OVERVIEW OF GEOMETRIC DESIGN

HIGHWAY TERMINOLOGY, ALIGNMENT & GEOMETRICS

November 2020

Class Instructors

 Mark Fisher, Engineer – Geometrics Unit <u>fisherm@michigan.gov</u>; (517) 335-1204

- William Taylor, Engineer Geometrics Unit taylorw@michigan.gov; (517) 335-2992
- Imad Gedaoun, P.E., Supervisor Geometrics Unit gedaouni@michigan.gov; (517) 335-2986

CLASS OBJECTIVES

GEOMETRIC DESIGN

What is Geometric Design?

- Physical Elements of Design
- Horizontal and Vertical Curves
- Grades
- Cross-Sectional Elements
- Cross-Slope and Superelevation
- Sight Distance
- Intersection and Interchange Design
- General Layout of the Roadway

FUNCTIONAL CLASS

AASHTO

- Provides Definitions for Various Functional Classes of Highways
- Design Criteria Vary According to the Type of Highway Facility
 - Freeways
 - Arterials
 - Collectors
 - Local Roads
- NHS/Non-NHS
- National Truck Network

DESIGN VEHICLES

- Physical Characteristics
- Operating Characteristics
- Classes
 - Passenger Car
 - Buses
 - Trucks (WB-50, WB-62, WB-67)
 - Recreational Vehicles
- Bicycles

IMPORTANT PRACTICES

Make Field Visits to Existing Locations Get Old Plans and Look at Them Obtain Traffic Volumes & Review Safety Keep Your Design Documents Up to Date Get to Know Your Geometrics Area Engineer

REFERENCES

MDOT

- Road Design Manual
- Bridge Design Manual
- Bridge Design Guides
- Standard Plans
- Geometric Design Guides
- Sight Distance Guidelines
- Roundabout Design Aid
- T&S Geometric Design Guidance
- DDI Guide

REFERENCES

AASHTO

- Guide for the Development of Bicycle Facilities
- A Policy on Design Standards Interstate
 System
- A Policy on Geometric Design of Highways & Streets
- Roadside Design Guide

- Acceleration Lane An auxiliary lane, including tapers, for the acceleration of vehicles entering another roadway.
- Arterial Road A roadway which provides a high speed, high volume, network for travel between major points.
- Average Daily Traffic (ADT) The average 24 hour traffic volume, based on a yearly total.
- Broken Back Curve Two curves in the same direction joined by a short tangent distance.
- Collector Road Roadway linking a local road to an arterial road, usually serving moderate traffic volumes.

- Compound Curve Two connecting horizontal curves in the same direction having different radii (no tangent).
- Crash Analysis A site specific safety review of crash data performed to identify whether or not a specific geometric design element has either caused, or contributed, to a pattern or concentration of crashes at the location in question. The analysis is a critical component used in determining the appropriate application of geometric design criteria and in the evaluation of design exception approval requests.

- Critical Grade The grade and length that causes a typical truck or other heavy vehicle to have a speed reduction of 10 mph or greater.
- Cross Slope Transverse slope rate of traveled lane or shoulder.

- Crown Runoff (also called Tangent Runout) The distance necessary to remove adverse crown before transitioning into superelevation on curves. (Referred to as "C" distance in Standard Plan R-107 Series.)
- Deceleration Lane An auxiliary lane that enables a vehicle to slow down and exit the highway with minimum interference from through traffic.

- Design Hour Volume (DHV) The hourly volume used to design a particular segment of highway.
- Design Speed A selected speed used to determine the various geometric design features of the roadway.
- Directional Design Hour Volume (DDHV) The directional distribution of traffic during DHV
- Free Access Highway A highway, with no control of access, usually having at grade intersections, which may or may not be divided.
- Freeway A divided arterial highway with full control of access and grade separations at intersections. (Limited Access).

- Gore Area The "V" area immediately beyond the divergence of two roadways bounded by the edges of those roadways. (2' to 22' points.)
- Grade Separation A structure which provides for highway traffic to pass over or under another highway or the tracks of a railway.

Horizontal Clearance – An operational offset which provides vehicle clearance for things such as mirrors on trucks and buses, and for opening curbside doors of parked vehicles. (1'6" minimum from face of curb.)

- Interchange A system of interconnecting roadways in conjunction with grade separations providing for the interchange of traffic between two or more intersecting roadways.
- Level of Service A qualitative measure describing operational conditions within a traffic stream; generally described in terms of such factors as speed and travel time, freedom to maneuver, traffic interruptions, comfort and convenience, and safety. Levels of service are given letter designations from A to F, with LOS A representing the best operating conditions and LOS F the worst.

 Local Road – A road which serves primarily to provide access to farms, residences, businesses or other abutting properties.

Passing Lane Section (PLS) – Extra lane(s) to provide additional capacity and reduce delay caused by slow moving vehicles, such as recreational vehicles, during peak periods. These are often desirable in areas where slower vehicles are not necessarily the result of long steep grades.

- Passing Relief Lane (PRL) Common all-inclusive reference to a traffic lane provided for increased passing opportunities along a route, can be a Truck Climbing Lane (TCL) or a Passing Lane Section (PLS).
- Ramp A connecting roadway between two intersecting roadways, usually at grade separations.
- Reverse Curve Horizontal curves in the opposite direction joined by a short tangent distance or common point.

- Rollover Algebraic difference in rate of cross slope between traveled lane and shoulder.
- Service Road (also Frontage Road) A local street or road usually parallel and adjacent to a controlled access highway for service to abutting properties.
- Sight Distance The unobstructed distance that can be viewed along a roadway – usually referenced to decision points for drivers.

- Spiral Curve Transition A variable radii curve between a circular curve and the tangent. The radii of the transition and the curve are the same at the curve and increase to infinity at the tangent end of the transition.
- Superelevation Tilting of the road surface on curves to help counter balance or offset the perceived "centrifugal force" on the vehicle.

- Superelevation Transition (sometimes referred to as superelevation runoff) The length of highway needed to change the pavement cross slope from a section with adverse crown removed to a fully superelevated section or vice versa. (Referred to as the "L" distance in Standard Plan R-107 Series.)
- Truck Climbing Lane (TCL) An extra lane for heavy vehicles slowed by the presence of a long steep "critical grade" that provides passing opportunities for non-slowed vehicles.

QUESTIONS

3R / 4R WORK

4R PROJECTS

NEW CONSTRUCTION AND RECONSTRUCTION

EXAMPLES OF 4R WORK

New Roadways or Bridges

Complete Removal and Replacement of Pavement (Including Subbase)

Major Alignment Improvements

Addition of Thru Lanes

Complete Bridge Deck or Superstructure Replacement

EXAMPLES OF 4R WORK

Intermittent Grade Modifications that Leave the Existing Pavement in Service for Less than 50% of the Total Project Length

3R PROJECTS

RESURFACING RESTORATION REHABILITATION

Code of Federal Regulations 23 CFR

"...work undertaken to extend the service life of an existing highway and enhance highway safety."

EXAMPLES OF 3R WORK Resurfacing, Milling, or Profiling **Concrete Overlays and Inlays** Lane or Shoulder Widening (No Added Thru Lane) **Roadway Base Corrections Minor Alignment Improvements Roadside Safety Improvements**

EXAMPLES OF 3R WORK

Signing, Pavement Markings, and Traffic Signals Intersection and Railroad Crossing Upgrades Pavement Joint Repair Passing Relief Lanes Crush & Shape and Resurfacing Rubblize and Resurfacing

EXAMPLES OF 3R WORK

Intermittent Grade Modifications that Leave the Existing Pavement in Service for <u>More than 50% of the Total Project Length</u>

Bridge 3R Work is Defined in Chapter 12 of the MDOT...

EXAMPLES OF 3R WORK

Deep or Shallow Overlays

Superstructure Repairs

Railing Replacements

Partial Deck or Superstructure Replacement

Deck Widening (No Added Through Lanes)

Substructure Repair or Replacement

COMBINED 3R & 4R PROJECTS

RDM Section 3.08.01C

3R Standards Apply Where 3R Work is Performed

4R Standards Apply Where 4R Work is Performed

<u>Note</u>: The Applicable Standards Apply Where Other Work Types are Performed

(CPM, M-Funded, Signal & Signing Corridor Projects, Etc.)

4R ROAD GUIDELINES

Non-Freeway Reconstruction/New Construction

RDM 3.10 & RDM Appendix 3A

3R/4R Freeway Projects

RDM 3.11 & RDM Appendix 3A

Design Criteria for Interstate Freeways Based on "A Policy on Design Standards – Interstate System"

> Non-Interstate Freeways Based on "AASHTO Green Book"

RDM APPENDIX 3A

Appendix 3A GEOMETRIC DESIGN ELEMENTS New Construction / Reconstruction

Element		Urban	Rural				
	Freeway	The greater of posted speed, or 60 mph.	The greater of posted speed, or 70 mph.				
Design Speed	Non Freeway (Arterial)	The greater of posted speed, or 30 mph.	The greater of posted speed, or 40 mph				
	Collector Roads	Posted speed (minimum).	Posted speed (minimum)				
	Freeway	12 ft.	12 ft.				
Lane Width	Non Freeway (Arterial)	12 ft, lanes are most desirable and should be used where practical. 11 ft. lanes are often used for low speed (45 mph	Design Speed, (mph)	Minimum Lane Width, ft. ADT, vehicles/day			
		design)		Under 400	400 to 1500	1500 to 2000	Over 2000
		Lane widths of 10 ft. may be used in more constrained areas where truck and bus volumes are relatively low and speeds are less than 35 mph. 12 ft. lanes on the National Network (NN). Design exceptions / variances are required to maintain existing narrower lanes. A high burden of justification is required in a design exception / variance to reduce existing lane widths less than or equal to 12'-0".	40 45 50 55 60 65 70 75	11* 11* 11* 12 12 12 12 12 12	11* 11* 11* 11* 12 12 12 12 12 ft. desirab	11* 11* 12 12 12 12 12 12 12	12 12 12 12 12 12 12 12 12
	Collector Roads	Added turn lanes at intersections10-12 ft.Where right-of-way is restricted.11 ft.Industrial Areas12 ft.	Design Speed, (mph) 20 25 30 35 40 45 50 55 60	Minimum Lane Width, ft. ADT, vehicles/day			
				Under 400	400 to 1500	1500 to 2000	Over 2000
		Where shoulders are used, see guidelines for Rural Collectors		10* 10* 10* 10* 10* 10* 10* 10* 11*	10* 10* 11* 11* 11* 11* 11* 11* 11* 11*	11* 11* 11* 11* 11* 11* 11* 11* 12 12	12 12 12 12 12 12 12 12 12 12

