shoulder widths an adjacent readway sections. A minimum wisth of 6.0^{\prime} is allowable.	Michigan Road Design Manual: Section 6.05.04F
		2011 AASHTO, p. 10.75
Auciliary Lane (Graater than one mile in length)	Typical mainline shoulder width as referenced above for roadway and wark types (3R4R, FreewayiNon-Freeway, etc.)	Michigan Road Design Manual: Chapter 3, Appendix 3-A; Chapter fi, Appendix 6-A; Section 3.09.02A: Section 3.09 .02 B
Lefl-Tum Passing Flare	4. 0^{\prime} tatal wiftiva. 0^{\prime} paved wisth; -ORcurt \& gutter along tangent portion onlf.	Geometrics Unt Intemal Policy/Practice; FHWA Concumence (e-mail)
		2011 AASHTO, p. 3-134
Right-Tum Lane	4.0° total widtiv/3.0 paved wisth, -ORcurt $\&$ gutter along tangent (storage) partion only.	Michigan Road Design Manual: Chapter 3, Appendix 3.A; FHWA Concumence (e-mail)
		2011 AASHTO, p. 9-124
Passing Lane Section	Width should dessimbly match the shoulder withis on adjacent readway secilons. A minimum 4 . σ^{\prime} total widttr/3. 0 poved wisth shoubser is allowable.	Michigan Road Design Manual: Section 3.09.05C
		2011 AASHTO, p. 3-134
Thuck Climhing Lane	Width shouid desirably match the shoulder widths on adjacent readway sections. A minimum 4.0 tolal widtr 3.0 paved woth shoulder is allowable.	Michigan Rood Design Manual: Sedion 3.09.058: Section E.05.04E
		2011 AASHTO, p. 3-129
C-D Road (One Lane) (Use 16' Lane With)	8.0^{\prime} fotal with 7.0^{\prime} paved with on right: 6.0^{\prime} sotal widthy. 4.0° pared wiath on let. (The same as an interchange Ramp).	Geometrics Unt Intemal Policy/Practice (Tatal pevedid entha 27 , imiating struisan: Excemax MBBTG ty 1
C-D Road (Two ar Mare Lanes) (Use 12' Lane Widih)	10.0 paved width an right; $8,0^{\prime}$ total widtiv 4.0^{\prime} paved wisth on ist. (The same as a four-lane frogenay).	2011 AASHTO. p. 8.34; p. 10-81
Inderchange Ramp	8.0^{\prime} total wittriv. ${ }^{\circ}$. paved with on right, 6.0' tatal widtri/4.0' paved wisth on let.	Michigan Road Desion Manual: Chanter 3. Adoendix 3-A: Chapter 5, Appendix 6.A

SHOULDERS

Corrugations in Paved Shoulders

Refer to R-112-H for Freeway and Non-Freeway Corrugations

QUESTIONS

Problem 3: Non-Freeway, NHS Corridor with a 4R Work Type Divided Arterial, 36^{\prime} Median Width
 3 Lanes in Each Direction ADT $=36,000$ Rolling Terrain Posted Speed 40 mph

a. What is the MDOT recommended design speed?
b. What is the required lane width?
c. Required shoulder widths - left and right?
d. Required Stopping Sight Distance?
e. Maximum Allowable Grade (\%)?

Problem 3: | Non-Freeway, NHS Corridor with a 4R Work Type | |
| :--- | :--- |
| (Solutions) | Divided Arterial, 36' Median Width |
| | 3 Lanes in Each Direction |
| | ADT $=36,000$ |
| | Rolling Terrain |
| | Posted Speed 40 mph |

a. What is the MDOT recommended design speed?

45 mph

(RDM 3.06)
(A 40 mph minimum design speed may be used per RDM Appendix 3A)
b. What is the required lane width?

Rural: 12,
Urban: 12' Desirable/11' Minimum (Unless NTN; then 12' min.) (RDM Appendix 3A)
Urban Restricted Area: 10’(Almost Never Applies)
c. Required shoulder widths - left and right?

Rural and/or Urban: 8' Right and 8' Left Desirable.
[However, No Shoulders are Required Due to Low Speed (Posted Speed Limit < 50 mph).]
d. Required Stopping Sight Distance?

360'
(305' if 40 mph design speed is used)
(MDOT Sight Distance Guidelines)
e. Maximum Allowable Grade (\%)?

Rural: $\quad 6 \%$ (40 mph or 45 mph design speed)
Urban: 7% (45 mph design speed)
(RDM Appendix 3A)
8% (40 mph design speed)

Problem 4:

Non-Freeway, Non-NHS Corridor with a 3R Work Type Undivided, 2-lane Arterial
ADT $=12,300$
Rolling Terrain
Posted Speed 55 mph
a. What is the minimum allowable design speed?
b. What is the required lane width?
c. Required shoulder widths - left and right?
d. Required Stopping Sight Distance?
e. Maximum Allowable Grade (\%)?

Problem 4:	Non-Freeway, Non-NHS Corridor with a 3R Work Type
	Undivided, 2-lane Arterial
(Solutions)	ADT $=12,300$
	Rolling Terrain
	Posted Speed 55 mph

a. What is the minimum allowable design speed?

55 mph Minimum
(RDM 3.06 and RDM 3.09.02B)
b. What is the required lane width?

11’Minimum
(RDM 3.09.02B)
12' Desirable on the NTN, but existing widths of less than 12' may be retained.
c. Required shoulder width?

Rural: 6' Total / 3' Paved
(RDM 3.09.02B)
Urban: 6' Total / 3' Paved - If Not Constrained by ROW.
If ROW Not sufficient, No Shoulders are Required.
d. Required Stopping Sight Distance?

495
(MDOT Sight Distance Guidelines)
e. Maximum Allowable Grade (\%)?

If there are $\underline{N O}$ crash patterns/concentrations related to the existing longitudinal grades, the existing grades may be retained (i.e. No Maximum).
(RDM 3.09.02B)

If there IS a crash pattern related to the existing longitudinal grades, then the maximum grades are as follows.

Rural: 5\%

(RDM Appendix 3A)
Urban: 6\%

CURB \& GUTTER (RDM 6.06)

CURB \& GUTTER (RDM 6.06)

Purpose

Control and Direct Drainage

Visually and Physically Define the Travel Way

Define Driveway Locations

Promote Aesthetics of Roadside Development

C\&G IN CONJUNCTION WITH SHOULDER

Curb \& Gutter Should Not be Used on Roadways with Flush Shoulders, if Feasible

Curb \& Gutter Should Not be Used Adjacent to the Travel Lane Where Posted Speeds are 50 mph or Greater

Roll Curb \& Gutter is Frequently Used to Define the Radii of Rural Crossroad Intersections, but These are Placed Beyond the Edge of Shoulder and Therefore are not Adjacent to the Traveled Way

CURB \& GUTTER IN CONJUNCTION WITH SHOULDER

MDOT Standard Plan R-30-G

Curb \& Gutter Should Not be Used Where Open Drainage Ditches Can be Utilized

CURB \& GUTTER (RDM 6.06.06)

Most Curb and Curb \& Cutter Types are Defined as Eith Mountable/Roll or Barrier

MDOT's Detail "B"

May be Used at Any Posted Speed
Usually Used on the Back of Flush Shoulders at Rural Intersections

MDOT's Detail "D"

May be Used at Any Posted Speed
Primarily for Drainage and In Conjunction with Guardrail Sections

CURB \& GUTTER (RDM 6.06.06)

Most Curb and Curb \& Gutters aro-Defined as Either Mountable/Roll (r Barrier

MDOT's Detail "C"

May be Used Where Posted Speeds are 35 mph or Less
Typical Usage is with Sidewalks, Trees, or Utility Poles Close to Edge of Pavement, Parking Areas, or to Match Existing Pavement

MDOT's Detail "F"

May be Used Where Posted Speeds are $\mathbf{4 5} \mathbf{~ m p h}$ or Less
May be Used to Replace Detail "C", or in Place of Detail "B" or "D"

CURB \& GUTTER (RDM 6.06)

MDOT's Detail 'G'" (Urban Freeway Curb)

- Considered Mountable
- Usually Used on Urban Freeways (Only in Cut Sections), in front of Earth Berms, or Adjacent to Retaining Walls at the Back of Shoulder

Refer to RDM 6.06.10 and MDOT Special Detail R-33-G

MICHIGAN DEPARTMENT OF TRANSPORTATION
BUREAU OF HIGHWAY DEVELOPMENT STANDARD PLAN FOR

> CONCRETE VALLEY GUTTER AND URBAN FREEWAY CURB

These Curb Details May be Used at Non-Freeway Locations when Approved.

CURB \& GUTTER (RDM 6.06)

Concrete Valley Gutter - Developed to be Used on Freeways in Order to Provide Flush Shoulders

Replaced Curb \& Gutter That was Previously Used Between the Travel Lane and the Paved Shoulder

To Place Concrete Valley Gutter at the Outside Edge of the Shoulder and Adjacent to CMB or Single Face Barrier, if Present

CURB \& GUTTER (RDM 6.06)

Bridge Approach Curb \& Gutter Details

Should be Determined by the Bridge Designer
If a Road Plan is Included with the Bridge Plan, the Quantities will be in the Road Plan

Refer to RDM 6.06.08 and MDOT Special Detail R-32-F

QUESTIONS

CROSS SLOPE

CROSS SLOPE / CROWN

- Cross Slope - Transverse slope rate of travel lane or shoulder.
- Normal Crown - Uniform slope towards the outside edge of pavement

Undivided Roadways

Typically Crowned at Centerline or Edge of Center Lane

Divided Roadways

May be Crowned at Centerline or at Inside or Outside Edge of Pavement

CROSS SLOPE / CROWN

EACH PAVEMENT SLOPES Two hays

Each pavement slopes one vay

Exhibit 4-3. Roadway Sections for Divided Highway (Basic Cross-Slope Arrangements)

CROSS SLOPE / CROWN

The Department Uses a Standard Cross Slope of

2.0\%

Allowable Cross Slope Variances for 3R Projects are Given in RDM 3.09.02

A Design Exception is Needed for Cross Slopes that are
Less than the Required Minimums, Greater than 2\%, or Parabolic in Nature.

Except...

CROSS SLOPE / CROWN

Three or More Lanes Inclined in the Same Direction

(Free Access Curbed Highways)

- Slope May be Increased After the First Two Lanes from the Crown Line
- Up to 1%
- When Existing Side Conditions Do Not Allow the Preferred Uniform Standard Crown Rate

- Requires Additional Transition in Superelevated Sections

CROSS SLOPE / CROWN

Appendix 3A
GEOMETRIC DESIGN ELEMENTS
New Construction / Reconstruction

CROSS SLOPE / CROWN

* RIGHT (OUTSIDE 1: CONSIDER 12^{\prime} PAVED SHOULDER WHERE TRUCK TRAFFIC EXCEEDS 250 DOHV.
* LEFT (MEDIAN): FOR THREE OR MDRE DRIVING LANES, USE A 10° PAVED SHOULDER SECTION. CONSIDER 12^{\prime} PAVED SHOULDER WHERE TRUCK TRAFFIC EXCEEDS 250 DDHV AND THREE OR MDRE DRIVING LANES EXIST.
** SHDULDER THICKHESS DETERNINATION NUST ALSO FOLLOM OTHER DEPARTMENT GUIDELINES INCLUDING THE HMA MIXTURE AND SELECTION GUIDELINES.

CROSS SLOPE / CROWN

* Shoulder thickness determination must also follow other department guidelines including the hma mixture and selection guidel ines
** FOR LOCATION OF LONGITUDINAL JOINT, SEE STANDARO PLAN R-42-SERIES

CROSS SLOPE / CROWN

Bridge Design Guides (6.05.01)

CROSS SLOPE / CROWN

Bridge Design Guides (6.05.03)

* TRANSItION SHOULDER SLOPE ON APPROACH TO MATCH APPROACH ROAD ShOULDER SLOPE.

CROSS SLOPE / CROWN

Non-Freeway, NHS, 3R (3.09.02 A)

CROSS SLOPE / CROWN

Non-Freeway, Non-NHS, 3R (3.09.02 B)

CROSS SLOPE / CROWN

Where Resurfacing is Less Than 4"...

The Crown Point May be Retained in Its Existing Location 2\% Cross Slope Should be Established or Maintained

Where Resurfacing is 4"or More...

The Crown Point Should be Moved to Meet Current Standards

CROSS SLOPE / CROWN

Shoulder Slopes

Road Design Manual 6.05.05 and Standard Plan R-107

- Standard Slope for Gravel or Earth Surfaced Shoulder and Shoulder Ribbon is $6 \%(0.06 \mathrm{ft} / \mathrm{ft})$
- Standard Slope for Paved Shoulder is 4% ($0.04 \mathrm{ft} / \mathrm{ft}$)
- Standard Slopes for Superelevated Sections

See R-107

CROSS SLOPE / CROWN

Shoulder Slopes

Slope Rates Between 4\% and 6\% are Generally Acceptable for Aggregate Shoulders

Slope Rates Between 4\% and 6\% May be Used for Paved Shoulders if Side Conditions are Constrained, and if it Does Not Result in a Rollover of Greater Than 6\%

Slopes of Less Than 4\% (Except on Bridges or in Superelevated Sections) or Greater Than 6\% (Except in Superelevated Sections) Require a Design Exception

CROSS SLOPE / CROWN

Shoulder Slopes

Do NOT Change Slope Rates Within the Plane of the Shoulder - Keep Paved and Unpaved in Same Plane

CROSS SLOPE / CROWN

Retaining an Existing Parabolic Crown will Require a Design Exception

The Desirable Rollover (Algebraic Difference in Cross Slope) between Traveled Lanes and Shoulders is 6\% or Less

MDOT Maximum Rollover: 6\% AASHTO/FHWA Maximum Rollover: 8%
(Design Exceptions Required if These Values are Exceeded)

QUESTIONS

SUPERELEVATION

SUPERELEVATION

- Superelevation - The banking of the roadway in the direction of the curve to help counter balance the perceived "centrifugal force" on the vehicle

The Appropriate Rate of Superelevation is Determined From...

- Design Speed
- Curve Radius
- Maximum Allowable Side Friction Factor
- Superelevation Method

SUPERELEVATION

Michigan's Climate Limits Superelevation to 7% on...

- Rural Freeways
- Free Access Trunklines
- Rural Ramps

> For Maximum Superelevation on "Urban" Freeways (DS $=60 \mathrm{mph}$) and Ramps See R-107

SUPERELEVATION

Obtaining Superelevation Rates

Preferred

MDOT Standard Plan R-107

Minimum

Straight Line Method (RDM 3.04.03)
Interpolating between the AASHTO 6% and $8 \% \mathrm{E}_{\max }$ charts is not appropriate! Interpolating within the R-107 cautiom or Straight-Line charts is allowable!