RDM APPENDIX 3A

Appendix 3A GEOMETRIC DESIGN ELEMENTS New Construction / Reconstruction

Element									
Shoulder Width	Freeway	Mainline			Ramp (one lane and two lanes)				
		Median		Outside	Le	ft	Right		
		8 ft. (4ft. paved) (8 ft. paved at bridge and barrier sections)		10 ft. min (paved) For non-interstate freeways, use 12 ft. paved where truck traffic exceeds 250 DDHV.					
		For 6 or more lane sections (more lanes directional) use 1 paved min and consider 12 ft paved where truck traffic exceeds 250 DDHV.	0 ft.	For interstate freeways consider using 12 ft. paved where truck traffic exceeds 250 DDHV.			ft. (7ft. paved)		
		For new construction and reconstruction, the mainline outside paved shoulder is extended with 1 ft. of aggregat to the shoulder hinge for stabilization. When widening existing paved shoulders to meet current standard widths, it is desirable to provide the addition foot of aggregate when feasible.							
	Non Freeway (Arterial)	Urban		Rural					
		shoulders."	Min paved shoulder, ft. for specified ADT, veh/day Undivided Roadways*						
			Under 400		400 to 1500	1500 to 20	00 Over 2000		
				4	6	6	8		
			Use 8ft. right and 4 ft. left for divided arterials. Use full width (8 ft.) on both sides of divided arterials with 3 lanes in each direction. For new construction and reconstruction and when feasible on shoulder widening, paved shoulder is extended with 1 ft. of aggregate to the shoulder hinge for stabilization.						
		A minimum 4 ft. (3 ft. paved) shoulder is acceptable adjacent to right turn lanes. * Minimum shoulder widths apply for posted speeds greater than 45 mph. At lower speeds, minimum shoulders a desirable.							
	Collector Roads	Where shoulders are used, refer to							
		requirements for rural arterial	Is.	Under 400	400 to 1500	1500 to 20	00 Over 2000		
		¢°		2	5	6	8		
				The above ranges apply on uncurbed roads and when shoulders are feasible on curbed roads. A minimum paved width of 1 ft. is desirable.					

RDM APPENDIX 3A

Appendix 3A GEOMETRIC DESIGN ELEMENTS New Construction / Reconstruction

Element		Urban &	& Rural			
Design	Freeway	HS-25	/HL93			
Loading		State Trunkline	HS-25/HL93			
Structural	Non	Local Roads Over Freeways and State Trunkline	HS-25/HL93			
Capacity (Also see Bridge	Freeway	Local Roads and Streets	Design according to county or city standards, HS20/HL93 min.			
Design Manual)	Design Manual)	Use HS-25/HL93 for all structures in an interchange regardless of route type				
	Freeway					
	Non					
	Freeway					
	(Arterial)					
	Collector					
Horizontal	Roads					
Curve Radius	Non	See Standard Plan R-107-S	Series and Section 3.04.03			
	Freeway					
	(Arterial)					
	Collector					
	Roads					

RDM APPENDIX 3A

Appendix 3A GEOMETRIC DESIGN ELEMENTS New Construction / Reconstruction

					INC.N	001		don /												
			_				N	laximu	m Gra	de (%)) for sp	pecifie	d desi	gn spe	eed (m	iph)				
	N.	Type of Terrain		50			55			60			65			70			75	
	A Terrain Level 2 Rolling		Level			4		4		3			3		3				3	
	e	Rolling		5		5 4				4	4 4				4					
	-							Gra	des 1%	steep	er may	be prov	ided in	urban a	areas.					
Maximum		Type of						Urban							Rural					
Grade	Non Intervention Providential P		3	0	35	4	0	45	50		55	60		40	45	5	50	55		60
	Arte N	Level	8	3	7	7		6	6	-	5	5		5	5		4 5	4		3
		Rolling	9)	8	8	3	7	7	7	6	6		6	6	k.		5		4
	-	Type of			Urban						Rural									
	Type of Terrain Level		20	25	30	35	40	45	50	55	60	20	25	30	35	40	45	50	55	60
	Roile	Level	9 9 9		9	9	9	8	7	7	6	7	7	7	7	7	7	6	6	5
	0	Rolling	12	12	11	10	10	9	8	8	7	10	10	9	9	8	8	7	7	6
Stopping Sight Distance		011 6 th Edition as also provid									and St	reets" (/	AKA AA	SHTO	Green	Book).	The MD	OT Sig	ht Dist	ance
Cross Slope	Traveled	way cross sk	ope = 2	2.0%, F	aved s	houlde	cross	slope =	4.0% (4	lso se	e Sectio	on 6.05.	05)							
	AASHTO	Method 5 *C	urviline	ar Rela	ation" is	used f	or new	constru	ction/re	constru	iction.	Maximu	m rate	of 7%.	(See St	andard	Plan R	-107-Se	eries.)	
Superelevation Rate	AASHTO	Method 1 *S	traight	Line R	elation"	is allow	ved who	en Meth	od 5 is	not fea	sible. M	laximun	n rate o	f 6%. (See Section 3.04.03)						
Rate	The abov	e methods al	so app	ly to ur	ban free	eways a	and urb	an ramp	os, exce	pt the	maximu	im rate i	is 5% fo	or 60 m	ph desi	gn spe	ed.			
									NH	s							Non N	HS		
	Freewa	у							16'-	0"							14'-6	;"		
Vertical	Non Fre	eway (Arte	rial)						16'-)"							14'-6) "		
Clearance	Collecto	ors & "Spec	ial Ro	outes"	14	-6" (1	ft. gre	ater that	an Mich	igan l	egal ve	hicle h	eight.)				14'-6) "		
	vertical	estrian bridg clearance of 5.24.03-04.)	23'-0																	

3R/4R GUIDELINES

Freeway Safety Considerations (3.11.03)

Design Speed

Ramp Geometrics and Taper Lengths

Vertical Curbs

Sight Distance

Crown Location/Pavement Cross Slope

3R/4R GUIDELINES

Safety Considerations (3.11.03)

Superelevation

Guardrail and Concrete Barrier

Attenuation

Shoulder and Slopes

3R/4R GUIDELINES

Safety Considerations (3.11.03)

Clear Zones & Fixed Objects

Culvert End Treatments

MDOT Bridge Design Guides

Cover Most Design Elements for Most 4R Work

MDOT Bridge Design Manual – Chapter 7 Deck Replacements and Underclearance Requirements

(BDG 6.05.01A)

(BDG 6.05.02)

(BDG 6.05.03)

(BDG 6.06.01)

DRAWN BY: BLT MICHIGAN DEPARTMENT OF TRANSPORTATION ISSUED: 08/15/03 CHECKED BY: VZ SUBSTRUCTURE CLEARANCES APPROVED BY: TGF RURAL STATE TRUNKLINES
90° CROSSING OR MODERATELY SKEWED
SHARPLY SKEWED
SPREAD ROADWAYS - SINGLE STRUCTURE
30° CROSSING OR MODERATELY SKEWED SPREAD ROADWAYS - SEPARATE STRUCTURES (ALSO APPLICABLE FOR TURNING ROADWAYS) WHERE CONDITIONS, SUCH AS TERRAIN AND COST DIFFERENTIAL, MAY BE SUCH THAT IT WOULD BE MORE DESIRABLE TO USE TWO STRUCTURES
RATHER THAN ONE AND WHERE THE DISTANCE BETWEEN STRUCTURES WILL BE LESS THAN 150 FEET, CONSULT A DESIGN SUPERVISOR.
 MINIMUM DIMENSION IS THE CLEAR ZONE DISTANCE GIVEN IN BRIDGE DESIGN GUIDE 6.06.05. USE THE MIDDLE OF RANGE AT THE APPROPRIATE DESIGN ADT. WHERE ROADWAY IS ON A CLEVE WITH A RADIUS OF 2860' OR LESS, DISTANCE TO TOE OF 1-ON-2 SLOPE SHOULD BE INCREASED ON OUTSIDE OF CLEVE PER BRIDGE DESIGN GUIDE 6.06.05A OR GUARDRAIL PROTECTION OF SLOPE OR PIER SHOULD BE PROVIDED.
 IF DISTANCE TO PIER OR TOE OF 1-ON-2 SLOPE IS LESS THAN THE CLEAR ZONE DISTANCE PROVIDE GUARDRAIL PROTECTION OF PIER OR SLOPE.
APPROACH SLOPE FACING TRAFFIC MUST BE GRADED TO 1-DN-6 WHEN THE TOE OF THE SLOPE IN FRONT OF THE ABUTMENT IS WITHIN THE CLEAR ZONE. SEE STANDARD PLAN R-105-SERIES.
SECTIONS ARE APPLICABLE GENERALLY FOR STRUCTURES WITH APPROACHES ON FILL OR WHEN DRAINAGE IS CARRIED THROUGH STRUCTURE AREA BY USE OF CULVERTS. FOR EXPRESSWAYS IN DEEP CUT, CARRY SAME DITCH SECTION THROUGH STRUCTURE AS CALLED FOR ON EXPRESSWAY SECTION.
ALL DIMENSIONS ARE AT RIGHT ANGLES TO ROADWAY
DESIGN SUPPORT AREA 6.06.01

(BDG 6.06.02)