If the Straight-Line superelevation rates
cannot be met, a Design Exception/Design Variance is required.

SUPERELEVATION

Appendix 3A GEOMETRIC DESIGN ELEMENTS New Construction / Reconstruction																				
Maximum Grade			Maximum Grade (\%) for specified design speed (mph)																	
	永	Type of Terrain	50			55			60			65			70			75		
		Level		4			4			3			3			3			3	
		Rolling		5			5			4			4			4			4	
									des 1	steepe	er may	provid	ded in 4	urban	eas.					
		Type of	Urban											Rural						
		Terrain	30		35	40		45	50		55	60		40	45		50	55	60	
		Level	8		7	7		6	6		5	5		5	5		4	4	3	
		Rolling	9		8	8		7	7		6	6		6	6		5	5	4	
		Type of	Urban									Rural								
		Terrain	20	25	30	35	40 40	45	50	55	60	20	25	30	35	40	45	50	55	60
		Level	9	9	9	9	9	8	7	7	6	7	7	7	7	7	7	6	6	5
		Rolling	12	12	11	10	10	9	8	8	7	10	10	9	9	8	8	7	7	6
Stopping Sight Distance	Follow $20111^{\text {tm }}$ E Edition of AASHTO "A Policy on Geometric Design of Highways and Streets" (AKA AASHTO Green Book). The MDOT Sight DistanceGuidelines																			
Cranolore	Traveled way cross slope $=2.0 \%$, Paved shoulder cross slope $=4.0 \%$ (Also see Section 6.05.05)																			
	AASHTO Method 5 "Curvilinear Relation" is used for new construction/reconstruction. Maximum rate of 7\%. (See Standard Plan R-107-Series.)																			
	AASHTO Method 1 "Straight Line Relation" is allowed when Method 5 is not feasible. Maximum rate of 6\%. (See Section 3.04.03)																			
	The above methods also apply to urban freeways and urban ramps, except the maximum rate is 5% for 60 mph design speed.																			
VerticalClearance						NHS								- - iontivis						
	Freeway					Or								$14^{\prime}-6^{\prime \prime}$						
	Non Freeway (Arterial)					$16^{\prime}-0^{\prime \prime}$								$14^{\prime}-6^{\prime \prime}$						
	Collectors \& "Special Routes"				$14^{\prime}-6^{\prime \prime}$ (1 ft greater than Michigan legal vehicle height.)									$14^{\prime}-6^{\prime \prime}$						
	For pedestrian bridges provide 1 ft . additional clearance over non-freeway and 17 ft . minimum under clearance over freeways. A vertical clearance of $23^{\prime}-0^{\prime \prime}$ is required for grade separations over railroads. (See Bridge Design Manual 7.01.08 and Bridge Design Guides 5.24.03-04.)																			

SUPERELEVATION

Point of Rotation (RDM 3.04.01)

Crowned Multi-Lane Roadways

Single-Lane or Unidirectionally Crowned Roadways (i.e. Ramps)

SUPERELEVATION

Point of Rotation (RDM 3.04.01)

Special consideration should be given to superelevating an odd number of lanes (i.e. three-lane or five-lane sections) as the point of rotation should be determined by site conditions. See Standard Plan R-107-Series.

SUPERELEVATION

Superelevation Transitions (RDM 3.04.02)

Consists Of...

Tangent Runout

(Crown Runout (C))
Length of Roadway Needed to Accomplish a Change in
Outside-Lane Cross Slope
from the Normal Cross
Slope Rate to Zero (Flat) or Vice Versa

Superelevation Transition

 (Transition (L))Length of Roadway Needed to Accomplish a Change in Outside-Lane Cross Slope from Zero (Flat) to Full Superelevation or Vice Versa

SUPERELEVATION

Superelevation Transitions (RDM 3.04.02)

Relative Gradient Along the Edges of the Pavement

(Delta Percent), ($\Delta \%$)

- Dependent on Superelevation Rates and Design Speeds
- May be Increased as Needed Up to the Maximum Relative Gradient for the Design Speed
- Requires a Design Variance if Values Exceed the Maximum for the Design Speed

SUPERELEVATION

Superelevation Transitions (RDM 3.04.02)

SUPERELEVATION

Road Cross Section

SUPERELEVATION

SUPERELEVATION

MDOT Standard Plan R-107

SUPERELEVATED FINISHED SECTION

SUPERELEVATION

MDOT Standard Plan R-107

PLAN GRADE AND POINT OF ROTATJON (SUPERELEVATED)

RAMPS

LEGEND
NC = NORMAL CROWN RATE
$W=$ DISTANCE IN FEET FROM POINT OF ROTATION TO FARTHEST OUTSIDE EDGE
$D=W \times N C$
$e=$ RATE OF SUPERELEVATION
$S=W \times e$
C = CROWN RUNOUT / TANGENT RUNOUT (ADVERSE CROWN REMOVED)

L = TRANSITION LENGTH OR SUPERELEVATION RUNOFF OF INSIDE OR OUTSIDE EDGE OF PAVEMENT
$\Delta \%=$ SUPERELEVATION TRANSITION SLOPE DF PAVEMENT EDGES

HIGH SIDE SHOULDER CHART

WHEN RATE OF FULL SUPERELEVATION IS	SHOULDER SLDPE AT FULL SUPERELEVATION EQUALS
FROM 2\% TO 3\%	Rate of superelevation minus NORMAL SHOULDER SLOPE
3\% TD AND [NCLUD]NG 5\%	
OVER 5\%	

SUPERELEVATION

MDOT Standard Plan R-107

720	4.6	0.58	5.4	0.57	6.3	0.55	6.9	0.54	$\mathrm{R} \mathrm{M} \mathrm{M}\left[\mathrm{N} .=794^{\prime}\right.$

700	4.7	0.59	5.5	0.57	6.3	0.56	6.9	0.54
600	5.0	0.60	5.9	0.59	6.7	0.57	R	MI.

600	5.0	0.60	5.9	0.58	6.7	0.57	R MIN. $=614^{\prime}$

500	5.4	0.61	6.4	0.60	7.0	0.58
450	5.7	0.62	6.6	0.61	$8.41 N_{0}=464^{\prime}$	

450	5.7	0.62	6.6	0.61	$\mathrm{R} M \mathrm{MN} .=464^{\prime}$
400	6.0	0.63	6.8	0.61	

400	6.0	0.63	6.8	0.61
350	6.3	0.64	7.0	0.62

350	6.3	0.64	7.0	0.62

300	6.7	0.65	R M[N. $=327^{\prime}$

265	6.9	0.66
225	7.0	0.66

225	7.0	0.66

R MIN. $=222^{\prime}$

NOTES:
LOOP RANPS SHALL HAVE A 7\% RATE OF SUPERELEVATJON.
THE RATE OF SUPERELEVATJON FOR CURVES APPROACHJNG RAMP TERMINALS (STOPPING COND]T[ON) SHOULD BE LIM]TED TO 5\% MAX.
IF DELTA VALUES FRDN THE CHART CANNOT BE OBTALNED FOR THE DESIGN RADIUS, USE THE NAXIMUM DELTA VALUE FOR THE CDRRESPONDING SPEED.
FOR RAD[] LESS THAN THOSE TABULATED, (BUT NOT LESS THAN R MIN.), USE e mor. MAXIMIM SUPERELEVATJON FOR URBAN FREEWAYS AND URBAN RAMPS (M]TH A 60 MPH DES[GN SPEED) IS 5%. OTHERWISE e mox $=7 \%$.

SUPERELEVATION

MDOT Standard Plan R-107

```
THE CRDON FOJHT AND PONNT OF ROTATIOH IELL NLPNLLLY EE AT THE
CENTER OF THO-HLNE LND FOUR-LLIE UNTVIDED PLMENENTS AND AT THE
```



```
POJNT OF ROTATJON WLLL NORWLLLY BE AT THE THSLDE EDGES OF DTVIDED
PavDEETS.
```

THE CROWN POINT AND POINT OF ROTATION WILL NORMALLY BE AT THE CENTER OF TWO-LANE AND FOUR-LANE UNDIVIDED PAVEMENTS AND AT THE EDGE OF AN INSIDE LANE OF FIVE-LANE UNDIVIDED PAVEMENTS. THE POINT OF ROTATION WILL NORMALLY BE A THE INSIDE EDGES OF DIVIDED PAVEMENTS.

SUPERELEVATION

MDOT Standard Plan R-107

The Crown is to be rewove in slpereleyation sectiog.

THE CROWN IS TO BE REMOVED IN SUPERELEVATED SECTIONS.

SUPERELEVATION

MDOT Standard Plan R-107

ON URBAN SERVICE ROADS AND URBAN FREE ACCESS TRUNKLINE CURVES WHERE DRIVEWAYS ARE PREVALENT, AND WHERE NORMAL SUPERELEVATION CANNOT BE OBTAINED, A MINIMUM OF 1.5\% TO 2% SUPERELEVATION IN THE DIRECTION OF THE CURVE MAY BE USED TO REMOVE THE ADVERSE CROWN.

SUPERELEVATION

MDOT Standard Plan R-107

DES[CN MCO[FICATION DF TRLNSITIOHS, PODNT OF ROTATLOA, AND CRONLS

DESIGN MODIFICATION OF TRANSITIONS, POINT OF ROTATION,

 AND CROWNS MAY BE NECESSARY TO IMPROVE RIDING QUALITY AND APPEARANCE.
SUPERELEVATION

MDOT Standard Plan R-107

THE LOCATION, LENGTH OF SUPERELEVATION TRANSITIONS, CROWN RUNOFF LENTGHS, SUPERELEVATION RATES, AND POINT OF ROTATION WILL BE AS SPECIFIED ON THE PLANS.

SUPERELEVATION

MDOT Standard Plan R-107

 THAN TRANSITION SLOPE LENGTHS.
SUPERELEVATION

MDOT Standard Plan R-107

SPIRAL TRANSITIONS SHOULD BE USED ON NEW ALIGNMENTS, BASED ON THE DESIGN SPEED OF THE CURVE AND THE RADIUS AS SHOWN IN THE TABLE. THE TABLE GIVES THE MAXIMUM RADIUS IN WHICH A SPIRAL SHOULD BE USED.

SUPERELEVATION

MDOT Standard Plan R-107

BEGIN THE HIGH SIDE SHOULDER TRANSITION AT THE PAVEMENT CROWN RUN OUT POINT (CROWN REMOVED). TRANSITION THE SHOULDER IN THE DISTANCE "L" TO THE SHOULDER SLOPE RATE REQUIRED AT FULL PAVEMENT SUPERELEVATION.

SUPERELEVATION

MDOT Standard Plan R-107

IF THE RATE OF FULL PAVEMENT SUPERELEVATIONS IS GREATER THAN THE NORMAL SHOULDER SLOPE, BEGIN THE LOW SIDE SHOULDER TRANSITION WHEN THE PAVEMENT REACHES THE SAME PLANE AND SLOPE RATE AS THE NORMAL SHOULDER.

SUPERELEVATION

MDOT Standard Plan R-107

WHEN TRANSITJOHJNG THE SHOULDER SLITEE TO/FROA A BR[DCE SECTLON, CALCULATE THE TRANSITLON DISTANCE USIHG THE SUPERELEVATIOH TRAHSCTIOK SLOPE (AT) REOUIRED FOR THE CUIFVE, OR IN TANGENT SECTIOHS, USE THE MINNLMUN VALUE FOR SUPERELEVATJOH TRAHSITJON SLDPE (AH) GIVEN IN THE TABLE, [N THE COLIIN FOR THE SPEED OF THE ROADHAY. (TRANS]TLON DISTAMCE $=$ SHOULDER WIDTH \times (RATE OF ER[DGE SHOULLDER SIJPERELEVATJON MJHUS RATE OF ROAD SHOULDER SUPERELEVAT[ON] $\times 100$ / 4%)

SUPERELEVATION

MDOT Standard Plan R-107

SPIRAL CURVE TRANSITIONS			
$\begin{aligned} & \hline \text { DESIGN } \\ & \text { SPEED } \\ & \text { (MPH) } \end{aligned}$	MAXIMUM RADIUS (FEET)	$\begin{aligned} & \text { DESIGN } \\ & \text { SPEED } \\ & \text { (MPH) } \end{aligned}$	MAX [MUM RADIUS (FEET)
30	456	60	1822
35	620	65	2138
40	810	70	2479
45	1025	75	2846
50	1265	80	3238
55	1531	-1\%	-

SUPERELEVATION

MDOT Standard Plan R-107

SUPERELEVATION

Use 7% superelevation for loop ramps (500 Standard Plan R-107-Series). However, special consideration should be given to curves which approach a ramp terminal (stopping
condition). If relative gradent ($\Delta \%$) values from the tables cannot be obtained for the design radius, use $\Delta \%_{\text {mos }}$ for the corresponding design speed.
For radii less than those tabulated (but not less than Rmin) use
For radil
Maximum superelevation for urban freeways and urban ramps (with 60 mph design speed) is 5%, otherwise $\mathrm{e}_{\text {max }}=6 \%$,

QUESTIONS

a. What is the design speed?
b. What is the lane width?
c. Paved shoulder width - left and right?
d. Stopping sight distance?
e. Maximum grade $\%$?
f. Cross-slope for the traveled way and shoulders in a normal crown section?
g. Minimum required superelevation rate for a horizontal curve with $\mathrm{R}=1800^{\prime}$?
h. Superelevation rate for a horizontal curve with $\mathrm{R}=1800^{\prime}$ using Standard Plan $\mathrm{R}-107$?
a. What is the design speed?

$$
55 \mathrm{mph} / 50 \mathrm{mph}
$$

(RDM 3.06 / RDM Appendix 3A)
b. What is the lane width?

Rural or Urban: 12'

(RDM Appendix 3A)
c. Paved shoulder width - left and right?

Rural: $\quad 8^{\prime}$ Right and 8^{\prime} Left

Urban: $\quad 8^{\prime}$ Right and 8^{\prime} Left - If Not Constrained by ROW.
Where ROW is Not Sufficient, No shoulders are required.
d. Stopping sight distance?

495'(55 mph) 425’(50 mph) (MDOT Sight Distance Guidelines)
e. Maximum grade $\%$?