DRAWN BY: BLT MICHIGAN DEPARTMENT OF TRANSPORTATION BUREAU OF HIGHWAY DEVELOPMENT ISSUED: 02/14/10 CHECKED BY: VZ SUBSTRUCTURE CLEARANCES RURAL STATE TRUNKLINES SUPERSEDES:08/15/00
AUXILIARY LANES 90° CROSSING OR MODERATELY SKEWED
AUXILIARY LANES SHAPPLY SKEWED
BAMP 90° CROSSING OR MODERATELY SKEWED
NDTES: * M[N]MUM DIMENS[DN [S THE CLEAR ZONE D]STANCE G]VEN IN BR[DGE DESIGN GU[DE 6.06.05. USE THE MIDDLE OF RANGE AT THE APPROPRIATE DESIGN ADT. WHERE ROADWAY IS DN A CURVE WITH A RADJUS OF 2860' OR LESS, DISTANCE TO TOE OF 1 ON 2 SLOPE SHOULD BE INCREASED ON OUTSIDE OF CURVE PER BR[DGE DES[GN GU]DE 6.06.05A OR GUARDRA[L PROTECT]ON OF SLOPE OR P]ER SHOULD BE PROVIDED.
 + IF DISTANCE TO PIER OR TOE OF 1 ON 2 SLOPE (S LESS THAN THE CLEAR ZONE DISTANCE PROVIDE GUARDRAIL PROTECTION OF PIER OR SLOPE. APPROACH SLOPE FACING TRAFFIC MUST BE GRADED TO 1 ON 6 WHEN THE TDE OF THE SLOPE IN FRONT OF THE ABUTWENT IS WITHIN THE CLEAR ZONE. SEE STANDARD PLAN R-105-SERIES.
** AT AUXILIARY LANE TAPER SEE BRIDGE DESIGN GUIDE 6.06.01 AND CALCULATE CLEAR ZONE BASED ON THRU LANES. SEE SECTION 7.01 OF THE ROAD DESIGN MANUAL. SECTIONS ARE APPLICABLE GENERALLY FOR STRUCTURES WITH APPROACHES ON FILL OR WHEN DRAINAGE IS CARRIED THROUGH STRUCTURE AREA BY USE OF CULVERTS. FOR EXPRESSMAYS IN DEEP CUT, CARRY SAME
DITCH SECTION THROUGH STRUCTURE AS CALLED FOR ON EXPRESSWAY SECTION. ALL DIMENSIONS ARE AT RIGHT ANGLES TO ROADWAY PREPARED BY PREPARED PREP
PREPARED BY DESIGN DIVISION 6.06.02

(BDG 6.06.03)

DRAWN BY: BLT MICHIGAN DEPARTMENT OF TRANSPORTATION BUREAU OF HIGHWAY DEVELOPMENT ISSUED: 08/15/03 CHECKED BY: VZ SUBSTRUCTURE CLEARANCES SUPERSEDES:11/27/01 APPROVED BY: TGF URBAN STATE TRUNKLINES SUPERSEDES:11/27/01
90° CROSSING OR MODERATELY SKEWED
SPREAD ROADWAYS
 MINIMUM DIMENSION IS THE CLEAR ZONE DISTANCE GIVEN IN BRIDGE DESIGN GUIDE 6.06.05. USE THE MIDDLE OF RANGE AT THE APPROPRIATE DESIGN ADT. WHERE ROADWAY IS ON A CURVE WITH A RADIUS OF 2860° OR LESS, DISTANCE TO TOE OF 1-0N-2 SLOPE SHOULD BE INCREASED ON OUTSIDE OF CURVE PER BRIDGE DESIGN GUIDE 6.06.05A OR GUARDRAIL PROTECTION OF SLOPE OR PIER SHOULD BE PROVIDED. IF DISTANCE TO PIER OR TOE OF 1-0N-2 SLOPE IS LESS THAN THE CLEAR ZONE DISTANCE PROVIDE
GUARDRAIL PROTECTION OF PIER OR SLOPE.
WITHOUT TAIL SPANS AUXILIARY LANES
WITHOUT TAIL SPANS WITH TAIL SPANS RETAINING WALL SECTIONS & RAILROAD OVER RAMPS GUARDRAIL PROTECTION OF RETAINING WALLS SHALL BE PROVIDED.
NOTE: ALL DIMENSIONS ARE AT RIGHT ANGLES TO EXPRESSWAY. PREPARED BY DESIGN SUPPORT AREA 6.06.03

(BDG 6.06.04)

DRAWN BY: BLT CHECKED BY: VZ APPROVED BY: TAF	MICHIGAN DEPARTMENT OF TRANSPORTATIO BUREAU OF HIGHWAY DEVELOPMENT SUBSTRUCTURE CLEARANCES COUNTY ROAD AND CITY STREET	SUPERSED	08/15/03 DES:11/27/01
	11-67 497 M(H. 584.097 - 11490 LAVES - 584.097 -	1-2 i	~
-	90°CROSSING OR MODERATELY SKEWE		
	40° HIM. 40° HI	21 HOR. PERCEMPANYON 27 - 61 - 21 - 10 - 10 - 21 - 21	1
	Sharply skewed <u>County Road Under</u>		
(a)	27 ** ** Tretty (4485	10 ··· •	1993
	CITY STREET UNDER		
WHERE THERE IS NOT SU	RONT OF ABUTMENT TO 1 ON 6 THROUGH COME FFICIENT ROOM FOR 1 ON 6 SLOPES FOR FUL 1 ON 6 AT GROUND LINE AND EXTENDING TO	L HEIGHT OF EMBANKME	NTS, BREAK
ALL DIMENSIONS ARE AT	RIGHT ANGLES TO COUNTY ROAD.		
**MINIMUM DIMENSION, MA	W BE MODIFIED BY AGREEMENT WITH CITY OF	SPECIAL CONDITIONS.	
	DE	PREPARED BY STON SUPPORT AREA 6	.06.04

DECK REPLACEMENT GUIDELINES

(BDM 7.02.31)

MICHIGAN DESIGN MANUAL BRIDGE DESIGN - CHAPTER 7: LRFD

7.02.31 Deck Replacements (Cont.)

Type of Road	way	Minimum Clear Roadway Width	Minimum Design Loading
Non-Interstate Fre	eeway	A, C	HS-20
Interstate Free	way	B, C	HS-20
Arterial (Non-Freeway	Rural	Exhibit 7-3.	HS-20
Trunkline)	Urban	D, C	HS-20
Collector	Rural	Exhibit 6-6.	HS-20
(Non-Trunkline)	Urban	Exhibit 6-5., E	HS-20
Local	Rural	Exhibit 5-6.	HS-20
(Non-Trunkline)	Urban	Exhibit 5-5., E	HS-20

(A) The minimum clear roadway provided shall accommodate the pavement and full shoulders of the approach roadway or the minimum AASHTO requirements for lane and shoulder widths, whichever is greater.

- (B) The minimum clear roadway provided shall accommodate the pavement and full shoulders of the approach roadway.
- (C) For bridges in excess of 200'-0" in length, where the nearest offset from the edge of traveled way to either curb or barrier is greater than 4'-0" on the approaches, the nearest offset on the bridge shall be at least 4'-0" on each side. (12-5-2005)
- (D) The minimum clear width on the bridge shall be the same as the curb-to-curb width of the street.
- (E) The minimum clear roadway shall be the traveled way plus 1'-0" to each curb face. However, consideration should be given to providing the same width as the curb-to-curb approach width if it is cost effective to do so.

DECK REPLACEMENT GUIDELINES

(BDM 7.02.31)

MICHIGAN DESIGN MANUAL BRIDGE DESIGN - CHAPTER 7: LRFD

The tables shown below are derived from <u>A Policy on Geometric Design of Highways and Streets</u>, 2011, 6th Edition published by AASHTO and do not include clearances for bridge rail offset. See the Bridge Design Guides for MDOT offset criteria. (7-20-2015) (3-21-2016)

	Design Traffic Volume (veh/day)						
Design Speed(mph)	Under 400	400-1500	1500 -2000	over 2000			
	W						
40-45	22	22	22	24			
50-55	22	22	24	24			
60-75	24	24	24	24			

	OR RURAL ARTERIAL BRIDGES BEING (FROM Exhibit 7-3.)	
Design Traffic Volume(veh/day)	Min. Clear Roadway Width of Bridge	
under 400	Traveled way + 4 ft (ea. side)	
400-2000	Traveled way + 6 ft (ea. side)(b)	
over 2000	Traveled way + 8 ft (ea. side) ^(b)	

^(b) For bridges in excess of 200 ft in length, a minimum width of traveled way + 4 ft on each side will be acceptable.

Design	Design Traffic Volumes (veh/day)					
Speed(mph)	Under 400	400-1500	1500 -2000	over 2000		
at and a		Width of Tr	aveled Way (ft) .		
20-30	20 ^(a)	20	22	24		
35-40	20(a)	22	22	24		
45-50	20	22	22	24		
55-60	22	22	24	24		

DECK REPLACEMENT GUIDELINES

(BDM 7.02.31)

MICHIGAN DESIGN MANUAL BRIDGE DESIGN - CHAPTER 7: LRFD

Design Traffic Volume(veh/day)	Minimum Roadway Width of Bridge	Design Loading Structural Capacity
400 and Under	Traveled way + 2 ft (each side)	HS -20
400 to 1500	Traveled way + 3 ft (each side)	HS -20
1500 to 2000	Traveled way + 4 ft (each side)(a)	HS -20
over 2000	Traveled way + shoulders(a)	HS -20

	Design Traffic Volumes (veh/day)						
Design Speed(mph)	Under 400	400-1500	1500 -2000	over 2000			
		Width of	Traveled Way	(ft)			
15	18	20	20	22			
20-40	18	20	22	24			
45-50	20	22	22	24			
55-60	22	22	24	24			

Exhibit 5-6. MINIMUM CLEAR ROADWAY WIDTHS AND DESIGN LOADINGS FOR NEW AND RECONSTRUCTED BRIDGES CARRYING RURAL LOCAL ROADS				
Design Traffic Volume(veh/day)	Min. Clear Roadway Width of Bridge	Design Loading Structural Capacity		
ADT 400 & under	Traveled way + 2 ft (ea. side)	HS -20		
ADT 400-2000	Traveled way + 3 ft (ea. side)	HS -20		
ADT over 2000	Traveled way + shoulders	HS -20		

VERTICAL CLEARANCE

Bridge Design Manual, Section 7.01.08 Road Design Manual, Section 3.12

Route Classification Under the Structure	All Construction (Desired)	New Construction (Min *)	Road 4R Construction (Min *)	Bridge 4R Construction (Min *)	3R Construction (Min *)
Freeways	16'-3*	16-0"	16'-0"	16'-0"	16-0****
NHS Arterials (Local & Trunkline)	18'-3"	16'-0"	Maintain Existing** and 14*-6* Min	16'-0"	Maintain Existing** and 14'-0" Min
Non NHS Arterials (Local & Trunkline)	16'-3"	14'-6"	Maintain Existing** and 14'-6" Min	Maintain Existing** and 14'-6" Min	Maintain Existing** and 14'-0" Min
Collectors, Local Roads & Special Routes ⁽¹⁾	14'-9"	14'-6"	Maintain Existing** and 14'-6" Min	Maintain Existing** and 14'-6" Min	Maintain Existing" and 14'-0" Min

VERTICAL CLEARANCE REQUIREMENT TABLE (8-20-2009) (6-22-2015)

3R = Rehabilitation, Restoration, Resurfacing

- Minimum Vertical Clearance must be maintained over complete usable shoulder width.
- ** Existing vertical clearances greater than or equal to the minimums shown may be retained without a design exception. Vertical clearance reductions that fall below the minimums for new construction require a design exception. (6-22-2015)
- *** Existing vertical clearances may be retained (or increased) without a design exception unless a pattern of high load hits exist. Vertical clearance reductions below the standard (table value) require design exceptions. (5-27-2020)
- (1) Special Routes are in Highly Urbanized Areas (where little if any undeveloped land exists adjacent to the roadway) where an alternate route of 16'-0" is available or has been designated. Bridges located over Special Routes in Highly Urbanized Areas can be found on the MDOT website at: http://mdotcf.state.mi.us/public/design/files /englishbridgemanual/Exempt_Structures, pdf. (5-28-2013)

Ramps and roadways connecting a Special Route and a 16'-0" route require a vertical clearance minimum of 14'-6" (14'-9" desired). Ramps and roadways connecting two 16'-0" routes require a vertical clearance minimum of 16'-0" (16'-3" desired). (8-20-2009)

4R = Reconstruction

Information on the NHS systems can be obtained by contacting the Statewide Planning Section, Bureau of Transportation Planning or found on the MDOT website at:

http://www.michigan.gov/mdol-nfc (11-28-2011)

Pedestrian bridges are to provide 1'-0" more underclearance than that required for a vehicular bridge. For Freeways (Interstate and non Interstate), including Special Route Freeways, the desired underclearance shall be 17'-3" (minimum 17'-0"). (8-20-2009)

A vertical underclearance of 23'-0" is required for highway grade separations over railroads when constructing a new bridge or removing the existing superstructure. For preventative maintenance, rehabilitation and deck replacement projects the existing railroad vertical underclearance does not need to be increased unless requested by the Railroad. (11-28-2011)

Clearance signs are to be present for structures with underclearance of 16'-0" or less (show dimensions 2" less than actual). See MDOT Traffic and Safety <u>Sign Design</u>, <u>Placement</u>, and <u>Application Guidelines</u> for additional information and guidelines. (8-20-2009) (11-28-2011) (11-21-2013) (3-25-2019)

3R ROAD GUIDELINES

Design Guidelines for New/Reconstruct May not be Cost Effective

Freeway

• **RDM Section 3.11** (3R/4R Freeway Guidelines)

• 3R Freeway Allowances

Non-Freeway

• RDM Section 3.09

(Non-Freeway 3R Minimum Design Guidelines)

3R GUIDELINES

Two Types of Non-Freeway 3R Guidelines

- NHS (National Highway System) RDM 3.09.02A
- Non-NHS RDM 3.09.02B

FHWA Letter:

US Department

Michigan Division

November 7, 2012

315 W. Allegan Street, Room 201 Lansing, MI 48933 517-377-1844 (office) 517-377-1804 (fax) Michigan.FHWA@dot.gov

> In Reply Refer To: HDA-MI

Mr. Gregory C. Johnson, P.E. Chief Operations Officer (B470) Michigan Department of Transportation Lansing, Michigan

Dear Mr. Johnson:

of Transportation

Federal Highway Administration

Our office has recently revised our stance regarding minimum design speed to be used on Federal-aid freeway 3R projects, for those roadways on which the posted speed limit has been increased. This policy change will be relevant to over 100 miles of freeway on which MDOT and MSP have posted increased speed limits in previous years.

The revised policy is as follows: As advised by our HQ office, an increase in posted speed limit on a given freeway segment would <u>not</u> be factored into project design speed for future 3R projects. The 3R project could be designed using the design speed that had been established for the latest reconstruction of that road segment or, if none, then for the original freeway construction. Of course, all 3R projects regardless of design speed continue to be subject to the safety review specified in MDOT's 3R guidelines.

This determination is consistent with AASHTO's "A Policy on Design Standards Interstate System" dated January 2005 which FHWA has adopted as a standard. The AASHTO policy states, "The standards used for horizontal alignment, vertical alignment, and widths of median, traveled way, and shoulders for resurfacing, restoration, and rehabilitation projects may be the AASHTO interstate standards that were in effect at the time of original construction or inclusion into the interstate system." The effect of this recent change is to extend that approach to freeways off the Interstate as well.

The FHWA design speed requirement for 4R projects continues to be the upwardly-revised speed limit. Additionally, a 3R project that includes some spot or segment of 4R construction would likewise have to use the higher design speed for the part of the project that includes the 4R work.

Design Speed:

"an increase in posted speed limit on a given freeway segment would <u>not</u> be factored into project design speed for future 3R projects. The 3R project could be designed using the design speed that had been established for the latest reconstruction of that road segment or, if none, then for the original freeway construction."

Geometric Design Elements:

"The standards used for horizontal alignment, vertical alignment, and widths of median, traveled way, and shoulders for resurfacing, restoration, and rehabilitation projects may be the AASHTO interstate standards that were in effect at the time of original construction or inclusion into the interstate system."

GEOMETRIC REQUIREMENTS FOR FREEWAY PROJECTS INVOLVING 3R WORK TYPES

Geometric Design Element		Minimum Required Standard *	Compliance Determination	
Design Speed		Standard at the time of construction or the most recent 4R project	Compliance Assumed	
Horizontal Curve Radius (Rmin.)		Standard at the time of construction or the most recent 4R project	Compliance Assumed	
Longitudinal Grade (Min./Max.)		Standard at the time of construction or the most recent 4R project	Compliance Assumed	
Stopping Sight Distance (Horizontal and/or Vertical))		Standard at the time of construction or the most recent 4R project	Compliance Assumed	
Lane Width		Standard at the time of construction or the most recent 4R project	Compliance Assumed	
Shoulder Width		Standard at the time of construction or the most recent 4R project	Compliance Assumed	
Superelevation		Standard at the time of construction or the most recent 4R project	Compliance Assumed	
(Excluding parabolic – Cross-Slope Parabolic cross-slopes still require a DE/DV)		Standard at the time of construction or the most recent 4R project (Unless parabolic; Parabolic cross-slopes must be removed or a DE/DV is required)	Compliance Assumed (Unless parabolic; Parabolic cross-slope: must be removed or a DE/DV is required	
Structural Cap	acity	Standard at the time of construction or the most recent 4R project	Compliance Assumed	
Vertical Cleara	nce	Standard at the time of construction or the most recent 4R project	Compliance Assumed	
Acceleration/D	on/Deceleration Length Existing Length Com		Compliance Assumed	

* If the project-wide Safety Review identifies a pattern of crashes associated with a particular design element (or elements), then that design element (or those elements) <u>must</u> be bought up to <u>current</u> standards (i.e. the existing design values may <u>not</u> be retained if they do not meet current standards).

3.09.02 (continued)

A. Non-Freeway, NHS

Non-Fr

Geometric Elements	Non-Freeway, NHS 3R Minimum Guidelines					
Design Speed (see Section 3.06)	Posted Speed Minimum					
	Current ADT Two-Way		Inside Shoulder	Outside Shoulder		
Shoulder Width	Two Lane	<750		3'-0" Gravel		
NOTE: Minimum shoulder widths apply for posted speeds greater than 45 mph. Restrictions such as right of way and roadside context sensitivity issues may preclude the use of minimum shoulders within city, village or	(and three lane when the center lane is a left turn lane)	750 - 5000 >5000 - 10,000 >10,000		6'-0" (3'-0" Paved) 8'-0" (3'-0" Paved) 8'-0" (7'-0" Paved)		
	Multi-Lane Undivided	≤ 10,000 > 10,000		6'-0" (3'-0" Paved) 8'-0" (3'-0" Paved)		
township limits with posted speeds of 45 mph and less.	Multi-Lane Divided	≤ 10,000 > 10,000	3'-0" Paved 3'-0" Paved	6'-0" (3'-0" Paved) 8'-0" (3'-0" Paved)		
	See Bridge Design Manual Appendix 12.02 for Bridge Widths					
	ADT	Lane Width				
	≤750	10'-0"				
Lane Width	>750	1150*				
	 10¹-0" lanes may be considered in urban areas for multi-lan un-divided (regardless of ADT) and multi-lane divide (ADT < 10,000). 12¹-0" lanes are desirable on the Priority Commercial Network (PCN 12¹-0" lanes are required on the National Network (also known as th National Truck Network). Design Exceptions / Design Variances t maintain existing narrower lanes generally receive favorable consideration but a high burden of justification is placed on request to reduce lane widths to less than 12¹-0². 					
Design Loading		Rural		Urban		
Structural Capacity	Minimum Desig	n Loading HS20.	Minimum De	sign Loading HS20.		
	(See Bridge Design Manual Appendix 12.02 for other trunkline classifications)					
Horizontal Curve Radius and Stopping Sight Distance	of the existing there is no cras	curve is not more the	an 15 mph below erwise standards fo	be retained if the design speed the project design speed an or new construction apply. Se Distance Guidelines.		
Maximum Grade	Review crash d	ata. Existing grade m	ay be retained with	hout crash concentration.		
Cross Slopes		Traveled way 1.5% - 3	2%, Shoulder see	Section 6.05.05		
Superelevation Rate		R-107-Series or reduc project design speed.) Straight Line Superelevatio		
Vertical Clearance	See Section 3.1	2.				

3.09.02 (continued)

Non-Freeway, Non-NHS В.

Non-Fr

Geometric Elements	Non-Freeway, Non-NHS 3R Minimum Guidelines			
Design Speed		Posted Speed Minimum		
Shoulder Width	Current ADT Two-Way	In	side and Outside Shoulder Width	
NOTE: Minimum shoulder widths	≤750		2'-0" (Gravel)	
apply for posted speeds greater than 45 mph. Restrictions such as right of way and roadside context sensitivity issues may preclude the	750 - 2000 > 2000	3'-0" (Paved) 6'-0" (3'-0" Paved)		
use of minimum shoulders within city, village or township limits with posted speeds of 45 mph and	Multi-Lane (Divided &	Inside Outside (Divided) (Both sides for un-divided)		
less.	Undivided)	3'-0" Paved	6'-0" (3'-0" Paved)	
	See Bridge Design Manual Appendix 12.02 for Bridge Widths			
L	ADT		Lane Width	
	≤750	10'-0"		
	>750	1150*		
Lane Width		un-divided (reg (ADT < 10,000). 12'-0" lanes are (PCN) and the 1 Truck Network). without Design existing lane wid	y be considered in urban areas for multi-lane ardless of ADT) and multi-lane divided desirable on the Priority Commercial Network National Network (also known as the National Existing narrower lanes may be retained Exceptions / Design Variances. Reduction of ths on the National Network to less than 12-0" Exceptions / Design Variances request having justification.	
Design Loading Structural Capacity	ADT (Design Year)		Minimum Design Loading	
(Existing Bridges to	0 - 750		H15	
remain in place)	> 750		HS15	
Horizontal Curve Radius and Stopping Sight Distance	Existing curve radius and stopping sight distance may be retained if the design speed of the existing curve is not more than 15 mph (horizontal) or 20 mph (vertical) below the project design speed and there is no crash concentration. Otherwise standards for new construction apply. See 2011 6 th Edition AASHTO Green Book or MDOT Sight Distance Guidelines.			
Maximum Grade	Review crash data	a. Existing grade m	ay be retained without crash concentration.	
Cross Slopes	Tra	veled way 1.5% - 2	%, Shoulder see Section 6.05.05	
Superelevation Rate		107-Series or reduc oject design speed.	ed maximum (6%) Straight Line Superelevation	
Vertical Clearance	See Section 3.12.			