Rural: 4\% (50 mph or 55 mph design speed)
(RDM Appendix 3A)
Urban: 5% (55 mph design speed) / 6% (50 mph design speed)
f. Cross-slope for the traveled way and shoulders in a normal crown section?

Traveled Way:	2.0%
Shoulders:	4.0%

(RDM Appendix 3A)
g. Minimum required superelevation rate for a horizontal curve with $\mathrm{R}=1800^{\prime}$?

3.5%	$(55 \mathrm{mph})$
2.8%	$(50 \mathrm{mph})$

h. Superelevation rate for a horizontal curve with R=1800' using Standard Plan R-107?
5.7% (55 mph)
(R-107 Superelevation Rate - Standard Plan R-107)
5.1\% (50 mph)

Problem 6:

Given the following information:
Design Speed $=50 \mathrm{mph}$
R = 2500 feet
Straight Line Superelevation Chart

Calculate the following:

a. Superelevation Rate
b. Delta Percent Value
c. Crown Runout Length (C)
d. Superelevation Transition Length (L)
e. Superelevation Transition Distribution/Placement Inside and Outside of the Curve.
f. Determine the Required Horizontal Sightline Offset (HSO) to Ensure Adequate Stopping Sight Distance. Is the Required HSO Provided in this Case?
g. Determine the K Value Based on the Proposed Vertical Alignment. Does this K Value Meet for the Design Speed of the Roadway?

Problem 6:

(Solutions)
Given the following information:
Design Speed $=50 \mathrm{mph}$
$\mathrm{R}=2500$ feet
Straight Line Superelevation Chart

Determine/Calculate the following:
a. Superelevation Rate: $\mathbf{2 . 0 \%}$
(RDM 3.04.03)
b. Delta Percent Value:
c. Crown Runout Length (C):
$(2 \%)\left(12^{\prime}\right) / 0.40=60^{\prime}$

(RDM 3.04.03)

(MDOT Standard Plan R-107)
d. Superelevation Transition Length (L): $(2 \%)\left(12^{\prime}\right) / 0.40=60^{\prime} ;\left(20^{\prime}\right.$ into curve 40 ' out of curve $)$.
e. Superelevation Transition Distribution/Placement Inside and Outside of the Curve.
At PC: $: L=\underline{\text { Sta. } 10+00}+20^{\prime}=\underline{\text { Sta } .10+20-60^{\prime}=\underline{9+60}}$.
$C=\underline{\text { Sta. } 9+60-60 '=\underline{\text { Sta. } 9+00} .}$
L: 9+60 to 10+20.
$C: 9+00$ to $9+60$.

At PT: $L=\underline{\text { Sta. } 15+00-20^{\prime}=\underline{\text { Sta }} .14+80+60^{\prime}=\underline{15+40} ~ . ~}$
$C=\underline{\text { Sta. } 15+40}+60^{\prime}=\underline{\text { Sta. } 16+00}$
$\frac{L: 14+80 \text { to } 15+40 .}{C: 15+40 \text { to } 16+00 .}$
f. Determine the required Horizontal Sightline Offset (HSO) to Ensure Adequate Stopping Sight Distance. Is the Required HSO Provided in this Case?
D.S. $=50 \mathrm{mph}, \mathrm{R}=2500^{\prime}:$ Required $\mathrm{HSO}=9.0^{\prime} . \underline{\text { Yes; 12.0' of HSO is Provided }}$.
g. Determine the K Value Based on the Proposed Vertical Alignment. Does this K Value Meet for the Design Speed of the Roadway?
$K=L / A=300 / 5=\underline{60} . \underline{\text { No; } K(s a g)=60 \text { Does Not Meet for } 50 \mathrm{mph} ; \text { it Meets for } 35 \mathrm{mph}}$.
(NOTE: This Would be an Allowable Vertical Alignment for a 3 N Non-Freeway Project).

Problem 7:

Given the following information:

$$
\begin{aligned}
& \text { Design Speed }=60 \mathrm{mph} \\
& \mathrm{R}=2050 \\
& \text { Straight Line Superelevation Chart }
\end{aligned}
$$

Determine/Calculate the following:
a. Superelevation Rate:
b. Delta Percent Value:
c. Crown Runout Length (C):
d. Superelevation Transition Length (L):
e. Superelevation Transition Distribution/Placement Inside/Outside of the Curve:
f. Determine the Required Horizontal Sightline Offset (HSO) to Ensure Adequate Stopping Sight Distance. Is the Required HSO Provided in this Case?
g. Determine the K Value Based on the Proposed Vertical Alignment. Does this K Value Meet for the Design Speed of the Roadway?

Problem 7:

Given the following information:
Design Speed $=60 \mathrm{mph}$ R = 2050'
Straight Line Superelevation Chart

Calculate the following

a. Superelevation Rate: $\mathbf{3 . 9 \%}$
b. Delta Percent Value: 0.40
(RDM 3.04.03)
(RDM 3.04.03)
c. Crown Runout Length $(\mathrm{C}): \mathrm{C}=\left(24^{\prime}\right)(2 \%) / 0 \cdot 40=\underline{\mathbf{1 2 0}{ }^{\prime}}$.
d. Superelevation Transition Length $(\mathrm{L}): \mathrm{L}=\left(24^{\prime}\right)(3.9 \%) / 0.40=\underline{\mathbf{2 3 4}} \cdot \quad(\underline{\mathbf{7 8}} \mathbf{\prime} \mathbf{~ i n} / \mathbf{1 5 6}$ ' out $)$.
e. Superelevation Transition Distribution/Placement Inside/Outside of the Curve:

PC: $L=\underline{\text { Sta. } 10+00}+78^{\prime}=\underline{\text { Sta }} .10+78-234^{\prime}=\underline{\text { Sta. } .8+44} . \quad C=\underline{\text { Sta } . ~} 8+44-120 \prime=\underline{\text { Sta } . ~ 7+24}$.
Crown Runout: Sta. $7+24$ to Sta. $8+44$. Super Transition: Sta. $8+44$ to Sta. 10+78.
PT: $L=\underline{\text { Sta. } 15+00-78^{\prime}=\underline{\text { Sta. }} 14+22+234^{\prime}=\underline{\text { Sta. } 16+56} . ~ C=\underline{\text { Sta. } 16+56}+120 \prime=\underline{\text { Sta }} .17+76}$ Super Transition: Sta. 14+22 to Sta. 16+56. Crown Runout: Sta. $16+56$ to Sta. 17+76.
f. Determine the Required Horizontal Sightline Offset (HSO) to Ensure Adequate Stopping Sight Distance. Is the Required HSO Provided in this Case?
D.S. $=60 \mathrm{mph}, \mathrm{R}=2050^{\prime}: \underline{\text { Required } H S O=19.8^{\prime}} . \underline{\text { No; the Proposed HSO is Only 12.0' }}$
g. Determine the K Value Based on the Proposed Vertical Alignment. Does this K Value Meet for the Design Speed of the Roadway?
$K=L / A=400 / 4.5=\underline{88.9} . \quad$ No; $K($ sag $)=88$ Does Not Meet for $60 \mathrm{mph} ;$ it Meets for 45 mph.
(NOTE: This Would be an Allowable Vertical Alignment for a 3R, Non-Freeway Project).

INTERCHANGE DESIGN

INTERCHANGE - GENERAL

- Interchange - A system of interconnecting roadways in conjunction with grade separations providing for the interchange of traffic between two or more intersecting roadways

INTERCHANGE - GENERAL

- Two Types
- System
- Service
- Configuration Based on Service Demand
- Spacing
- Rural
- Urban
- Approach to Structures
- Sight Distance

INTERCHANGE

Design Principles

- Interchanges Should be Designed to Best Serve the Projected Design Hourly Volume Safely and Efficiently

Operational Uniformity Concept

- Interchange Design Should Reinforce Driver Expectancies that Conform with (or Reinforce) a Prior Experience

INTERCHANGE LAYOUT

Road Design Manual (3.07.02 B)

- Adequate Visibility on Ramps
- Sight Distance at Least as Long as SSD
- Clear View of Entire Exit Terminal
- Exit Nose
- Section of Ramp Roadway Beyond Gore
- Exit Ramps Should Begin Where the Freeway is on a Tangent
- Exit in Advance of Structure
- Loop Ramps Beyond a Structure Usually Need a Parallel Deceleration Lane

INTERCHANGE LAYOUT

Road Design Manual (3.07.02 B)

- Extreme Care Exercised to Avoid Left-Hand Entrances and Exits
- Avoid Lane Drops between Closely Spaced Interchanges
- Loop Ramps should be Designed with a Minimum Radius of 260' If Possible
- Gore Areas Should be Designed as Flat as Possible
- Consistency Should be Provided in Interchange and Ramp Design and Utilization

INTERCHANGE

Spacing

- Impacts Freeway Operations
- Capacity/Congestion
- Urban Areas
- Difficult to Get Spacing - 1 Mile Spacing Desirable
- Rural Areas
- 2 Mile Spacing Desirable

INTERCHANGE

RAMP TYPES

INTERCHANGE

minimum English lengThs for tapered entrance ramps

RANP DES[GN SPEED (NPH)	PERCENT GRADE OF THROUGH ROADWAY	$\begin{gathered} \text { TAPER }=65: 1 \\ \triangle=0^{\circ} 52^{\prime} 53^{\prime \prime} \\ \text { ROADWAY } \\ \text { DES[GN SPEED } \\ =75 \mathrm{MPH} \\ \mathrm{~T}=780 \mathrm{FT} \\ \mathrm{LgOP}=390 \mathrm{FT} \end{gathered}$		$\begin{aligned} & \text { TAPER }=60: 1 \\ & \Delta=0^{\circ} 57^{\prime} 17^{\circ} \\ & \text { ROADWAY } \\ & \text { DESIGN SPEED } \\ & =70 \mathrm{MPH} \\ & \mathrm{~T}=720 \mathrm{FT} \\ & \text { Lgop }=360 \mathrm{FT} \end{aligned}$		$\begin{gathered} \text { TAPER }=55: 1 \\ \Delta=1^{\circ} 02^{\prime} 30^{\circ} \\ \text { ROADWAY } \\ \text { DESIGN SPEED } \\ =60 \mathrm{MPH} \\ \mathrm{~T}=660 \mathrm{FT} \\ \mathrm{Lgap}=330 \mathrm{FT} \end{gathered}$		$\begin{aligned} & \text { TAPER=50:1 } \\ & \Delta=1^{\circ} 08^{\prime} 45^{\prime \prime} \end{aligned}$ ROADWAY DESIGN SPEED $\begin{gathered} =55 \text { to } 50 \mathrm{MPH} \\ T=600 \mathrm{FT} \\ \text { Lgap }=300 \mathrm{FT} \end{gathered}$		$\begin{aligned} & \text { TAPER }=45: 1 \\ & \Delta=1^{\circ} 16^{\prime} 23^{\prime \prime} \end{aligned}$ ROADWAY DES[GN SPEED = 45 or less MPH $\begin{aligned} \mathrm{T} & =540 \mathrm{FT} \\ \mathrm{Lg} \mathrm{Op} & =270 \mathrm{FT} \end{aligned}$	
		$\begin{gathered} \mathrm{L}_{\mathrm{a}} \\ (\mathrm{FT}) \end{gathered}$	$\begin{gathered} Q \\ (\mathrm{FT}) \end{gathered}$	$\begin{gathered} \mathrm{L}_{\mathrm{a}} \\ (\mathrm{FT}) \end{gathered}$	$\begin{gathered} 0 \\ (F T) \end{gathered}$	$\begin{gathered} \mathrm{L}_{\mathrm{o}} \\ (\mathrm{FT}) \end{gathered}$	$\begin{gathered} 0 \\ (F T) \end{gathered}$	$\begin{gathered} \mathrm{L}_{\mathrm{a}} \\ (\mathrm{FT}) \end{gathered}$	$\begin{gathered} 0 \\ (\mathrm{FT}) \end{gathered}$	$\begin{gathered} \mathrm{L}_{\mathrm{a}} \\ (\mathrm{FT}) \end{gathered}$	$\begin{gathered} 0 \\ (\mathrm{FT}) \end{gathered}$
20	-3 TO LESS THAN -5	978	27.1	912	27.2	660	24.0	506	22.2	450	22.0
	BETWEEN -3 AND +3	1630	37.1	1520	37.4	1100	32.0	810	28.2	450	22.0
	+3 TO LESS THAN +5	2528	50.9	2280	50.0	1540	40.0	1094	33.9	608	25.5
25	-3 TO LESS THAN -5	948	26.6	852	26.2	612	23.2	500	22.0	450	22.0
	BETWEEN -3 AND +3	1580	36.4	1420	35.7	1020	30.6	780	27.6	450	22.0
	+3 TO LESS THAN +5	2528	50.9	2201	48.7	1479	38.9	1092	33.9	608	25.5
30	-3 TO LESS THAN -5	906	26.0	810	25.5	555	22.0	500	22.0	450	22.0
	BETWEEN -3 AND +3	1510	35.3	1350	34.5	910	28.6	670	25.4	450	22.0
	+3 TO LESS THAN +5	2492	50.4	2160	48.0	1365	36.9	972	31.5	608	25.5
35	-3 TO LESS THAN -5	852	25.2	738	24.3	550	22.0	500	22.0	450	22.0
	BETWEEN -3 AND +3	1420	33.9	1230	32.5	800	26.6	550	23.0	450	22.0
	+3 TO LESS THAN +5	2450	49.7	2030	45.9	1200	33.9	798	28.0	608	25.5
40	-3 TO LESS THAN -5	696	22.8	600	22.0	550	22.0	500	22.0	450	22.0
	BETWEEN -3 AND +3	1160	29.9	1000	28.7	550	22.0	500	22.0	450	22.0
	+3 TO LESS THAN +5	2088	44.2	1700	40.4	825	27.0	725	26.5	608	25.5
45	-3 TO LESS THAN -5	650	22.0	600	22.0	550	22.0	500	22.0	450	22.0
	BETWEEN -3 AND +3	1040	28.0	820	25.7	550	22.0	500	22.0	450	22.0
	+3 TO LESS THAN +5	1924	41.6	1435	36.0	825	27.0	725	26.5	608	25.5
50	-3 TO LESS THAN -5	650	22.0	600	22.0	550	22.0	500	22.0		
	BETWEEN -3 AND +3	780	24.0	600	22.0	550	22.0	500	22.0		
	+3 TO LESS THAN +5	1482	34.8	1080	30.0	825	27.0	725	26.5		
55	-3 TO LESS THAN -5	650	22.0	600	22.0	550	22.0	500	22.0		
	BETWEEN -3 AND +3	650	22.0	600	22.0	550	22.0	500	22.0		
	+3 TO LESS THAN +5	1268	31.5	1080	30.0	825	27.0	725	26.5		
60	-3 TO LESS THAN -5	650	22.0	600	22.0	550	22.0				
	BETWEEN -3 AND +3	650	22.0	600	22.0	550	22.0				
	+3 TO LESS THAN +5	1268	31.5	1080	30.0	825	27.0				
65	-3 TO LESS THAN -5	650	22.0	600	22.0						
	BEThEEN -3 AND +3	650	22.0	600	22.0						
	+3 TO LESS THAN +5	1268	31.5	1080	30.0						
70	-3 TO LESS THAN -5	650	22.0	600	22.0						
	BETWEEN -3 AND +3	650	22.0	600	22.0						
	+3 TO LESS THAN +5	1268	31.5	1080	30.0						
75	-3 TO LESS THAN -5	650	22.0								
	BETWEEN -3 AND +3	650	22.0								
	+3 TO LESS THAN +5	1268	31.5								