3R GUIDELINES

Non-Freeway Safety Considerations (3.09.03)

Signing

Evaluation of Guardrail and Bridge Rail

Tree Removal

(Crash Frequency, Curves, Sight Distance, Clear Zone, etc...)

Roadside Obstacles (Culvert Headwalls, Utility Poles, etc...)

3R GUIDELINES

Non-Freeway Safety Considerations (3.09.03)

Cross Section Elements (Crown Location, Side Slopes)

Crown Location:

Existing pavement crown point location may be retained on a project where the rate of resurfacing is less than 4" in thickness. Otherwise, standard crown location should be used.

	or .		Current ADT Two-Way	Foreslope
Cide Clance	history f nt needs	Two-Lane	≤ 750 > 750	1:3 1:4
Side Slopes	w crash	Multi-Lane Undivided	≤ 10,000 > 10,000	1:3 1:4
	Review impr	Multi-Lane Divided	All	1:4

MDOT Bridge Design Manual

Chapter 12 – Most Design Elements

Chapter 7 – Underclearance Requirements

MICHIGAN DESIGN MANUAL BRIDGE DESIGN

CHAPTER 12

MICHIGAN DESIGN MANUAL BRIDGE DESIGN

CHAPTER 7

(BDM 12.05.01)

12.05.01

Approved MDOT Railings (5-1-2000) (11-25-2019) (9-28-2020)

Current MDOT approved railings are:

- Bridge Barrier Railing, Type 6 (B-29-Series)
- B. Bridge Barrier Railing, Type 7 (B-28-Series)
- Bridge Railing, Aesthetic Parapet Tube (B-25-Series)
- D. Bridge Railing, 2 Tube (B-21-Series)
- E. Bridge Railing, Thrie Beam Retrofit (B-22&23-Series)
- F. Bridge Railing, 4 Tube (9-2-2003) (B-26-Series)
- G. Bridge Railing, 3 Tube With Pickets (B-27-Series)
- H. Bridge Railing, Concrete Block Retrofit (B-50-Series)
- Bridge Barrier Railing, Type 6, Modified * (B-29-Series & Bridge Design Guides)
- Type 6 modified (adhesive anchored) railing must only be used for non-NHS routes.

(BDM Appendix 12.02)

Appendix 12.02 Page 1 of 3

CLEAR ROADWAY WIDTHS AND DESIGN LOADING FOR BRIDGES BEING REHABILITATED (3-26-2012)					
Type of Roadway Non-Interstate Freeway Interstate Freeway		Minimum Clear Roadway Width	Minimum Design Loading HS-20 HS-20		
		A, B			
		A, B			
Arterial (Non-Freeway	Rural	С	HS-20		
Trunkline)	Urban	D	HS-20		
Collector	Rural	Exhibit 6-7.	H 15		
(Non-Trunkline)	Urban	Exhibit 6-5., E	H 15		
Local	Rural	Exhibit 5-7.	ADT<50:H 10		
(Non-Trunkline)	Urban	Exhibit 5-5., E	ADT>50:H 15		

(A) As constructed.

- (B) Consideration should be given to carrying the full shoulders of the approach roadway across the structure if it is cost effective to do so.
- (C) The minimum clear roadway should accommodate the traveled way plus 2'-0" on each side. (12-5-2005)
- (D) The minimum clear width on the bridge shall be the same as the curb-to-curb width of the street.
- (E) The minimum clear roadway shall be the traveled way plus 1'-0" to each curb face. However, consideration should be given to providing the same width as the curb-to-curb approach width if it is cost effective to do so.

(BDM Appendix 12.02)

Appendix 12.02 Page 2 of 3

The tables shown in this appendix are derived from <u>A Policy on Geometric Design of</u> <u>Highways and Streets</u>, 2011, 6th Edition, published by AASHTO and do not include clearances for bridge rail offset. See the Bridge Design Guides for MDOT offset criteria. (3-26-2012) (7-20-2015) (3-21-2016)

Exhibit 6-7. STRUCTURAL CAPACITIES AND MINIMUM ROADWAY WIDTHS FOR BRIDGES BEING REHABILITATED CARRYING RURAL COLLECTOR ROADS

Design Traffic Volume(veh/day)	Design Loading Structural Capacity	Minimum Clear Roadway Width (ft) ^(a)
Under 400	H 15	22
400 to 1500	H 15	22
1500 to 2000	H 15	24
over 2000	H 15	28

¹ Clear width between curbs or railings, whichever is the lesser, shall be equal to or greater than the approach traveled way width, wherever practical.

The values in Exhibit 6-7, do not apply to structures with a total length greater than 100 ft. These structures should be analyzed individually by taking into consideration the clear width provided, safety, traffic volumes, remaining life of the structure, design speed, and other pertinent factors.

Design	Design Traffic Volumes (veh/day)			
Speed(mph)	Under 400	400-1500	1500 -2000	over 2000
	V	Vidth of Trave	eled Way (ft)	
20-30	20 ^(a)	20	22	24
35-40	20 ^(a)	22	22	24
15-50	20	22	22	24
55-60	22	22	24	24

(a) A 18 ft minimum width may be used for roadways with design volumes under 250 veh/day.

On roadways to be reconstructed, a 22 ft traveled way may be retained where the alignment and safety records are satisfactory.

(BDM Appendix 12.02)

Appendix 12.02 Page 3 of 3

FOR BRIDGES BEING	FOR BRIDGES BEING REHABILITATED CARRYING RURAL LOCAL ROADS				
Design Traffic Volume(veh/day)	Design Loading Structural Capacity	Minimum Clear Roadway Width (ft) ^{(a) (b)}			
0-50	H 10	20 ^(c)			
51-250	H 15	20			
250-1500	H 15	22			
1500-2000	H 15	24			
over 2000	H 15	28			

Exhibit 5-7, MINIMUM STRUCTURAL CAPACITIES AND MINIMUM CLEAR ROADWAY WIDTHS

(a) Clear width between curbs or railings, whichever is the lesser.

Minimum clear widths that are 2 ft narrower may be less than the approach traveled way width.
 For one-lane bridges use 18 ft.

The values in Exhibit 5-7. do not apply to structures with total length greater than 100 ft. These structures should be analyzed individually, taking into consideration the clear width provided, traffic volumes, remaining life of the structure, pedestrian volumes, snow storage, design speed, crash record, and other pertinent factors.

Design Traffic Volumes (veh/day)				
Design Speed(mph)	Under 400	400-1500	1500 -2000	over 2000
	٧	Vidth of Trave	eled Way (ft)	
15	18	20	20	22
20-40	18	20	22	24
45-50	20	22	22	24
55-60	22	22	24	24

VERTICAL CLEARANCE

Bridge Design Manual, Section 7.01.08 Road Design Manual, Section 3.12

VERTICAL CLEARANCE REQUIREMENT TABLE (8-20-2009) (6-22-2015)

Route Classification Under the Structure	All Construction (Desired)	New Construction (Min *)	Road 4R Construction (Min*)	Bridge 4R Construction (Min *)	3R Construction (Min *)
Freeways	16'-3*	16-0"	16-0"	16'-0"	16-0****
NHS Arterials (Local & Trunkline)	18'-3"	16'-0"	Maintain Existing** and 14'-6" Min	16'-0"	Maintain Existing** and 14'-0" Min
Non NHS Arterials (Local & Trunkline)	16'-3"	14'-6"	Maintain Existing** and 14'-6" Min	Maintain Existing** and 14'-6" Min	Maintain Existing** and 14'-0" Min
Collectors, Local Roads & Special Routes ⁽¹⁾	14'-9"	14'-6"	Maintain Existing** and 14'-6" Min	Maintain Existing** and 14'-6" Min	Maintain Existing" and 14'-0" Min

3R = Rehabilitation, Restoration, Resurfacing

- Minimum Vertical Clearance must be maintained over complete usable shoulder width.
- ** Existing vertical clearances greater than or equal to the minimums shown may be retained without a design exception. Vertical clearance reductions that fall below the minimums for new construction require a design exception. (6-22-2015)
- *** Existing vertical clearances may be retained (or increased) without a design exception unless a pattern of high load hits exist. Vertical clearance reductions below the standard (table value) require design exceptions. (5-27-2020)
- (1) Special Routes are in Highly Urbanized Areas (where little if any undeveloped land exists adjacent to the roadway) where an alternate route of 16'-0" is available or has been designated. Bridges located over Special Routes in Highly Urbanized Areas can be found on the MDOT website at: http://mdotcf.state.mi.us/public/design/files /englishbridgemanual/Exempt_Structures. pdf. (5-28-2013)

Ramps and roadways connecting a Special Route and a 16'-0" route require a vertical clearance minimum of 14'-6" (14'-9" desired). Ramps and roadways connecting two 16'-0" routes require a vertical clearance minimum of 16'-0" (16'-3" desired). (8-20-2009)

4R = Reconstruction

Information on the NHS systems can be obtained by contacting the Statewide Planning Section, Bureau of Transportation Planning or found on the MDOT website at:

http://www.michigan.gov/mdol-nfc (11-28-2011)

Pedestrian bridges are to provide 1'-0" more underclearance than that required for a vehicular bridge. For Freeways (Interstate and non Interstate), including Special Route Freeways, the desired underclearance shall be 17'-3" (minimum 17'-0"). (8-20-2009)

A vertical underclearance of 23'-0" is required for highway grade separations over railroads when constructing a new bridge or removing the existing superstructure. For preventative maintenance, rehabilitation and deck replacement projects the existing railroad vertical underclearance does not need to be increased unless requested by the Railroad. (11-28-2011)

Clearance signs are to be present for structures with underclearance of 16'-0" or less (show dimensions 2" less than actual). See MDOT Traffic and Safety <u>Sign Design</u>, <u>Placement</u>, and <u>Application Guidelines</u> for additional information and guidelines. (8-20-2009) (11-28-2011) (11-21-2013) (3-25-2019)

QUESTIONS

DESIGN SPEED

DESIGN SPEED (RDM 3.06)

Design Speed

- Selected Speed
- Used to Determine Various Geometric Design Features of the Roadway

Once Selected...