INTERCHANGE

INTERCHANGE

MINJMUM ENGLISH LENGTHS FOR PARALLEL ENTRANCE

NOTES:

1. The designer has the flexibility to choose either the toper type ramp or the parallel type ramp. However. be used within an interchange and corridor. Uniformity in design is needed to aid driver expectancy. On sharp curves, it may be preferable to use parallel type ramps.
2. Select design speed based on a combination of the superelevation rate and the radius of the curve. See also chapter 3 of the NOOT Rood Design Manual
3. If an additional through lane is provided or the entrance ramp joins the mainline on the high side (outside) of the curve, use GE0-101-Series.
4. If the through pavement is curved, plot offsets for taper and connect with appropriate curve.
5. Prepare detail grodes and profiles from Section A-A to section B-B.
6. The value of Lo or Lgop, whichever produces the greater distance downstream from the $2 \mathrm{ft}(0.6 \mathrm{~m})$ point, is suggested for use in the design of the ramp entrance. a is the occeleration distance. Lgap is the minimum distance required to find a gop in traffic and merge onto the mainline.
7. Spirals transitions should be used on new ramp al igntents based on the design speed of the curve and the rodius os shown in the toble of the Rood Standard PIan $\mathrm{R}-107$-Series. The table gives the maximum radius in which a spiral should be used.
8. The maximum algebraic difference in pavenent cross slope between the mainline and the ramp ouxiliary lane should not exceed 5%
9. The cross slope in the gore orea between the $2 \mathrm{ft}(0.6 \mathrm{~m})$ point and the $22 \mathrm{ft}(6.6 \mathrm{~m})$ point should not exceed 8%, with a 6% maximum al gebraic difference in cross slope between the gore and the adjacent paved Iane. This algrebraic difference also opplies within crowned gores.
10. The design speed of the ramp vertical alignment should meet or exceed the design speed of the romp horizontal olignment.
11. The mainline shoulder width should extend along the ram to where the gore is 2 ft $(0.6 \mathrm{~m})$ wide. Use a $1: 25$ taper transition where it joins the ramp shoulder paving.
12. Each ramp should be carefully studied to provide maximum vision at its merge points. See Geometric Design Guide GEO-300-Series.
13. These design concepts are for new construction. where modification may be needed for retrofitting to existing road features, consult the Geometric Design Unit of Lansing Traffic and Safety

INTERCHANGE

MINIMUM ENGLISH LENGTHS FOR TAPERED EXIT RAMPS

RAMP DESJGN SPEED(MPH) (MPH	PERCENT GRADE OF THROUGH RDADWAY	$\begin{gathered} \text { TAPER=30:1 } \\ \triangle=1.54^{\prime} 33^{a} \\ \text { ROADWAY } \\ \text { DESIGN SPEED } \\ =75 \mathrm{MPH} \\ \mathrm{~L}_{d} \text { min }=330 \end{gathered}$		$\begin{aligned} & \text { TAPER=30:1 } \\ & \triangle==^{\circ} 54^{\prime} 33^{a} \\ & \text { RDADWAY } \\ & \text { DESIGN SPEED } \\ & =70 \mathrm{MPH} \\ & \mathrm{~L}_{\mathrm{d}} \mathrm{~min}=330 \end{aligned}$		$\begin{gathered} \text { TAPER }=25: 1 \\ \triangle=2^{\circ} 17^{\prime} 26^{N} \\ \text { ROADNAY } \\ \text { OESIGN SPEED } \\ =60 \mathrm{MPH} \\ \mathrm{~L}_{\mathrm{d}} \text { min }=300 \end{gathered}$		$\begin{gathered} \text { TAPER }=25: 1 \\ \triangle=2^{\circ} 17^{\prime} 26^{\omega} \\ \text { ROADWAY } \\ \text { DESIGN SPEED } \\ =55 \mathrm{NPH} \\ \text { TO } 50 \mathrm{NPH} \\ \mathrm{~L}_{d} \mathrm{~min}=300 \end{gathered}$		$\begin{gathered} \text { TAPER=25:1 } \\ \Delta=2^{*} 17^{\prime} 26^{\circ} \\ \text { RONDWAY } \\ \text { DES [GN SPEED } \\ =45 \mathrm{MPH} \\ \text { OR LESS } \\ \mathrm{L}_{d} \text { min }=300 \end{gathered}$	
		$\begin{gathered} \mathrm{L}_{\mathrm{d}} \\ (\mathrm{FT}) \end{gathered}$	$\begin{gathered} Q \\ (F T) \end{gathered}$	$\begin{gathered} \mathrm{L}_{\mathrm{d}} \\ (\mathrm{FT}) \end{gathered}$	$\begin{gathered} 0 \\ (\mathrm{FT}) \end{gathered}$	$\begin{gathered} \mathrm{L} d \\ (\mathrm{FT}) \end{gathered}$	$\begin{gathered} Q \\ (\mathrm{FT}) \end{gathered}$	$\begin{gathered} \mathrm{L} d \\ (\mathrm{FT}) \end{gathered}$	$\begin{gathered} Q \\ (F T) \end{gathered}$	$\begin{gathered} \mathrm{Ld} \\ (\mathrm{FT}) \end{gathered}$	$\begin{gathered} a \\ (F T) \end{gathered}$
20	-3 TO LESS THAN -5	744	36.8	684	34.8	576	35.1	528	33.2	390	27.6
	BETWEEN -3 AND +3	620	32.7	570	31.0	480	31.2	440	29.6	325	25.0
	+3 TO LESS THAN +5	558	30.6	513	29.1	432	29.3	396	27.9	300	24.0
25	-3 TO LESS THAN -5	720	36.0	660	34.0	552	34.1	492	31.7	354	26.2
	BETWEEN -3 AND +3	600	32.0	550	30.4	460	30.4	410	28.4	300	24.0
	+3 TO LESS THAN +5	540	30.0	495	28.5	414	28.6	369	26.8	300	24.0
30	-3 TO LESS THAN -5	690	35.0	624	32.8	516	32.7	456	30.3	300	24.0
	BETNEEN -3 AND +3	575	31.2	520	29.4	430	29.2	380	27.2	300	24.0
	+3 TO LESS THAN +5	518	29.3	468	27.6	387	27.5	342	25.7	300	24.0
35	-3 TO LESS THAN -5	642	33.4	588	31.6	486	31.5	420	28.8	300	24.0
	BETNEEN -3 AND +3	535	29.9	490	28.4	405	28.2	350	26.0	300	24.0
	+3 TO LESS THAN +5	482	28.1	441	26.7	365	26.6	315	24.6	300	24.0
40	-3 TO LESS THAN -5	588	31.6	528	29.6	420	28.8	342	25.7	300	24.0
	BETNEEN -3 AND +3	490	28.4	440	26.7	350	26.0	300	24.0	300	24.0
	+3 TO LESS THAN +5	441	26.7	396	25.2	315	24.6	300	24.0	300	24.0
45	-3 TO LESS THAN -5	528	29.6	468	27.6	360	26.4	300	24.0	300	24.0
	BETWEEN -3 AND +3	440	26.7	390	25.0	300	24.0	300	24.0	300	24.0
	+3 TO LESS THAN +5	396	25.2	351	23.7	300	24.0	300	24.0	300	24.0
50	-3 TO LESS THAN -5	468	27.6	432	26.4	300	24.0	300	24.0		
	BETNEEN -3 AND +3	390	25.0	360	24.0	300	24.0	300	24.0		
	+3 TO LESS THAN +5	351	23.7	330	23.0	300	24.0	300	24.0		
55	-3 TO LESS THAN -5	468	27.6	432	26.4	300	24.0	300	24.0		
	BETNEEN -3 AND +3	390	25.0	360	24.0	300	24.0	300	24.0		
	+3 TO LESS THAN +5	351	23.7	330	23.0	300	24.0	300	24.0		
60	-3 TO LESS THAN -5	468	27.6	432	26.4	300	24.0				
	BETNEEN -3 AND +3	390	25.0	360	24.0	300	24.0				
	+3 TO LESS THAN +5	351	23.7	330	23.0	300	24.0				
65	-3 TO LESS THAN -5	468	27.6	432	26.4						
	BETWEEN -3 AND +3	390	25.0	360	24.0						
	+3 TO LESS THAN +5	351	23.7	330	23.0						
70	-3 TO LESS THAN -5	468	27.6	432	26.4						
	BETWEEN -3 AND +3	390	25.0	360	24.0						
	+3 TO LESS THAN +5	351	23.7	330	23.0						
75	-3 TO LESS THAN -5	468	27.6								
	BETWEEN -3 AND +3	390	25.0								
	+3 TO LESS THAN +5	351	23.7								

INTERCHANGE

MINIMUM ENGLISH LENGTHS FOR PARALLEL EXIT RAMPS

RAMP DESIGN SPEED (MPH)	$\begin{aligned} & \text { PERCENT } \\ & \text { GRADE } \\ & \text { OF } \\ & \text { THROUGH } \\ & \text { ROADWAY } \end{aligned}$	$\begin{gathered} \text { TAPER }=30: 1 \\ \Delta=1^{\circ} 54^{\prime} 33^{v} \\ \text { ROADWAY } \\ \text { DES]GN SPEED } \\ =75 \mathrm{NPH} \\ 0=23^{\prime} \\ \mathrm{L}_{\mathrm{d}} \mathrm{~min}=350^{\prime} \\ \hline \end{gathered}$	$\begin{gathered} \text { TAPER }=30: 1 \\ \triangle=1^{\circ} 54^{\prime} 33^{\mu} \\ \text { ROADKYY } \\ \text { DES[GN SPEED } \\ =70 \mathrm{HPH} \\ 0=23^{\prime} \\ \mathrm{L}_{\mathrm{d}} \mathrm{~min}=350^{\circ} \\ \hline \end{gathered}$	$\begin{gathered} \text { TAPER }=25: 1 \\ \triangle=2^{\circ} 17^{\prime} 26^{\circ} \\ \text { ROADNAY } \\ \text { DESIGN SPEED } \\ =60 \mathrm{MPH} \\ 0=24^{\prime} \\ \mathrm{L}_{d} \text { min }=300^{\circ} \end{gathered}$	$\begin{gathered} \text { TAPER }=25: 1 \\ \Delta=2^{*} 17^{\prime} 26^{*} \\ \text { RADAWAY } \\ \text { DESIGN SPEED } \\ =55 \mathrm{NPH} \\ \text { TO } 50 \mathrm{MPH} \\ 0=24^{\prime} \\ \mathrm{L}_{\mathrm{d}} \text { min }=300^{\prime} \end{gathered}$	$\begin{gathered} \text { TAPER }=25: 1 \\ \Delta=2^{\circ} 17^{\prime} 26^{*} \\ \text { ROADMAY } \\ \text { DES[GN SPEED } \\ =45 \text { HPH } \\ \text { OR LESS } \\ 0=24^{\prime} \\ L_{\mathrm{d}} \text { min }=300^{\prime} \end{gathered}$
		$\begin{gathered} \mathrm{L} \mathrm{~d} \\ (\mathrm{FT}) \end{gathered}$	$\begin{gathered} \mathrm{L} \mathrm{~d} \\ (\mathrm{FT}) \end{gathered}$	$\begin{gathered} \mathrm{Ld} \\ (\mathrm{FT}) \end{gathered}$	$\begin{gathered} \mathrm{L} \mathrm{~d} \\ (\mathrm{FT}) \end{gathered}$	$\begin{gathered} \mathrm{L} \mathrm{~d} \\ (\mathrm{FT}) \end{gathered}$
20	-3 TD LESS THAN -5	744	684	576	528	390
	BETMEEN -3 AND +3	620	570	480	440	325
	+3 TD LESS THAN +5	558	513	432	396	300
25	-3 T0 LESS THAN -5	720	660	552	492	354
	EETMEEN -3 AND +3	600	550	460	410	300
	+3 T0 LESS THAN +5	540	495	414	369	300
30	-3 T0 LESS THAN -5	690	624	516	456	300
	EETMEEN -3 AND +3	575	520	430	380	300
	+3 TO LESS THAN +5	518	468	387	342	300
35	-3 TO LESS THAN -5	642	588	486	420	300
	EETMEEN -3 AND +3	535	490	405	350	300
	+3 TO LESS THAN +5	482	441	365	315	300
40	-3 TD LESS THAN -5	588	528	420	342	300
	EETMEEN -3 AND +3	490	440	350	300	300
	+3 TO LESS THAN +5	441	396	315	300	300
45	-3 TO LESS THAN -5	528	468	360	300	300
	EETMEEN -3 AND +3	440	390	300	300	300
	+3 T0 LESS THAN +5	396	351	300	300	300
50	-3 TD LESS THAN -5	468	432	300	300	
	EETMEEN -3 AND +3	390	360	300	300	
	+3 TO LESS THAN +5	351	350	300	300	
55	-3 TD LESS THAN -5	468	432	300	300	
	EETMEEN -3 AND +3	390	360	300	300	
	+3 TD LESS THAN +5	351	350	300	300	
60	-3 TO LESS THAN -5	468	432	300		
	EETMEEN -3 AND +3	390	360	300		
	+3 TO LESS THAN +5	351	350	300		
65	-3 TD LESS THAN -5	468	432			
	EETMEEN -3 AND +3	390	360			
	+3 TO LESS THAN +5	351	350			
70	-3 TD LESS THAN -5	468	432			
	EETMEEN -3 AND +3	390	360			
	+3 TD LESS THAN +5	351	350			
75	-3 TO LESS THAN -5	468				
	EETMEEN -3 AND +3	390				
	+3 TD LESS THAN +5	351				

Note: When an Ld value of 300' is used for malniline design speeds of 60 mph and less. the paraliel portion of the ramp is omitted, and the ramp taper connects directly with the malniline taper to form a unlform deflection (Δ).