 All Pertinent Design Features Should be Related to It to Obtain a Balanced Design

Design Roadway Geometrics for 4R Projects Based on an MDOT <u>Recommended</u> Project Design Speed 5 mph Greater than the Posted Speed

> Research shows that Operating Speeds are Typically Greater than the Posted Speeds.

Posted Speeds May be Used as Minimum Project Design Speeds

DESIGN SPEED

3R / 4R Freeway Projects

Recommended Design Speed: 5 mph Greater than Posted Speed

Minimum Design Speed: The Greater of Posted Speed, or 70 mph

3R Freeway Allowance: The Design Speed at the Time of Construction or the Last 4R Project

"Urban" Freeway Projects

Recommended Design Speed: 5 mph Greater than Posted Speed **Minimum Design Speed:** The Greater of Posted Speed, or 60 mph

3R Freeway Allowance: The Design Speed at the Time of Construction or the Last 4R Project

Freeway Clear Zones

Design Speed – 70 mph

DESIGN SPEED (RDM Appendix 3A)

Appendix 3A GEOMETRIC DESIGN ELEMENTS New Construction / Reconstruction

Electron		Urban	Rural				
Design Speed	Freeway	The greater of posted speed, or 60 mph.	The g	reater of p	osted spe	ed, or 70 n	nph.
	Non Freeway (Arterial)	The greater of posted speed, or 30 mph. The greater of p		oosted speed, or 40 mph			
	Collector Roads	Posted speed (minimum).		Posted s	peed (mini	imum)	
	Freeway	12 ft.			12 ft.		
		12 ft, lanes are most desirable and should be used where	Dest	M	inimum La	ne Width.	ft
		practical. 11 ft. lanes are often used for low speed (45 mph	Design		ADT. yet		
		dosign)	Speed,	1 des d		1500 to	Over
				400	1500	2000	2000
		Lane widths of 10 ft. may be used in more constrained areas	40	11*	11*	11*	12
	Non	where truck and bus volumes are relatively low and speeds	45	11*	11*	11*	12
	Freeway	are less than 35 mph.	50	11*	11*	12	12
	(Arterial)		55	11*	11*	12	12
		12 ft. lanes on the National Network (NN). Design exceptions	60	12	12	12	12
		/ variances are required to maintain existing narrower lanes.	65 70	12	12	12	12
		A high burden of justification is required in a design exception		12	12	12	12
		/ variance to reduce existing lane widths less than or equal to	75 12 12 12 12 12 *12 ft. desirable				
Lane Width	Width	12'-0".					
			Desire	Minimum Lane Width, ft.			
		Added turn lanes at intersections 10-12 ft.	Design Speed,	ADT, vehicles/day			
		Where right-of-way is restricted. 11 ft.		Under	400 to	1500 to	Over
		Industrial Areas 12 ft.	(mph)	400	1500	2000	2000
			20	10*	10*	11*	12
			25	10*	10*	11*	12
	Collector		30	10*	10*	11*	12
	Roads		35	10*	11*	11*	12
		Where shoulders are used, see guidelines for Rural Collectors	40	10*	11*	11*	12
			45	10*	11*	11*	12
		(F	50	10*	11*	11*	12
			55 60	11* 11*	11*	12	12 12
			00		ft. desirab		12

3A-1

Note: An Allowance is Provided for 3R Work Types

DESIGN SPEED Non-Freeway, NHS, 3R (3.09.02 A)

MICHIGAN DESIGN MANUAL ROAD DESIGN

3.09.02 (continued)

A.	Non-Freeway,	NHS

Geometric Elements	Non-Freeway, NHS 3R Minimum Guidelines					
Design Speed (see Section 3.06)	Posted Speed Minimum					
		ment ADT wo-Way	Inside Shoulder	Outside Shoulder		
Shoulder Width	Two Lane	<750		3'-0* Gravel		
NOTE: Minimum shoulder widths apply for posted speeds greater than 45 mph. Restrictions such	(and three lane when the	750 - 5000		6'-0" (3'-0" Paved)		
	center lane is a left turn	>5000 - 10,000		8'-0" (3'-0" Paved)		
as right of way and roadside context sensitivity issues may	lane)	>10,000		8'-0" (7'-0" Paved)		
preclude the use of minimum shoulders within city, village or township limits with posted	Multi-Lane Undivided	≤ 10,000 > 10,000		6'-0" (3'-0" Paved) 8'-0" (3'-0" Paved)		
township umits with posted speeds of 45 mph and less.	Multi-Lane Divided	≤ 10,000 > 10,000	3'-0" Paved 3'-0" Paved	6'-0* (3'-0* Paved) 8'-0* (3'-0* Paved)		
	Se	e Bridge Design Manu	al Appendix 12.02	for Bridge Widths		
	ADT	Lane Width				
	≤750	10'-0"				
	>750	750 11'-0"				
Lane Width		 10°-0° lanes may be considered in urban areas for multi-lane un-divided (regardless of ADT) and multi-lane divided (ADT < 10,000). 12°-0° lanes are desirable on the Priority Commercial Network (PCN) 12°-0° lanes are required on the National Network (also known as the National Truck Network). Design Exceptions / Design Variances to maintain existing narrower lanes generally receive favorable consideration but a high burden of justification is placed on request to reduce lane withins to less than 12°-0°. 				
Design Loading		Rural		Urban		
Structural Capacity	Minimum Desig	n Loading HS20.	Minimum De	Minimum Design Loading HS20.		
	(See Bridge Design Manual Appendix 12.02 for other trunkline classifications)					
Horizontal Curve Radius and Stopping Sight Distance	of the existing there is no cras	curve is not more that	an 15 mph below rwise standards fo	e retained if the design speed the project design speed and or new construction apply. See Distance Guidelines.		
Maximum Grade	Review crash d	ata. Existing grade m	ay be retained with	nout crash concentration.		
Cross Slopes		Traveled way 1.5% - 2	%, Shoulder see	Section 6.05.05		
Superelevation Rate	Standard Plan R-107-Series or reduced maximum (6%) Straight Line Superelevation Chart using the project design speed.					
Vertical Clearance	See Section 3.1	2.				

DESIGN SPEED

Non-Freeway, Non-NHS, 3R (3.09.02 B)

MICHIGAN DESIGN MANUAL

ROAD DESIGN

3.09.02 (continued)

B. Non-Freeway, Non-NHS

Geometric Elements		Non-Freeway, Non-NHS 3R Minimum Guidelines				
Γ	Design Speed	Posted Speed Minimum				
	Shoulder Width	Current ADT Two-Way	Inside and Outside Shoulder Width			

Posted Speed Minimum

of-way exists to include aboulders. At lower speeds, minimum	Multi-Lane (Divided &	Inside (Divided)	Outside (Bath sides for un-divided)		
shoulders are desirable.	(Divided & Undivided)	3'-0" Paved	6'-0" (3'-0" Paved)		
	ADT		Lane Width		
	≤750	10'-0"			
	>750	11'-0"			
Lane Width		10'-0' lanes may be considered in urban areas for multi-lane un-divided (regardless of ADT) and multi-lane divided (ADT < 10,000). 12'-0' lanes are desirable on the Priority Commercial Network (PCN) and the National Network (also known as the National Tuck Network). Existing narrower lanes may be retained without design exceptions. Reduction of existing lane widths on the National Network to less than 12-0' require a design exception request having a high burden of justification.			
	ADT (Design Year)	Minimum Design Loading	Usable Width		
Bridge Width, Structural Capacity & Horizontal	0 - 750	H15	Width of traveled way.		
Clearances	751 - 1500	HS15	Width of traveled way.		
(Existing Bridges to remain in place)	1501 - 2000	HS15	Width of traveled way plus 1' each side.		
remain in prace)	2001 - 4000	HS15	Width of traveled way plus 2' each side.		
	> 4000	HS15	Width of traveled way plus 3' each side.		
Horizontal / Vertical Alignment and Stopping Sight Distance	Existing alignment and stopping sight distance may be retained if the design spee of the existing ourve is not more than 15 mph (horizontal alignment) or 20 mp (vertical alignment) below the project design speed and there is no cras concentration. Otherwise standards for new construction apply. See curre AASHTO Green Book or MDOT Sinth Distance Quidelines.				
Grade	Review crash data	a. Existing grade	may be retained without crash concentration.		
Cross Slopes	Tra	veled way 1.5% -	2%, Shoulder see Section 6,05,05		
Superelevation	Standard Plan R- Chart using the pr		uced maximum (6%) Straight Line Superelevation ed.		
Vertical Clearance	See Section 3.12				

DESIGN SPEED (RDM 3.06)

Geometric Design Elements that Do Not Meet Current Standards (or Allowances) Based on <u>Minimum</u> Design Speeds Require:

- A Formal Safety Review
- A Crash Analysis
- Documented Justification in the Form of:
 - A Design Exception (Form DE26)
 - A Design Variance (Form DV26)

"If the highest attainable design corresponds to criteria for speeds less than the <u>minimum</u> design speed, a design exception or design variance must be submitted for approval."

DESIGN SPEED (RDM 3.06)

Documentation Required for Each Geometric Element

No Blanket Design Exceptions

A Design Speed Reduction for Individual Geometric Elements Does <u>Not</u> Redefine the Overall "<u>Project</u> Design Speed"

DESIGN SPEED (RDM 3.06)

Additional Allowances to Retain Existing Horizontal and Vertical Alignments and Stopping Sight Distances Based on a Range of Reduced Design Speeds are Provided Under the 3R Non-Freeway Guidelines (3.09.02A & 3.09.02B)

QUESTIONS

SIGHT DISTANCE GUIDELINES

According to the 2004 AASHTO, 2005 MMUTCD, and Michigan Department of Transportation Guidelines

> PREPARED BY GEOMETRICS AND OPERATIONS UNIT TRAFFIC AND SAFETY February 8, 2008

"Providing the highest quality transportation services for economic benefit and improved quality of ille."