NOT TO SCALE

NOTES:

1. The designer has the flexibility to choose the taper type ramp or the parallel type ramp. However, the same type of entrance and exit ramp should be used within an interchange and corridor. Uniformity in design is needed to aid driver expectancy. On sharp curves, it may be preferable to use parallel type ramp.
2. Select design speed based on a combination of the superelevation rate and the radius of the curve. See also chapter 3 of the MDOT Rood Design Manual.
3. If an additional through lane is provided or the exit ramp leaves the moinline on the high side (outside) of the curve, use GEO-131-Series.
4. If the through pavement is curved, plot offsets for toper and connect with the appropriate curve
5. Prepared detail grodes and profiles from Section B-8 through Section A-A.
6. Spirals transitions should be used on new ramp alignments based on the design speed of the curve and the radius os shown in the toble of the Rood Standard PIan R-107-Series. The toble gives the moximum radius in which a spiral should be used.
7. The maximum ol gebroic difference in povement cross slope between the moinline and the ramp auxiliary Iane should not exceed 5%.
8. The cross slope in the gore ared between the $2 \mathrm{ft}(0.6 \mathrm{~m})$ point and the $22 \mathrm{ft}(6.6 \mathrm{~m})$ point should not exceed 8%, with a 6% maximum al gebraic difference in cross slope between the gore and the odjacent paved Iane. This algebraic difference also applies within cromed gores.
9. The design speed of the ramp vertical alignment should meet or exceed the design speed of the ramp horizontal alignment.
10. The mainline shoulder width should extend along the ramp to where the gore is 2 ft $(0.6 \mathrm{~m})$ wide. Use a $1: 25$ toper transition where it joins the ramp shoulder poving.
11. Each ramp will be carefully studied to provide moximum vision at its merge points See Geometric Design Guide Geo-300-Series.
12. Caution must be used in positioning a taper type deceleration lane on a left turning highway. The exit should begin before or after the P.C. or S.T. to avoid having the appearance of an extension of the mainline to the motorist. Consider using a parallel type deceleration lane.
13. The sight distance in odvance of the exit ramp gore should be at least 25% langer than the minimum stopping sight distance for the design speed of the mainline.
14. These design concepts are for new construction. Where modification may be needed for retrofitting to existing road features, consult with the Geometric Design Unit of Lansing Traffic and Safety.

INTERCHANGE

Upgrading Existing One-Lane ENTRANCE Ramps on "3R" Freeway Projects

Tapered GEO-100
 (Meet L_{a} and $L_{\text {gap }}$)

Locate 12' Width Point
Stub on Length of Parallel 12'
Lane as Needed to Achieve
Required L_{a} and $\mathrm{L}_{\text {gap }}$ Distances
Add 300' Closing Taper

Parallel GEO-101
 $\left(\right.$ Meet L_{a} and $\left.L_{\text {gap }}\right)$

Locate End of 12' Parallel Lane Stub on Length of Parallel 12'
Lane as Needed to Achieve
Required L_{a} and $\mathrm{L}_{\text {gap }}$ Distances
Add 300' Closing Taper

INTERCHANGE

Upgrading Existing One-Lane EXIT Ramps on " 3 R" Freeway Projects

Tapered GEO-130

(Meet \mathbf{L}_{d})

Locate 12' Width Point

Stub on Length of Parallel 12'
Lane as Needed to Achieve Required L_{d} Distance

Add 300' Opening Taper

Parallel GEO-131

(Meet L_{d})
Locate End of 12' Parallel Lane
Stub on Length of Parallel 12'
Lane as Needed to Achieve Required L_{d} Distance

Add 300' Opening Taper

INTERCHANGE

US Customary										
Highway design speed (mph)	30	35	40	45	50	55	60	65	70	75
Ramp design speed (mph)										
Upper range (85\%)	25	30	35	40	45	48	50	55	60	65
Middle range (70%)	20	25	30	33	35	40	45	45	50	55
Lower range (50\%)	15	18	20	23	25	28	30	30	35	40
Corresponding minimum radius (ft)	To Determine Minimum Radius and Design Speed of Ramp See Standard Plan R-107 or Straight Line Chart									

Exhibit 10-56. Guide Values for Ramp Design Speed as Related to Highway Design Speed

INTERCHANGE

12' Width Entrance and Exit Slip Ramps

Slip Ramps Connect a Freeway to a Parallel Service Road Not a Perpendicular Crossroad

Only for Use on True "Urban" Freeways Maximum Design Speed 60 mph

Minimum Radii of 1145^{\prime} (Maximum Curvature of 5°) for Any Horizontal Curves

INTERCHANGE

INTERCHANGE

DETAIL 4
THREE LANE RAMP TERMINAL
** Widening for odditional lane(s) should occur on the outside of the romo (furthest from the moinline freewoy).
When it is not desirable to ood lane(s) to the autside of When it is not desirable to odd lane(s) to the autside of the ramp. The desired widening should de clear ly shom on the Dlons. See olso Stondcrd PIon R-42-Series.
NOT TO SCALE

at unsignolized ramp terminols. it is desircble to redirect the left turns right from the ramp to on odjocent directionol crossover when the median width con occomodate truck troffic (ME-65).

DETAIL 5
PARCLO ENTRANCE AND EXIT TERMINAL

NOTES:

1. The dimensions used on this Geometric Design Guide are typical.
2. Where feasible, joint line and lane line markings shall coincide.
3. See Stondord PIon R-42-Series for joint loyout.
4. Clear vision areas and sight distance along the ramp and its terminals must be according to current MDOT proctice. No hidden ramp or disappearing crossroad grodes will be permitted.
5. Provide intersection sight distance ot all exit ramp terminals.
6. Alternate Typical A may be used when construction and maintenance issues make the $13.5^{\prime}(4.1 \mathrm{~m})$ curb setbock undesiroble or the crossrood is curbed.

CLEAR VISION AREAS

- Geometric Design Guidance 1.1.3
- Geometric Design Guide GEO-300-D
- Ramps
- Crossroad
- Terminals
- Merge/Diverge Areas

1.1.3 Clear Vision Areas

In order to enhance the safe and efficient movement of traffic, the acquisition of certain properties (or portions thereof) at intersections sometimes is necessary. The following guidelines should be followed.

Clear vision areas will be obtained at all at-grade intersections of trunklines with other roads or streets in rural areas including freeway ramps. Interchange ramps are considered trunkline.

Clear vision areas will not be obtained within urban areas as determined by the Bureau of Transportation Planning's urban area boundary description and map. Clear vision areas will not be obtained within rural areas contiguous to sections of trunkline where urban conditions exist to the extent that 50 percent or more of the trunkline frontage is occupied by residential, business, or industrial development.

The Region/TSC Traffic and Safety Representative reviews each case from a traffic operational and safety standpoint and recommends one of the following courses of action: acquire all or part of area, defer acquisition in particular quadrant to future date, or eliminate all clear vision.

For additional information and guidance regarding clear vison areas, please refer to MDOT Geometric Design Guide GEO-300 and the Michigan Road Design Manual, Chapter 5. Right Of Way.

CLEAR VISION AREAS

1.1.3 Clear Vision Areas

In order to enhance the safe and efficient movement of traffic, the acquisition of certain properties (or portions thereof) at intersections sometimes is necessary. The following guidelines should be followed.

Clear vision areas will be obsinged at all at-grade intersections of trunklines with other roads or streets in rural areas 社. diding freeway ramps. Interchange ramps are considered trunkline.

Clear vision areas will not be obtained within urban areas as determined by the Bureau of Transportation Planning's urban area boundary description and map. Clear vision areas will not be obtained within rural areas contiguous to sections of trunkline where urban conditions exist to the extent that 50 percent or more of the trunkline frontage is occupied by residential, business, or industrial development.

The Region/TSC Traffic and Safety Representative reviews each case from a traffic operational and safety standpoint and recommends one of the following courses of action: acquire all or part of area, defer acquisition in particular quadrant to future date, or eliminate all clear vision.

For additional information and guidance regarding clear vison areas, please refer to MDOT Geometric Design Guide GEO-300 and the Michigan Road Design Manual, Chapter 5. Right Of Way.

L.A. ROW \& CLEAR VISION AREAS

L.A. ROW \& CLEAR VISION AREAS

GEO-300-D
(Sheet 5 of 6)

L.A. ROW \& CLEAR VISION AREAS

GEO-300-D

(Sheet 3 of 6)

illustrative guide for vision requirements

QUESTIONS

INTERSECTION DESIGN

INTERSECTIONS

- Intersection - The general area where two or more roadways join or cross, including the roadway and roadside facilities for traffic movements within the area.

INTERSECTIONS

Types
T - Three Leg
4 - Leg
Multi-Leg

INTERSECTIONS

Provide Ease/Control of Access Consistent with the Function of Intersecting Roadways

The...

Efficiency
Safety
Speed
Delay
Capacity
...of the Facility Depend on the Design

INTERSECTION DESIGN ELEMENTS

INTERSECTIONS

DEFINEO BY PHYSICAI AREA

Kеер
 Access Points Out of

 Functional
Intersection

 AreaDEFINED BY FUNCTIONAL INTERSECTION AREA
Exhibit 9-1. Physical and Functional Intersection Area

INTERSECTIONS

Intersecting Roads Should Meet At Right Angles

 75° to 105° Desirable

Side Roads
Landings $\leq 2 \%$

Adequate ISD \& Clear Vision Corners Should be Provided

TURNED IN ROADWAYS

GEO-640

TRAFFIC AND SAFETY NOTE 612A

SUBJECT:

Clear Vision Areas

PURPOSE:

Provide Guidance on When to Obtain Clear Vision Areas

COORDINATING UNIT: Geometric Design Unit

INFORMATION: In order to enhance the safe and efficient movement of traffic, the acquisition of certain properties, or portions thereof, at intersections sometimes is necessary. The following guidelines should be followed.

Clear vision areas will be obtained at all at-grade intersections of trunklines with other roads or streets in rural areas including freeway ramps. Interchange ramps are considered trunkline.

Clear vision areas will not be obtained within urban areas as determined by the Bureau of Transportation Planning's urban area boundary description and map. Clear vision areas will not be obtained within rural areas contiguous to sections of trunkline where urban conditions exist to the extent that 50 percent or more of the trunkline frontage is occupied by residential, business, or industrial development.

The Region/TSC Traffic and Safety Representative reviews each case from a traffic operational and safety standpoint and recommends one of the following courses of action: acquire all or part of area, defer acquisition in particular quadrant to future date, or eliminate all clear vision.

INTERSECTIONS

INTERSECTIONS

Treating superelevation/intersection conflicts:

Assuming it is unfeasible to include proper crossroad work per G-650 by using vertical curves, the maximum algebraic difference in cross-slope at a crossroad should be 4%, to prevent vehicle smagging or bottoming out.

Example:
Trunkline superelevation $=7 \%$
T-intersection
Crossroad on high side of super

1. Prior to the intersection, transition down the right tum lane or shoulder at the same delta $\%$ as the trunkline.
2. Reverse the process beyond the intersection.

Points of consideration:

1. Is the existing super on the trunkline parabolic?
2. How much of a grade raise is expected on the high side to upgrade the super to R-107 or the Straight Line chart?
3. How far down will work have to occur on the crossroad in order to tie-in to the mainline properly?
4. Are excessive intersection breaks ($>4 \%$ on both the high side and low side) being created due to the super upgrade?

super upgrade?

5. What impact will a large grade raise have on nearby ditches, sidewalks, or sideslopes?
6. Four leg intersection - ensure adequate sight distance is available over the high side of super for vehicles turning left out of either side of the crossroad and for thru vehicles on the trumkline to see approaching crossroad vehicles. "This is especially critical at intersections that are signalized or will have future signalization.*

UNCURBED INTERSECTIONS

M[WIMIMM PAVED APRON
Mil Paved should
ZIID Paved as per plans

APPROACH TREATMENT DETAIL II

NOT TO SCALE

GEO-650

CURBED INTERSECTIONS

APPROACH TREATMENT DETAIL III
M[H]MM PAVED APRON
S Paved shoulder V17 Paved os per plans

1. MINIMUM CURBED CONNECTION Curbed rodt should be used on malar collector
rocods, when gravel occanulation and/or vehicle roads. when gravel ocaumulation and/or vehicle encroochment is a problefnl. or when roadside control is desircmie.

NOT TO SCALE
 FILE:PV RD TS $6 e 0 /$ /mbot trof $6 E 0-650-0.0$ REV. 03/19/2010 FLAM DATE:

GEO-650

GEO-650

TYPE 5: TWO TO THREE LANE TRANSITION FOR CENTER LANE FOR LEFT TURNS
(RIGHT TURN LANE OPTIONAL)

THRU LANE SHIFT L (TYP)

L= langth in feat (metars)
$S=$ posted speed in moh (kph
$y=$ offset in feet (metars)

TYPE 5: MODIFIED (LEFT TURN LANE), FOR T-INTERSECTIONS

NOT TO SCALE

GEO-650

TABLE OF RADII FOR DESIGN VEHICLES
 SEE HOTE 4

TABLE 1 (R*)

TURN FRDM $12^{\prime}(3.6 \mathrm{~m})$ OUTSLDE LANE TO$12^{\prime}(3.6 \mathrm{~m})$ OUTSIDE LANE			
DES[GN VEHICLES	AMGLES DF TURN		
	$60^{*-79 *}$	$80^{\circ}-99^{\circ}$	$100^{\circ}-120^{*}$
P	$30^{\prime} \quad(9 \mathrm{~m}) \mathrm{R}$	30' (9m)R	30' (9m/R
SU	$50^{\prime} \quad(15 \mathrm{~m}) \mathrm{R}$	$50^{\prime}(15 \mathrm{~m}) \mathrm{R}$	$40^{\prime}(12 \mathrm{~m} / \mathrm{R}$
WE-50	90^{\prime} [27m)R	$80^{\prime}(24 m) \mathrm{R}$	$60^{\prime} \quad(18 \mathrm{~m}) \mathrm{R}$
WB-65	170^{\prime} (51 m) R	$110^{\prime}(33 \mathrm{~m}) \mathrm{R}$	$80^{\prime}(24 \mathrm{~m}) \mathrm{R}$

TABLE 2 (R**)

TURN FROM 12^{\prime} (3.6 m) OUTS[DE LANE TO 20^{\prime} (6 m) OUTSJDE LANE			
DESJGN VEHJCLES	ANGLES OF TURN		
	$60^{*}-79^{*}$	$80^{\circ}-99^{\circ}$	$100^{\circ}-120^{\circ}$
P	$30^{\prime} \quad(9 m) \mathrm{R}$	$30^{\prime} \quad(9 \mathrm{~m} / \mathrm{R}$	$30^{\prime} \quad(9 \mathrm{~m}) \mathrm{R}$
SU	$30^{\prime} \quad(9 \mathrm{~m}) \mathrm{R}$	$30^{\prime} \quad(9 \mathrm{~m}) \mathrm{R}$	$30^{\prime} \quad(9 \mathrm{~m}) \mathrm{R}$
WB-50	$50^{\prime} \quad(15 \mathrm{~m}) \mathrm{R}$	$50^{\prime}(15 \mathrm{~m}) \mathrm{R}$	40^{\prime} (12 m) R
WB-65	$70^{\prime}(21 \mathrm{~m}) \mathrm{R}$	$60^{\prime} \quad(18 \mathrm{~m}) \mathrm{R}$	$50^{\prime}(15 \mathrm{~m}) \mathrm{R}$

GEO-650

1. Design vehicles; $\mathrm{P}=$ Passenger Car, $\mathrm{SU}=$ Single Unit Truck (30^{\prime} (9 m) overall), WB-50=Tractor-Trailer Combination (50' (15m) wheelbase), WB-65=]nterstate SemiTrailer (65^{\prime} (19.8 m) wheelbase).
2. Angle of intersection of approach road and state highway should not be less than 60 degrees ar more than 120 degrees.
3. The above tables are to be used as a guide, turning vehicle templates or AutoTurn should be used for verlfication.
4. When a state highway intersects a one way approach, in non-turning quadrants the radius shall be a maximum of $10^{\prime}(3 \mathrm{~m})$.
5. On the National Truck Network and Green Route Intersectlons where trucks turn, a WB-65]nterstate Semi-Trailer is the design vehicle.
6. For dual turns - consult the Geometric Review and Congestion Analysis Unit, Division of Operations.

GEO-650

NOTES:

1. An intersecting road as herein defined may be a city street, county road or state highway.
2. $12^{\prime}(3.6 \mathrm{~m})$ wide lanes are to be used unless conditions require narrower lanes.
3. On harizontal curves, the cross slope on turn lanes should be the same as the through pavement, where physical constraints do not make this practical the max lmum al lowable algebralc difference in cross-slope between the turn lane and mainline is 5% with a desirable maximum of 4%.
4. See Standard PIan R-30-Series for curb and gutter details.
5. Clear vision areas should be considered at all intersections.
6. Alternate Typical A may be used when construction and mintenance make the 13.5^{\prime} (4.1 m) curb setback undesirable or the crossroad is curbed.
7. Current AASHTO "A Policy on Geametric Design of Highways and Streets" and MDOT Guidelines should be used for sight distance requirements.
8. See Traffic \& Safety Note 614A for guidance on nearside and farside lane drops at intersections.
9. These design concepts are for new construction. Where madification may be needed for retrofitting to existing road features, consult the Geometric Review and Congestion Analysis Unit, Division of Operations.

ROUNDABOUTS

Potential Benefits:

$>$ Reduced Delay
> Reduced Conflict Points
> Reduced Crash Severity
$>$ Reduced Bridge Width
> Reduced Design Requirements

ROUNDABOUTS

Yield at Entry

Deflected at Entry

Flared at Entry

Traffic Calming

ROUNDABOUTS

ROUNDABOUTS

Common Misconceptions:

$>$ Do Not Accommodate Large Trucks
> Difficult to Navigate/Confusing to Motorists

ROUNDABOUTS

Number of Roundabouts (Existing/Constructed)	Location	County	Time of Construction
$\begin{aligned} & 3 \\ & \text { (2 trunkline) } \end{aligned}$	US-23/8 Mile Road Interchange 8 Mile Road and Whitmore Lake Road	Washtenaw/ Livingston	
2	US-23/N. Territorial Road Interchange	Washtenaw	
1	M-52 at Church/Broad Street	Lenawee	
1	US-41 at Grove Street	Marquette	
1	US-41 at Marquette Hospital Drive	Marquette	
2	1-94 at Sprinkle Rd. interchange	Kalamazoo	
1	US-12 at old M-205 and Five Points Road	Cass	
2	M-72 near US-31. Acme	Grand Traverse	
1	US-131 at Fife Lake Road	Grand Traverse	
1	M-52 at Werkner Rd.	Washtenaw	
1	US-41/M-28 at $2^{\text {aj }}$ St	Marquette	
1	M-11 at Remembrance Rd., Walker	Kent	September 2015
1	M-30 at WB US-10 Ramps, Sanford	Midland	June, 2015
1	US-10 BR/ M-20 at Patrick Road, Midland	Midland	2014
1	M-37/M-115 east junction near Mesick	Wexford	September 2013
2	US-23/US-223 interchange	Monroe	August 2013
1	M-93 at Camp Grayling' Howe Road, Grayling Township	Crawford	2012
1	M-5 at Pontiac Trail, Commerce Township	Oakland	2012
2	the 1-94 at Main Street interchange, Mattawan	Van Buren	September 2011
2	US-23 at Geddes Road interchange, Ann Arbor and Ann Arbor Township	Washtenaw	October 2010
1	US-41/M-28 at Front Street, Marquette	Marquette	September 2010
2	1-94 Business Loop/Main Street at Riverview Drive and at 5 th Street, Benton Harbor	Berrien	November 2009
1	M-46 at M-37/ Newaygo Rd	Muskepon	October 2009
1	US-127 Business Route at Mission Road, Clare	Isabella	June 2009
2	M-53 at 26 Mile Road interchange	Macomb	July 2009
1	M-43 at the intersection of 72 nd St . County Road (CR) 689 and 12th Avenue CR 384, South Haven	Van Buren	November 2008
2	M-14 at Maple Road interchange, Ann Arbor	Washtenaw	July 2007
2	1-75/M-81 interchange	Saginaw	December 2006
$\begin{array}{\|l\|} \hline 3 \\ \text { (2 trunkline) } \\ \hline \end{array}$	US-23 at Lee Rd. Interchange (US23/Lee Rd./ Whitmore Lake Rd.)	Livingston	2006
1	M-53 at $181 / 2$ Mile (Van Dyke) Road, Sterling Heights	Macomb	June 2005
Total:			
44	30		

IN MICHIGAN

Number of Roundabouts (Planned/Proposed)	Location	County	Time of Construction
1	1-75BL/Mackinac Trai/3 Mile Road		February 2018 Letting
2	1-94/Cooper Street Interchange		June 2018 Letting
1	NB 1-75 Ramps at Bristol Rd.		
2	US-23/US-12 Interchange		
1	M-343 at G Avenue	Kalamazoo	
Total:			
7	5		

Roundabout in Saginaw County at I-75@M-81

ROUNDABOUT DESIGN GUIDANCE

Roundabout Design Aid

PREPARED BY
TRAFFIC AND SAFETY
October 2019

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

NCHRP REPORT 672

Roundabouts: An Informational Guide

Second Edition

Lee Rodegerdts, Justin Bansen, Christopher Tiesler, Julia Knudsen, and Edward Myers

Kitthe son \& Associates, inc.
Portland, OR
Mark Johnson
MTJ Enganerering, Inc
Michael Moule
Michael Moule
Livalie Stretis Inc able Strefts
Tampa, fl.
Bhagwant Persaud and Craig Lyon Persaud and Lyon
Toronto, ON, Canado
Shauna Hallmark and Hillary Isebrands
Center for Transpotanon Reserach and Educition
State University
Ames, IA
Ames, iA
R. Barry Crown
RODEL SoFTWARE LTD

United Kingdom
Bernard Guichet
Cete l'oues
France
Andrew O'Brien
'Brien Triffic
Australia
Australia
Sutboctiver Cangerering
Highways

DIVIDED ROADWAY INTERSECTIONS

Michigan Vehicle Code

"...where a highway includes two roadways 30 feet or more apart, then every crossing of each such divided highway by an intersecting highway shall be regarded as a separate intersection..."

MMUTCD

Provides direction for use and placement of TCD's at divided highway intersections

Type of Maneuver		M - Min. width of median $\mathrm{ft}(\mathrm{m})$ for design vehicle				
		P	SU	BUS	WB-50	WB-65
Left Lone to Inner Lone Ler		$\begin{gathered} 44^{\prime} \\ (13.4 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 76^{\prime} \\ (23.2 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 80^{\prime} \\ (24 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 82^{\prime} \\ (25 \mathrm{~m}) \end{gathered}$	$\begin{aligned} & 82^{\prime} \\ & (25 \mathrm{~m}) \end{aligned}$
$\begin{aligned} & \hline \text { Left } \\ & \text { Lone } \\ & \text { to } \\ & \text { Lond } \\ & \text { Lone } \end{aligned}$	$=\sqrt{1}=\frac{1}{2}$	$\begin{gathered} 32^{\prime} \\ (9.8 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 64^{\prime} \\ (19.5 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 68^{\prime} \\ (20.7 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 70^{\prime} \\ (21 \mathrm{~m}) \end{gathered}$	$\begin{aligned} & 701 \\ & (21 \mathrm{~m}) \end{aligned}$
		$\begin{gathered} 22^{\prime} \\ (6.7 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 54^{\prime} \\ (16.5 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 58^{\prime} \\ (17.7 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 60^{\prime} \\ (18 \mathrm{~m}) \end{gathered}$	$\begin{aligned} & 60^{\prime} \\ & (18 m) \end{aligned}$

* To occommodote WB-65 semi-trucks, provide $36^{\prime}(11 \mathrm{~m})$ crossover width or $4^{\prime}(1.2 \mathrm{~m})$ poved areo behind curb
on the inside rodius. from spring poin on the inside rodius. from spring poin to spring point.

Vehicle Codes and Length of Design Vehicle - ft (m)
$\mathrm{P}=$ Possenger. $19^{\prime}(5.8 \mathrm{~m})$
SU $=$ Single Unit Truck. $30^{\circ}(9 \mathrm{~m})$ BUS $=$ Bus. $40^{\prime}(12 \mathrm{~m})$
*B-50 $=$ Semi-Truck Medium Size, 55^{\prime} (16.5 m) * 8 -65 $=$ Semi-Truck Lorge Size. 70° (21m)

NOTES:

1. Crossovers should be colled for by their respective detoil number or detailed in the plans.
2. Crossover details are to be used on free-access facilities only.
3. Bi-directional crossovers should have a minimum width of $30^{\prime}(9 \mathrm{~m})$ at intersecting streets or commerciol or ivewoys which are 30 gm or less in width. For intersecting streets or commercial driveways that have a width of greater than $30^{\prime}(9 \mathrm{~m})$, the width of the crossover should motch the cross street width
4. Desirobly, free-access crossover grodes should not exceed 3%; steeper grades require special study.
5. For type of curb on crossovers, see Sec. 6.06.06 of Road Design Manual .
6. For typical joint layouts on concrete pavement, see Standard Plan R-42-Series.
7. These design concepts are for new construction. Where modification may be needed for retrofitting to existing rood feotures, consult the Geometric Review and Congestion Analysis Unit, Division of Operotions.
8. Current AASHTO "A Policy on Geometric Design of Highways and Streets" and MDOT Guidelines should be used for sight distance requirements.

NOT TO SCALE
wLCHIGAN OEPAFTIENT CF TRANSPOATATLON TRAFFJC AND SAFETY CEOVETRIC OESJGN GULDE O6/10/2014
TLE: PA RD TS Ceo/moot trof CEO-670-E.097

CROSSOVERS

Truck Loon Detail

INDIRECT LEFT TURNS

Advantages Safety
 Capacity
 Efficiency

Disadvantages
 Adverse Distance
 Weaving

INDIRECT LEFT TURNS

DIRECT LEFT TURNS

1. Ensure design vehicle can turn opposite another design vehicle without encroaching. This can be verified with turning templates. Widen the median opening as needed.
2. Ensure (in high speed areas) that the left turn bay is placed such that a median shoulder can still be provided.
3. Ensure that there is adequate storage length for left-turning vehicles.
4. Ensure that once the design vehicle completes the left-turn that it does not encroach into the crossroad traffic's outbound lanes.

This can be verified with turning templates.

RIGHT TURN LANES AND TAPERS

(Geometric Design Guidance Document 1.1.4)
(Formerly Traffic and Safety Note 604A)

- At Any Intersection Where a Capacity Analysis Determines a Right Turn Lane is Required for a Desired LOS
- Crash Experience, Engineering Judgment, Indicates a Right Turn Lane will Improve Operations
- Any Unsignalized Intersection which Satisfies the Criteria on the Following Charts...

RIGHT
(Geomet (Form

NOTE: For posted speeds at or under 45 mph , peak hour right turns greater than 40 vph , and total peak hour approach less than 300 vph , adjust right turn volumes.

Adjust peak hour
Right turns $=$ Peak hour Right turns - 20
*If a center left-turn lane exists (ie 3 or 5 lane roadway), subtract the number of left turns in approach volume form the total approach volume to get an adjusted total approach volume.

Sample Problem: The Design Speed is 55 mph . The Peak Hour Approach Volume is 300 vph. The Number of Right Turns in the Peak Hous is 100 vph . Determine if a right turn lane is recommended.

Solution: Figure indicates that the intersection of 300 vph and 100 vph is located above the upper trend line; thus, a right-turn lane may be recommended.

IPERS

nt 1.1.4)
 504A)

LEFT TURN LANES AND FLARES

(Geometric Design Guidance Document 1.1.5) (Formerly Traffic and Safety Note 605A)

- Unsignalized Intersections on Two-Lane Highways: Charts for $35 \mathrm{mph}, 45 \mathrm{mph}$, and 55 mph
- Unsignalized Intersections on Four-Lane Highways: Chart for any/all speeds
- Any Intersection where...
- Crash Experience
- Traffic Operations
- Sight Distance Concerns
...Indicate that a Left Turn would Improve Operations

LEFT

(Geomet (Forn

Two-Lane Highways

Instructions:

1. The family of curves represent the percentage of left turns in advancing volume (V_{A}). The designer should locate the curve for the actual percentage of left turns. When this is not an even increment of 5 , the designer should estimate where the curve lies.
2. Read V_{A} and V_{D} into the chart and locate the intersection of the two volumes.
3. Note the location of the point in $\# 2$ relative to the line in \#1. If the point is to the right of the line, then a left-turn lane is recommended. If the point is to the left of the line, then a left-turn is not recommended based on traffic volumes.