"Sight distance is the distance along a roadway throughout which an object of specified height is continuously visible to the driver. This distance is dependent on the height of the driver's eye above the road surface, the specified object height above the road surface, and the height and lateral position of sight obstructions within the driver's line of sight."

(2011 AASHTO, Section 3.2.6)

Four Types

Stopping Sight Distance

Passing Sight Distance

Decision Sight Distance

Intersection Sight Distance

Stopping Sight Distance...

...is the minimum sight distance required along a roadway to enable a vehicle traveling at or near the design speed to stop before reaching a stationary object in its path.

(2011 AASHTO, Section 3.2.2)

Brake Reaction Distance + Braking Distance

Stopping Sight Distance

 $\begin{array}{c} \text{BRAKE REACTION DISTANCE} \\ 1.47Vt \end{array}$

BRAKING DISTANCE
$$1.075V^2/a$$

V = Design Speed (mph)

+

t = Brake Reaction Time (2.5 seconds assumed)

a= Deceleration Rate (11.2 ft/s² assumed)

Simplified...

$SSD = 3.675V + 0.096V^2$

	Design	Brake Reaction	Braking Distance	Stopping Sig	ght Distance
	Speed (mph)	Distance (ft)	on Level (ft)	Calculated (ft)	Design (ft)
	15	55.1	21.6	76.7	80
	20	73.5	38.4	111.9	115
	25	91.9	60.0	151.9	155
	30	110.3	86.4	196.7	200
	35	128.6	117.6	246.2	250
	40	147.0	153.6	300.6	305
	45	165.4	194.4	359.8	360
	50	183.8	240.0	423.8	425
	55	202.1	290.3	492.4	495
	60	220.5	345.5	566.0	570
	65	238.9	405.5	644.4	645
	70	257.3	470.3	727.6	730
	75	275.6	539.9	815.5	820
	80	294.0	614.3	908.3	910
Ε	xhibit 1. Si	topping Si	ght Distan	Ce (2004 AASH	TO Exhibit 3-1, 112)

Horizontal Sightline Offset...

...is the minimum distance required between the roadside and an obstruction, measured from the centerline of the inside lane to the face of the obstruction.

(2011 AASHTO, Section 3.3.12)

HSO = R [1-cos((28.65S) / R)]

R = Radius of Curve (feet) HSO = Horizontal Sightline Offset (feet) SSD = Stopping Sight Distance (feet)

HEIGHT OF SIGHT LINE

2.75 ft

Decision Sight Distance...

"...is the distance required for a driver to detect an unexpected or otherwise difficult-to-perceive information source or condition in a roadway environment that may be visually cluttered, recognize the condition or its threat potential, select an appropriate speed and path, and initiate and complete complex maneuvers."

(2011 AASHTO, Section 3.2.3)

Decision Sight Distance

V = Design Speed (mph)

t = Pre-maneuver Time (See Exhibit 3-3)

a= Deceleration Rate (11.2 ft/s² assumed)

t_m = Total Pre-Maneuver and Maneuver Time

HEIGHT OF EYE

3.5 ft

HEIGHT OF OBJECT 2.0 ft

Quick Chart for Decision Sight Distance Design Decision Sight Distance (ft) Avoidance Maneuver Speed Е (mph) А в С D Avoidance Maneuver A: Stop on Rural Road - (t = 3.0 sec) Avoidance Maneuver B: Stop on Urban Road - (t = 9.1 sec) Avoidance Maneuver C: Speed/Path/Direction Change on Rural Road -(tm varies between 10.2 and 11.2 sec) Avoidance Maneuver D: Speed/Path/Direction Change on Suburban Road -(tm varies between 12.1 and 12.9 sec) Avoidance Maneuver E: Speed/Path/Direction Change on Urban Road -

(tm varies between 14.0 and 14.5 sec)

Decision Sight Distance

(2004 AASHTO, Exhibit 3-3, 116)

Passing Sight Distance...

...is the distance required for a passing vehicle to be able to see a sufficient distance ahead, clear of traffic, to complete the passing maneuver without cutting off the passed vehicle before meeting an opposing vehicle.

(2011 AASHTO, Section 3.2.4)

Minimum Passing Sight Distance is the Sum ofFour Distances

 $d_1 + d_2 + d_3 + d_4$

Passing Sight Distance – d₁

Distance Traversed During Perception and Reaction Time and During the Initial Acceleration to the Point of Encroachment on the Opposing Lane.

$d_1 = 1.47t_i[v-m + (at_i / 2)]$

t_i = Time of Initial Maneuver (sec)

a = Average Acceleration (mph/s)

v = Average Speed of Passing Vehicle

m = Difference in Speed of Passed Vehicle and Passing Vehicle (mph)

Passing Sight Distance – d₂

Distance Traveled while the Passing Vehicle Occupies the Left Lane.

 $d_2 = 1.47vt_2$

 t_2 = Time Passing Vehicle Occupies the Left Lane

v = Average Speed of Passing Vehicle

Passing Sight Distance – d₃

Distance Between the Passing Vehicle at the End of its Maneuver and the Opposing Vehicle

 $d_3 = 100$ to 250 ft

Length was Found in the Passing Study to Vary

Passing Sight Distance – d₄

Distance Traversed by an Opposing Vehicle for Two-Thirds of the Time the Passing Vehicle Occupies the Left Lane, or 2/3 of d₂

 $d_4 = 2d_2/3$

Design	Assumed Speeds (mph)		Passing Sight Distance (ft)	
Speed	Passed	Passing	From	Rounded
(mph)	Vehicle	Vehicle	Exhibit 9	for Design
20	18	28	706	710
25	22	32	897	900
30	26	36	1088	1090
35	30	40	1279	1280
40	34	44	1470	1470
45	37	47	1625	1625
50	41	51	1832	1835
55	44	54	1984	1985
60	47	57	2133	2135
65	50	60	2281	2285
70	54	64	2479	2480
75	56	66	2578	2580
80	58	68	2677	2680

Exhibit 10 Passing Sight Distance for Design of Two-Lane Highways (2004 AASHTO, Exhibit 3-7, 124)

HEIGHT OF EYE 3.5 ft

HEIGHT OF OBJECT 3.5 ft

Passing Sight Distance – Pavement Markings

Warrants for Placing No-Passing Zone Markings On Existing and Proposed Highways

85th-	
Percentile or	Minimum
Posted or	Passing Sight
Statutory	Distance
Speed Limit	(ft)
(mph)	
25	450
30	500
35	550
40	600
45	700
50	800
55	900
60	1000
65	1100
70	1200

Exhibit 12 Minimum Passing Sight Distances for Pavement Marking Criteria

(2011 MMUTCD, Table 3B-1, page 352)

Intersection Sight Distance...

...is the sight distance needed to allow the drivers of stopped vehicles to decide when to enter or cross an intersecting roadway. (2011 AASHTO, Section 9.5)

Intersection Sight Distance

$$ISD = 1.47 V t_g$$

V = Design Speed of Major Road (mph)

t_g = Time Gap for Minor-Road Vehicle to Cross the Major Road (sec)

Design Vehicle	Time Gap (t _g) (seconds) at Design Speed of Major Road			
Passenger Car	7.5			
Single-Unit Truck	9.5			
Combination Truck 11.5				
Note: Time gaps shown are for a stopped vehicle to turn left onto a two-lane road with no median and approach grades of 3 percent or less. The table values require adjustment as follows: For Two-Way Roadways with More than Two Lanes: Add 0.5 seconds for passenger cars or 0.7 seconds for trucks for each additional lane, from the				
left, in excess of one, to be crossed by the left-turning vehicle. For Minor Road Approach Grades: If the rear wheels of the design vehicle are located on an upgrade which exceeds 3 percent, Add 0.2 seconds for each percent of grade. Exhibit 16 Time Gap for Case B1 – Left-Turn from Stop (2004 AASHTO, Exhibit 9-54, 660)				

Design Vehicle Time Gap (tg) (seconds) at Design Speed of Major Road						
Passenger Car 6.5						
Single-Unit Truck	8.5					
Combination Truck	10.5					
	<u>Note</u> : Time gaps shown are for a stopped vehicle to turn right onto or cross a two-lane road with no median and approach grades of 3 percent or less. The table values require adjustment as follows:					
For crossing a major road	For Roadways with More than Two Lanes: For crossing a major road with more than two lanes, add 0.5 seconds for passenger cars or 0.7 seconds for trucks for each additional lane to be crossed, and for narrow medians that cannot store the design vehicle.					
For Minor Road Approach Grades: If the rear wheels of the design vehicle are located on an upgrade which exceeds 3 percent, add 0.1 seconds for each percent of grade.						
Exhibit 19 (2004 AASHTO, Exhibit 9-57, 664) Time Gap for Case B2 – Right-Turn from Stop and Case B3 – Crossing Maneuver						

Quick Charts for Intersection Sight Distance				
Design Speed (mph)	Stopping Sight	Intersection Sight Distance for Passenger Cars (ft)		
(inpi)	Distance (ft)	Calculated	Design	
15	80	165.4	170	
20	115	220.5	225	
25	155	275.6	280	
30	200	330.8	335	
35	250	385.9	390	
40	305	441.0	445	
45	360	496.1	500	
50	425	551.3	555	
55	495	606.4	610	
60	570	661.5	665	
65	645	716.6	720	
70	730	771.8	775	
75	820	826.9	830	
80	910	882.0	885	
Note: The given inte	ersection sight distance	values are for a sto	pped passenger car	
to turn left onto a two	lane road with no med-	lian and minor road a	approach grades of 3	
	other conditions, the sig			
Design Intersection Sight Distance – Case B1 – Left-Turn from Stop (2004 AASHTO, Exhibit 9-55, 661)				

Design Speed	Stopping Sight	Intersection Sight Distance for Passenger Cars (ft)		
(mph)	Distance (ft)	Calculated	Design	
15	80	143.3	145	
20	115	191.1	195	
25	155	238.9	240	
30	200	286.7	290	
35	250	334.4	335	
40	305	382.2	385	
45	360	430.0	430	
50	425	477.8	480	
55	495	525.5	530	
60	570	573.3	575	
65	645	621.1	625	
70	730	668.9	670	
75	820	716.6	720	
80	910	764.4	765	

<u>Note</u>: The given intersection sight distances are for a stopped passenger car to turn right onto, or cross, a two-lane road with no median and minor road approach grades of 3 percent or less. For other conditions, the sight distance must be recalculated.