ARES

nt 1.1.5)
 ©5A)

LEFT 1

(Geometr (Form

Four-Lane

 Highways

NOTE:

LARES

lent 1.1.5)
605A)

When $\mathrm{V}_{0}<400 \mathrm{vph}$ (dashed line), a Left-Tum Lane is Not Normally Warranted Unless The Advancing Volume $\left(\mathrm{V}_{A}\right)$ in The Same Direction as the Left-Tuming Traffic Exceeds $400 \mathrm{vph}\left(\mathrm{V}_{\mathrm{A}}>400 \mathrm{vph}\right)$.

DRIVEWAY PASSING FLARES

(Geometric Design Guidance Document 1.2.3) (Formerly Traffic and Safety Note 603A)

- Function of Peak Hour Left Turn Volume and 24 Hour Two-Way Volume
- Prohibit Left Turns
- Provide Driveway Passing Flare
- Cost Should be Borne by Developer
- See GEO-650-D for Design Considerations

1.2.3 Traffic Volume Guidelines for Driveway Passing Flares

DRI
Driveways serving large developments along state trunkline highways frequently generate large numbers of left-turns. On two-lane, two-way roadways, this situation can aggravate the efficiency of traffic operations and often make shoulder maintenance difficult. In such situations, prohibition of left-turns at driveways to large developments or construction of driveway passing flares should be considered.

In an attempt to alleviate the types of problems outlined above, the following chart is provided showing the relationship between peak hour left-turns and 24 -hour volumes. When peak hour leftturns and 24 -hour volumes fall within the area above and to the right of the trend line, left-turns should be prohibited or a driveway passing flare be installed. If a driveway passing flare is constructed, the entire cost should be borne by the developer. For additional information and geometric design guidance regarding driveway passing flares, please refer to Geometric Design Guide GEO-650.

RES

it 1.2.3)
03A)

TWO-WAY 24 HOUR VOLIME

NOTE: This chart is based on Total Development and is for Two-Way Roadways.

1.2.2 Spacing for Commercial Drives and Streets

SPACING
The spacing of access for commercial driveways and streets is an important element in the planning, design, and operation of roadways. Access points are the main location of crashes and congestion. Their location and spacing directly affect the safety and functional integrity of the roadway.

Region Review: The Region/TSC Utility and Permit Engineer shall forward the site plan and the access request to the Region/TSC Traffic and Safety Representative for review. In general, one access point is adequate for a single business. When one-way pair driveways (In-Out) are requested and the inside traffic circulation promotes such operation, these driveways may be considered as a single access point. In some cases multiple access points are requested. In this case, the Region/TSC Traffic and Safety Representative may require a traffic impact study from the business owner/property owner to justify the need for the multiple accesses. A copy of the following information may be sent to the business owner/property owner to outline the traffic analysis needed.

Unsignalized Access Spacing: Adjacent accesses should be spaced as far apart as on-site circulation allows. In some cases the Region/TSC Traffic and Safety Representative may require that the business owner/property owner redesign his site plan, and relocate the access point to meet the desirable spacing distance. Table 1 shows the desirable unsignalized access spacing as a function of posted speed. These distances are based on average acceleration and deceleration considered adequate to maintain good traffic operations. The sight distance at the access points must also be investigated.

Posted Speed $m p h(\mathrm{~km} / \mathrm{hr})$	Center-to-Center of Access feet (meters)
$25(40)$	$130 \quad(40)$
$30(50)$	$185 \quad(55)$
$35(60)$	$245 \quad(75)$
$40(60)$	$300(90)$
$45(70)$	$350(105)$
$50(80)$ and above	$455(140)$

Table 1

Lack of Sufficient Frontage to Maintain Adjacent Spacing: In the event that a particular parcel lacks sufficient frontage to maintain adequate spacing, the Region/TSC Traffic and Safety and Utility and Permit Engineers have the following options.

1. Choose the next lowest spacing from Table 1. For example, on 30 mph (50
$\mathrm{km} / \mathrm{hr})$ roadway requiring $185 \mathrm{ft}(56 \mathrm{~m})$ spacing, the distance may be reduced
to no less than $130 \mathrm{ft}(40 \mathrm{~m})$ which is the spacing from $25 \mathrm{mph}(40 \mathrm{~km} / \mathrm{hr})$
$\mathrm{km} / \mathrm{hr})$ roadway requiring $185 \mathrm{ft}(56 \mathrm{~m})$ spacing, the distance may be reduced
to no less than $130 \mathrm{ft}(40 \mathrm{~m})$ which is the spacing from $25 \mathrm{mph}(40 \mathrm{~km} / \mathrm{hr})$ speed.
2. Encourage a shared driveway with the adjacent owners. In such case the driveway midpoint may be located at the property line between two parcels. However, all parties must agree to the joint driveway in writing.
3. Provide an access point to the side street when it is possible.
4. In areas where frontage roads or service drives exist or can be constructed, individual properties shall be provided access to these drives rather than directly to the main highway.
5. After all the above options are exhausted, an access point may be allowed within the property limits as determined by the Region/TSC Traffic and Safety and the Utility and Permit Engineers.

Intersection Corner Clearance: AASHTO specifically states that driveways should not be situated within the functional boundary of at-grade intersections. This boundary includes the longitudinal limits of auxiliary lanes. An access point may be allowed within the above boundary if the entire property frontage is located within this boundary. In all quadrants of an intersection access points should be located according to the dimensions shown in Figure 1.

Conflict Reductions: Restricting or prohibiting left turns at unsignalized access points aligned across from each other can greatly reduce safety and operational problems. A typical four-legged intersection, such as where two accesses line up across a four-lane roadway, has 36 conflict points. By prohibiting left turns and through movements the number of conflicts can be reduced from 36 to four, as illustrated in Figure 2.

In cases where these movements cannot be prohibited, the Region/TSC Traffic and Safety Representative may choose to offset the access points. Table 2 provides the desirable distances between two access points on the opposite side of the roadway.

Posted Speed $m p h(k m / h r)$	Desirable Offset Between Access Points on Opposite Sides of the Roadway Center-to-Center of Access On Undivided Highways feet (meters)
$25(40)$	$255 \quad(80)$
$30(50)$	$325 \quad(100)$
$35(60)$	$425 \quad(130)$
$40(60)$	$525 \quad(160)$
$45(70)$	$630(190)$
$50(80)$ and above	$750 \quad(230)$

Table 2

1.1.6 Near Side/Far Side Lane Drops

The following guidelines, based on an ITE report, are qualitative in order to encourage the evaluation of lane drops at intersections on an individual basis:

General

1. Engineering judgment is the primary basis for determining the appropriate intersection lane drop, near-side or far-side. Additionally, engineering judgment should prevail when applying the distances recommended in these guidelines to specific traffic conditions.
2. Intersection capacity, intersection turning volumes (especially right turns), parking and right of way restrictions, design speed, lighting, and safety are significant considerations in the evaluation of the appropriate intersection lane drop, either near-side or far-side.
3. The Decision Sight Distance concept is applicable to the geometric design and placement of traffic control devices for both near-side and far-side intersection lane drops.
4. Intersection lane drops present the driver with a high judgment, complex driving situation and, therefore, the most effective signing and pavement marking is recommended (please refer to the appropriate figures).
5. Far-side intersection lane drops are preferred over near-side. To some extent both types of lane drops have been used for different purposes (far-side for capacity; near-side for operations).
6. Intersection lane drops can be associated with an interim condition before a highway widening is extended at a future date. If it is planned to continue the widening, a far-side lane drop has the advantage of placing the beginning of the new construction well beyond the intersection (please refer to the appropriate figures).

Near-Side Intersection Lane Drop

1. A near-side intersection lane drop is applicable at an urban area intersection with a heavy right turn volume and is not recommended for use in a high speed, unlighted rural area. The "trap lane" should be avoided except where extenuating circumstances such as a heavy right turn volume and/or where a far-side intersection lane drop is not feasible due to constraints (e.g. prohibitive right of way costs).
2. The Decision Sight Distance concept can be applied to the placement of traffic control devices for near-side intersection lane drops. The distances traveled during the reaction time (detection, recognition, decision, response) plus the vehicle maneuver time will produce the total Decision Sight Distance values required for various posted speeds (please refer to Table 1). These Decision Sight Distance values, in addition to allowances for queue lengths (assumed signalized intersection), will establish reasonable sign and pavement marking locations (please refer to the top figure).
3. The signing and pavement markings for near-side intersection lane drops need special emphasis. An advance warning sign, THRU TRAFFIC MERGE LEFT (W4-7), is recommended. Advance street name signs and special pavement markings in the dropped lane will also reinforce the advance warning sign and provide motorists with the necessary guidance to react and maneuver the vehicle safely and effectively to avoid the "trap lane"
(please refer to the top figure). In addition, lane control signs (R3-7 series) or RIGHT LANE MUST TURN RIGHT (R3-7R) support the use of the right turn lane. The same sign should be used at both locations.

Far-Side Intersection Lane Drop

1. A far-side intersection lane drop is applicable to both an urban and rural areas, and is
considered to be the preferred intersection lane drop treatment (please refer to the bottom considered to be the preferred intersection lane drop treatment (please refer to the bottom figure).
2. At unsignalized intersections, Decision Sight Distance can be utilized to determine the length beyond the intersection at which the lane should be dropped using the values indicated in Table 1.
3. At signalized intersections, a two part analysis is required. Adequate vehicle storage
beyond the intersection, brought about by the release of vehicles from the traffic signal,
must be considered in addition to the Decision Sight Distance requirement. The larger of
beyond the intersection, brought about by the release of vehicles from the traffic signal,
must be considered in addition to the Decision Sight Distance requirement. The larger of the values calculated using these analyses will provide the required length beyond the intersection as measured from the stop bar.
4. Proper taper lengths (L) are calculated from the following formulas:
$\mathrm{L}=\mathrm{W} \times \mathrm{S}$, for S greater than or equal to 45 mph , or, $\mathrm{L}=\mathrm{WS}^{2} / 60$, for S less than 45 mph (where $\mathrm{W}=$ width in feet and $\mathrm{S}=$ speed in mph).
5. Effective signing and pavement markings are necessary components to ensure a successful
lane drop operation. The signing and pavement markings shown in the bottom sketch are recommended for far-side intersection lane drops.

(Geomı (For

IOPS

it 1.1.6)
 14A)

Posted speed $(\mathbf{m p h})$	Decision sight distance (ft)				
	A	B	C	D	E
30	220	490	450	535	620
35	275	590	525	625	720
40	330	690	600	715	825
45	395	800	675	800	930
50	465	910	750	890	1030
55	535	1030	865	980	1135
60	610	1150	990	1125	1280
65	695	1275	1050	1220	1365
70	780	1410	1105	1275	1445
75	875	1545	1180	1365	1545
80	970	1685	1260	1455	1650

Avoidance Manuever A: Stop on rural road $-t=3.0 \mathrm{~s}$
Avoidance Manuever B: Stop on urban road $-t=9.1 \mathrm{~s}$
Avoidance Manuever C: Speed/path/direction change on rural road - t varies between 10.2 and 11.2 s

Avoidance Manuever D: Speed/path/direction change on suburban road - t varies between 12.1 and 12.9 s
Avoidance Manuever E: Speed/path/direction change on urban road - t varies between 14.0 and 14.5 s

Decision Sight Distance
TABLE 1

QUESTIONS

DESIGN EXCEPTIONS DESIGN VARIANCES

DESIGN ELEMENTS

Design Speed

Superelevation Rate 11
Vertical Clearance
Maximum
Grade

Shoulder Width

Structural Capacity
Stopping Sight Distance
(Horizontal \& Vertical)

Lane Width

Cross Slope
Horizontal Curve Radius

Superelevation Transition

DESIGN EXCEPTIONS / VARIANCES (RDM 3.08.01E)

Non-Standard Design Element (NHS and Non-NHS) (See Section 3.11.01 for DE Criteria for 3R freeway work)	Applicability of Design Exception (DE) Design Variance (DV)	
	Design Speed	
	≥ 50 MPH	$<50 \mathrm{MPH}$
Design Speed < Posted Speed	DE	DE
Lane Width*	DE	DV
Shoulder Width	DE	DV
Horizontal Curve Radius*	DE	DV
Superelevation Rate	DE	DV
Superelevation Transition*	DV	DV
Maximum Grade*	DE	DV
Stopping Sight Distance (Horizontal and Vertical)*	DE	DV
Cross Slope	DE	DV
Vertical Clearance	DE	DE
Design Loading Structural Capacity	DE	DE
Ramp Acceleration / Deceleration Length	DV	DV
*Values based on design speeds Iess than posted		

[^0]
DESIGN CRITERIA

3R PROJECTS

Road Design Manual 3.09 \& 3.11.01

NHS
Road Design Manual 3.09.02A

Non-NHS
Road Design Manual 3.09.02B

4R PROJECTS

Road Design Manual 3.11

Freeway
Road Design Manual Appendix 3A

Non-Freeway
Road Design Manual Appendix 3A

ROAD DESIGN

3.09.02 (continued)

MICHIGAN DESIGN MANUAL ROAD DESIGN

3.09.02 (continued)

RDM 3.09.02B

GEOMETRIC REQUIREMENTS FOR FREEWAY PROJECTS INVOLVING 3R WORK TYPES

3R FREEWAY ALLOWANCES

Geometric Design Element		Minimum Required Standard *	Compliance Determination
Design Speed		Standard at the time of construction or the most recent 4R project	Compliance Assumed
Horizontal Curve Radius (Rmin.)		Standard at the time of construction or the most recent 4R project	Compliance Assumed
Longitudinal Grade (Min./Max.)		Standard at the time of construction or the most recent 4 R project	Compliance Assumed
Stopping Sight Distance (Horizontal and/or Vertical))		Standard at the time of construction or the most recent 4 R project	Compliance Assumed
Lane Width		Standard at the time of construction or the most recent 4 R project	Compliance Assumed
Shoulder Width		Standard at the time of construction or the most recent 4 R project	Compliance Assumed
Superelevation		Standard at the time of construction or the most recent 4 R project	Compliance Assumed
Cross-Slope	(Excluding paraboilic Parabolic cross-siopes still require a DE/DV)	Standard at the time of construction or the most recent 4R project (Unless parabolic; Parabolic cross-slopes must be removed or a $D E / D V$ is required)	Compliance Assumed (Unless parabolic; Parabolic cross-slopes must be removed or a $D E / D V$ is required)
Structural Capacity		Standard at the time of construction or the most recent 4 R project	Compliance Assumed
Vertical Clearance		Standard at the time of construction or the most recent 4 R project	Compliance Assumed
Acceleration/Deceleration Length		Existing Length	Compliance Assumed
* If the project-wide Safety Review identifies a pattern of crashes associated with a particular design element (or elements), then that design element (or those elements) must be bought up to current standards (i.e. the existing design values may not be retained if they do not meet current standards).			

RDM APPENDIX 3A

Appendix 3A

GEOMETRIC DESIGN ELEMENTS New Construction / Reconstruction

Element		Urban	Rural				
Design Speed	Freeway	The greater of posted speed, or 60 mph .	The greater of posted speed, or 70 mph .				
	Non Freeway (Arterial)	The greater of posted speed, or 30 mph .	The greater of posted speed, or 40 mph ..				
	Collector Roads	Posted speed (minimum).	Posted speed (minimum)..				
Lane Width	Freeway	12 ft .	12 ft .				
	Non Freeway (Arterial)	12 ft , lanes are most desirable and should be used where practical. $11 \mathrm{ft}$. lanes are often used for low speed (45 mph design)Design Speed, (mph)		Minimum Lane Width, ft.			
				Under 400	$\begin{aligned} & 400 \text { to } \\ & 1500 \\ & \hline \end{aligned}$	$\begin{gathered} 1500 \text { to } \\ 2000 \end{gathered}$	$\begin{aligned} & \text { Over } \\ & 2000 \\ & \hline \end{aligned}$
		Lane widths of 10 ft . may be used in more constrained areas where truck and bus volumes are relatively low and speeds are less than 35 mph .	40	11^{*}	11^{*}	${ }^{11^{*}}$	12
			45	11*	11*	11*	12
			50	11**	11**	12	12
			55	11^{*}	$11 *^{*}$	12	12
		12 ft . lanes on the National Network (NN). Design exceptions / variances are required to maintain existing narrower lanes. A high burden of justification is required in a design exception / variance to reduce existing lane widths less than or equal to 12'-0".	60	12	12	12	12
			65	12	12	12	12
			70 75	12	12	12	12
			*12 ft. desirable				
	Collector Roads	Added turn lanes at intersections $10-12 \mathrm{ft}$. Where right-of-way is restricted. $11 \mathrm{ft}$. Industrial Areas $12 \mathrm{ft}$.	Design Speed, (mph)	Minimum Lane Width, ft.			
				ADT, vehicles/day			
				Under 400	$\begin{aligned} & 400 \text { to } \\ & 1500 \end{aligned}$	$\begin{gathered} 1500 \text { to } \\ 2000 \end{gathered}$	$\begin{aligned} & \hline \text { Over } \\ & 2000 \\ & \hline \end{aligned}$
			20	10*	10*	11*	12
		Where shoulders are used, see guidelines for Rural Collectors	25 30	$10 *$ $10 *$	$10 *$ 10	11^{*} 11^{*}	12
			35	10*	11*	11*	12
			40	10^{*}	11**	11**	12
			45	10*	11*	11*	12
			50	10*	11*	11*	12
			55	11***	11***	12	12
			60	11*	11*	12	12

RDM APPENDIX 3A

Appendix 3A

GEOMETRIC DESIGN ELEMENTS New Construction / Reconstruction

RDM APPENDIX 3A

Appendix 3A GEOMETRIC DESIGN ELEMENTS New Construction / Reconstruction

Element		Urban \& Rural	
Design Loading Structural Capacity (Also see Bridge Design Manual)	Freeway	HS-25/HL93	
	Non Freeway	State Trunkline	HS-25/HL93
		Local Roads Over Freeways and State Trunkline	HS-25/HL93
		Local Roads and Streets	Design according to county or city standards, HS20/HL93 min.
		Use HS-25/HL93 for all structures in an interchange regardless of route type	
Horizontal Curve Radius	Freeway	See Standard Plan R-107-Series and Section 3.04.03	
	Non Freeway (Arterial)		
	Collector Roads		
	Non Freeway (Arterial)		
	Collector Roads		

RDM APPENDIX 3A

Appendix 3A

GEOMETRIC DESIGN ELEMENTS
New Construction / Reconstruction

Maximum Grade			Maximum Grade (\%) for specified design speed (mph)																	
		Type of Terrain	50			55			60			65			70			75		
		Level	4			4			3			3			3			3		
		Rolling	5			5			4			4			4			4		
			Grades 1\% steeper may be provided in urban areas.																	
		Type of	Urban											Rural						
		Terrain	30		35	40		45	50		55	60		40	45		50	55		60
		Level	8		7	7		6	6		5	5		5	5		4	4	3	
		Rolling	9		8	8		7	7		6	6		6	6		5	5		4
		Type of	Urban									Rural								
		Terrain	20	25	30	35	40	45	50	55	60	20	25	30	35	40	45	50	55	60
		Level	9	9	9	9	9	8	7	7	6	7	7	7	7	7	7	6	6	5
		Rolling	12	12	11	10	10	9	8	8	7	10	10	9	9	8	8	7	7	6
Stopping Sight Distance	Follow $20116^{\text {th }}$ Edition of AASHTO "A Policy on Geometric Design of Highways and Streets" (AKA AASHTO Green Book). The MDOT Sight Distance Guidelines also provide detailed information on sight distance calculation.																			
Cross Slope	Traveled way cross slope $=2.0 \%$, Paved shoulder cross slope $=4.0 \%$ (Also see Section 6.05.05)																			
Superelevation Rate	AASHTO Method 5 "Curvilinear Relation" is used for new construction/reconstruction. Maximum rate of 7\%. (See Standard Plan R-107-Series.)																			
	AASHTO Method 1 "Straight Line Relation" is allowed when Method 5 is not feasible. Maximum rate of 6\%. (See Section 3.04.03)																			
	The above methods also apply to urban freeways and urban ramps, except the maximum rate is 5% for 60 mph design speed.																			
Vertical Clearance	Freeway				NHS										Non NHS					
					16'-0"										$14^{\prime}-6^{\prime \prime}$					
	Non Freeway (Arterial)				16'-0"										$14^{\prime}-6{ }^{\prime \prime}$					
	Collectors \& "Special Routes"				$14^{\prime}-6^{\prime \prime}$ (1 ft . greater than Michigan legal vehicle height.)										14'-6"					
	For pedestrian bridges provide 1 ft . additional clearance over non-freeway and 17 ft . minimum under clearance over freeways. A vertical clearance of $23^{\prime}-0^{\prime \prime}$ is required for grade separations over railroads. (See Bridge Design Manual 7.01.08 and Bridge Design Guides 5.24.03-04.)																			

Design Exception Crash Analysis Instructions

REQUIRED ELEMENTS OF A COMPREHENSIVE DESIGN EXCEPTION REQUEST CRASH ANALYSIS

1) Subject heading which includes a description of the project (route number, control section, P.R. number, control section and P.R. beginning and ending mile points, and job number).
2) A statement that the crash analys's is in relation to a specific design exception request (as opposed to a project wide analysis)
3) A statement indicating which geometric feature the design exception has been requested for, and the location to which it applies (Control Section or P.R. number and mile points)-
4) A description of the existing condition or value of the geometric feature in question.
5) A description of the proposed condition or value of the geometric feature in question.
6) A statement detaing what the standard value is for the geometric feature in question, and a reference to the appropriate governing Standard or Guide
7) A description of the crash data used in the anaysis (time span and mile point limits of the data query). Th's should be the most recent four years for which crash data is avalable, using the Safety Management System in TMS.
8) A summary of the total numbers and types of crashes found in the analysis.
9) A statement that the crash types associated with the geometric feature in question were specfically investigated in detail. Refer to Table A to determine which crash types are associated with which geometric features. This detailed investigation shall include a review of all crash reports (UD-10's) for these crash types. If there are a large number of crashes of the associated types, a representative sample of UD-10's may be selected for review (as opposed to all of them).
10) A statement that the analysis did not (or conversely, did) find a pattern or concentration of crashes associated wth the geometric feature for which the design exception has been requested.

TABLE A

Design Exception Crash Analysis Instructions

GEOMETRIC FEATURE TO WHICH DESIGN EXCEPTION APPLIES	ASSOCIATED CRASH TYPES
Deslan Speed	All Crash Types
Lane Wioth	Sideswipe, Flxed-Object, Run-Off, Overtum
Shoulder Wioth	Sideswipe, Fbxed-oblect, Run-Off, Overium
Bridoe Widit	Sidesulpe, Flxed-Oblect
Struchural Capacity	N/A
Horlzontal Allgnment	Fixed-Object, Run-Off, Overtum, Sidesulpe, Head-On
Vertical Allgnment	Rear-End, Sldeswipe, Head-On, Flxed-Object, Run-Off. Overturn. Angle
Longituclnal Grade	Rear-End, Sideswipe, Head-On
Stopping Sight Distance *	Rear-End, Sldeswpe, Head-On, Flxed-Object, Run-Off, Overturn, Angle
	Too Letile: Rear-End, Percent Wet, Percent icy
Cross-Sioperrai-Over	Too Great Flxed-Oblect, Run-Oft, Overturn
Superelevation	Fixed-Object, Run-Off, Overtum, Sideswlpe, Head-On
Vertical Clearance	Hioh-Load Hits
Horlzontal Clearance (Excluding Clear Zone)	Sidesmipe, Rear-End, Head-On, Flxed-Object
Ramp Acceleration or Deceleration Length	Sideswipe, Rear-End, Flxed-COject, Run-Off. Overturn

*At night, the available sight cistance through sag vertical curves is largely determined by heodlight ilhmination distance. Therefore, when reviewing crashes in relation to sag vertical curves, particular attention should be paid to right-time crashes, including animal collisions. A high percentage of night-time crashes could indicate a crash pattem related to insufficient stopping sight distance. Whale animal collisions are not generally inchaded In crash malyses che to the large uncertainty as to their causes and/or evact locations. they should not be summarily dismissed, either. Animal crashes can be taken with together with the crash data set as a whole, and can sometimes help identify crash patterns specifically related to restricted sight distance.

When performing a crash analysis as part of a design exception request, focus the review on the crash types which are associated with the geomenic fenture in question. Use the table above to determine which crash types are associnted with each geometric feature. Also, consider only the crashes which have occurred in the vicimity of the subject geomerric feature (not necessanly project wide). It is usually sufficient to set the mile point limits of the crash data query to a few humdred feet on either side of the geomentic fenture in question.

Crash malysis is, by its nature, an inexact and subjective evercise. There will often times be uncertainty as to whether or not a particular geometric femure contribated towards a given crash. The information provided in the UD-10's, along with engineening judgement, can usually resolve any questions adequately.

QUESTIONS

'roblem 8:

Given the following information:
Radius: 3500 ft
Design Speed: 60 M.P.H
PC: $100+50$
PT: $104+20$

PI

Given the following curve information, determine the following design criteria using R-107:

- Proposed Superelevation Rate
- Delta Percent Value
- Shoulder Cross-Slopes in Superelevated Section (High-Side and Low-Side)
- Crown Runout Length (C) and Superelevation Transition Length (L)
- Placement of Superelevation Transition with Respect to the PC and PT

Answers:

Superelevation $=4.2 \%$
Delta $=0.40$
Shoulder Cross-slopes $=$ Same as Super (4.2\%) on Low-Side and -1.0\% on High-Side
Super Transition Length $=\left(12^{\prime} \times 4.2 \%\right) / 0.40=\underline{\mathbf{1 2} 6 f t}$
$126 \mathrm{ft} / 3=42 \mathrm{ft}$
PC Station $100+50+42 \mathrm{ft}=$ Sta. $100+92-126 \mathrm{ft}=$ Sta. $\underline{99+66}$
PT Station $\underline{104+20}-42 \mathrm{ft}=$ Sta. $\underline{103+78}+126 \mathrm{ft}=$ Sta. $\underline{105+04}$
Super Transition from Station 99+66 to Station 100+92 (PC)
Super Transition from Station 103+78 to 105+04 (PT)
Crown Runout $=(12$ ' $\times 2 \%) / 0.40=\mathbf{6 0 f t}$
PC Station 100+50:

PT Station 104+20:
Crown Runout Sta. $105+04$ + 60ft=Sta. $105+64$. Crown Runout from Sta. $105+04$ to Sta. $105+64$.

'roblem 9:

Given the following information:
Radius: 2500 ft
Design Speed: 45 M.P.H
PI
PC: $56+10$

Given the following curve information, determine the following design criteria using R-107:

- Proposed Superelevation Rate
- Delta Percent Value
- Shoulder Cross-Slopes in Superelevated Section (High-Side and Low-Side)
- Crown Runout Length (C) and Superelevation Transition Length (L)
- Placement of Superelevation Transition with Respect to the PC and PT

Answers:

Superelevation $=\underline{\mathbf{3 . 5 \%}}$
Delta $=\underline{0.44}$
Shoulder Cross-slopes $=\underline{4.0 \%}($ Low-Side $)$ and $-\underline{1.0 \%}($ High-Side $)$

Super Transition $=\mathrm{L} 1+\mathrm{L} 2$
$\mathrm{L} 1=\left(12^{\prime} \times 2.0 \%\right) /(0.5 \times 0.44)=109 \mathrm{ft}$
$\mathrm{L} 2=[24, \times(3.5 \%-2 \%)] /(0.44)=82 \mathrm{ft}$
$\mathrm{L}=\mathrm{L} 1+\mathrm{L} 2=109 \mathrm{ft}+90 \mathrm{ft}=\underline{\mathbf{1 9 1} \mathrm{ft}}$
$191 \mathrm{ft} / 3=\underline{64 f t}$
PC Station $\underline{56+10}+64 \mathrm{ft}=$ Sta. $\underline{56+74}-191 \mathrm{ft}=$ Sta. $\underline{54+83}$
PT Station $\underline{84+20}-64 \mathrm{ft}=$ Sta. $\underline{83+56}+191 \mathrm{ft}=$ Sta. $\underline{85+47}$
Super Transition from Station $54+83$ to Station $56+74$ (PC)
Super Transition from Station $83+56$ to $85+47$ (PT)
Crown Runout $=\left(12^{\prime} \times 2 \%\right) /(0.5 \times 0.44)=\underline{109 f t}$
PC Station $56+10 \quad$ Sta. $\underline{54+83}-109 \mathrm{ft}=$ Sta. $\underline{53+74}$
PT Station $84+20 \quad$ Sta. $\overline{85+47}+109 \mathrm{ft}=$ Stat $\underline{86+56}$
Crown Runout at station $53+74$ to $54+83$
Crown Runout at station $85+47$ to $86+56$

[^0]: *Values based on design speeds less than posted.