Design Intersection Sight Distance – Case B2 – Right-Turn from Stop and Case B3 – Crossing Maneuver (2004 AASHTO, Exhibit 9-58, 664)

QUESTIONS

Problem 1:	Non-Freeway, Non-NHS Corridor with a 3R Work Type
	Undivided, Two-Lane Roadway
	ADT = 12,500
	Level Terrain
	Posted Speed Limit is 55 mph
	2350' Radius Horizontal Curve

- a). What is the minimum allowable design speed?
- b). Minimum required Stopping Sight Distance?
- c). Minimum required Horizontal Sightline Offset (HSO)?
- d). Minimum required Intersection Sight Distance?

Left-Turns:

Right-Turns/Crossing:

	<u>lem 1</u> : tions)	Non-Freeway, Non-NHS C Undivided, Two-Lane Road ADT = 12,500 Level Terrain Posted Speed Limit is 55 m 2350' Radius Horizontal C	ph
a).	What is the mi	inimum allowable design sp	eed?
	55 mp	h (minimum)	(RDM 3.09.02B)
	(60 mp	oh still preferred, if feasible).
b).	_	uired Stopping Sight Distanc	ce?
	· ·	for 60 mph)	(MDOT Sight Distance Guidelines)
c).		zontal Sightline Offset (HSC))?
		for 55 mph	(MDOT Sight Distance Guidelines)
	(17.3'	for 60 mph)	
d).	Required Inter	rsection Sight Distance?	
Left-T	urns:	610' for 55 mph	
		(665' for 60 mph)	
			(MDOT Sight Distance Guidelines)
Right-	Turns/Crossing	: 530' for 55 mph	
		(575' for 60 mph)	

- Problem 2:Non-Freeway, NHS Corridor with a 4R Work Type
Divided Roadway, 36' Median Width, 3 Lanes in Each Direction
ADT = 36,000
Level Terrain
Posted Speed Limit is 45 mph
1800' Radius Horizontal Curve
- a). What is the MDOT recommended design speed?
- b). What is the minimum allowable design speed?
- c). Required Stopping Sight Distance?
- d). Required Horizontal Sightline Offset (HSO)?
- e). Required Intersection Sight Distance?
 - * (Assume the Design Vehicle is a Passenger Car)
 - * (Further assume a design speed of 50 mph is utilized)

Left-Turns:

Right-Turns/Crossing:

	olem 2: 1tions)	Non-Freeway, NHS Corridor with Divided Roadway, 36' Median Wi ADT = 36,000 Level Terrain Posted Speed Limit is 45 mph 1800' Radius Horizontal Curve	• •
a).	What is the M	MDOT recommended design speed? 50 mph	(RDM 3.06)
b).	What is the r	ninimum allowable design speed? <i>45 mph</i>	(RDM Appendix 3A)
c).	Required Sto	opping Sight Distance? 425' (50 mph design speed.) 360' (45 mph design speed)	(MDOT Sight Distance Guidelines)
d).	Required Ho	rizontal Sightline Offset (HSO)? 12.5' (50 mph design speed)	

9.0' (45 mph design speed)

(MDOT Sight Distance Guidelines)

- e). Required Intersection Sight Distance?
 - * (Assumed Design Vehicle is a Passenger Car)
 - * (Assumed design speed is 50 mph)

<u>Right-Turns/Crossing</u>:

(6.5 sec.)(1.47)(50) = 480' for Right-Turn Movement (MDOT Sight Distance Guidelines) (6.5 sec. + 0.5 sec.)(1.47)(50) = 515' for Crossing Movement

• Use 515' to cover both movements

Left-Turns/Crossing:

 $(6.5 \ sec. + 0.5 \ sec.)(1.47)(50) = 515'$ for Crossing Movement

(MDOT Sight Distance Guidelines)

 $(7.5 \ sec.)(1.47)(50) = 555'$ for Left-Turn Movement

• Use 555' to cover both movements

Major Factor in Determining

Safety

Driving Comfort

Highway Capacity

Important Factors to Consider...

Passing Sight Distance on Two-Lane, Two-Way Roadways Should be Maximized

Curves Should be as Flat as Possible and Abrupt Changes in Alignment Avoided

Important Factors to Consider...

Broken Back Curves Should be Avoided

Minimum Distance Between Curves Should be the Sum of the Transitions Plus Crown Runout Lengths

Minimum Radius

- Limiting Value of Curvature for a Given Design Speed
- Determined from the Maximum Rate of Superelevation and the Maximum Side Friction Factor
- To be Avoided Wherever Practical

Minimum Radius

$$R_{\min} = \frac{V^2}{15(0.01e_{\max} + f_{\max})}$$

R = Radius (feet)

- V = Design Speed (mph)
- *e* = Rate of Superelevation (%)

f = Side Friction Factor (From AASHTO)

Minimum Radius

		Г					B 4.5	P. 05	0710	DDE.	1011 A -10	1011		0110			CON 1		0.001.0	11 67	ODE]
			RADJUS	30 WPH 3		35			NPH SULP	EREL 45	JEV AT VPH	10 N 50			WPH	60 EV		65 MPH		N SL	FREE	NAYS		URE Freena Urban	YS AND
			(FEET)																	70	MPH		VIPH	60	NPH
		-		e %		e %	∆%	e %	۵%	e %	∆%	e %	∆%	8 %	۵%	e %	Δ%	e %	∆%	e %.	۵%	e %	Δ%	e %	∆%
			23000	HC HC		NC	_	NC	—	NC NC		HC HC	_	NC	—	HC HC		HC HC		NC	—	NC NC	-	HC HC	
			17000	HC HC		NC	\equiv	NC	\equiv	HC HC		NC	\equiv	NC	\equiv	HC HC		HC		NC	\equiv	HC HC	\equiv	NC	
			14000	HC		NC	_	NC	_	HC		HC	_	NC	—	HC		NC		2.0	0.31	2.0	0.30	HC	
			12000	HC		NC	—	NC	—	HC		NC	—	NC	—	HC		2.0	0.32	2.0	0.31	2.0	0.30	NC	
	\mathbf{R} -107		10000	HC		NC	—	NC	—	HC		HC	—	NC	—	2.0	0.36	2.0	0.32	2.1	0.31	2.3	0.31	2.0	0.34
1.1			8000	HC		NC		NC	Ι	HC		2.0	0.40	2.0	0.38	2.1	0.36	2.3	0.33	2.6	0.32	2,9	0.31	2.0	0.34
			6000	HC .		NC	—	NC	_	2.0	0.40	2.0	0.40	2.3	0.39	2.7	0.37	3.0	0.34	3.3	0.33	3.7	0.33	2.4	0.36
		-	5000	HC HC		NC	0.45	2.0	0.40	2.0	0.40	2.3	0.41	2.7	0.39	3.1	0.38	3.5	0.35	3.9	0.34	4.4	0.34	2.8	0.37
			3500	HC HC		2.0	0.45	2.0	0.40	2.4	0.41	3.1	0.42	3.6	0.40	4.2	0.39	4.2	0.38	5.2	0.36	5.3	0.35	3.3	0.39
		-	3000			2.0	0.45	2.5	0.42	3.0	0.43	3.5	0.43	4.1	0.42	4.7	0.41		0.39	5.9	0.38		0.37	3.8	0.41
			2500			2.4	0.46	2.9	0.43	3.5	0.44	4.1	0.44	4.7	0.43	5.3	0.42		0.41	6.5	0.39	7.0	0.38	4.2	0.42
			2000	2.3	0.51	2.9	0.48	3.5	0.45	4.1	0.46	4.7	0.45	5.4	0.44	6.1	0.43	6.6	0.42	7.0	0.40	R NJH.	2344	4.6	0.44
			1800			3.1	0.49	3.8	0.46	4.4	0.47	5.1	0.46	5.7	0.45	6.4	0.44		0.43	R WEN.	 1922' 			4.8	0.44
			1600			3.4	0.50	4.1	0.48	4.8	0.48	5.4	0.47	6.1	0.45	6.7	0.44	7.0	0.43					4.9	0.45
		-	1400			3.7	0.51	4.5	0.49	5.6	0.49	5.8 6.3	0.48	6.5 6.8	0.46	6.9 D U U U	0.45 = <u>12</u> 63	R MIN-	= 1565]				R WEN.:	= 1412
			1150			4.3	0.52	5.0	0.50	5.7	0.50	6.4	0.49	6.9	0.47	N NJ N+•	- 1203]							
			1000			4.6	0.54	5.4	0.52	6.1	0.52	6.7	0.49		- 1008'										
			900	4.1	0.57	4.8	0.55	5.7	0.53	6.4	0.52	6.9	0.50												
			820			5.1	0.55	5.9	0.54	6.6	0.53	7.0	0.50		NOTES:										
			800	4.4	0.58	5.1	0.56	6.0	0.54	6.7	0.53	7.0	0.50	, '	NUTES										
					-	_					_	~	,		L00P R4	MPS SH	ALL HA	VE A 71	RATE	of supe	RELEVA	F10W.			
	300	6.7		0	•6	5	R	Ν	IIN	.=	= 3	12	<i>``</i>		SPECIAL RAMP TE						TO CURV	ES NHEO	CH APPR	BACH A	
	265	6.9	Τ	0	.6	6																	OR THE ONDENG		
			-	-			4																THAN R		
	225	7.0		0	.6	6																	ans AND anax ≕		
		R MIN	١.:	= ;	222	2′																			
	•																								

Minimum Radius

				1.12		1.5	1		5	TRA	GHT	LINE	SUP	EREL	EVA	TION	1979	7.51			1000	11.1		
		RADIUS	90 m	nph	35 /	riph	40	mph		mph		mph		mph		mph	65	mph		Fite	ways		Freew	ban eys and Ramps
		Feel			E	4%	-		-						100					niph		mph		mph
C4-			0	Δ%	E	4%	0	4%		Δ%		4%		5%		4%	•	3%		4%	e	4%	e	4%
SU	aight	20000	N.C.	-	N.C.	-	N.C.	-	N.C.	-	N.G.	-	N.C.	-	N.C.	-	N.G.	-	N.C.	-	N/C.	-	N.C.	-
~		17000	N.G.	-	N.C.	-	N.C.	-	N.C.	-	N.C.	-	N.C.	-	N.C.	-	N.C. 2.0	0.32	N.C. 2.0	0.31	2.0	0.30	N.G.	-
		12000	N.C.	-	N.C.		N.C.	-	N.C.	-	N.C.	-	N.C.	-	2.0	0.36	2.0	0.32	2.0	0.31	2.0	0.30	2.0	0.36
T	line	10000	N.G.	-	N/G.	-	N.C.	-	N.G.	-	N.G.	-	2.0	0.38	2.0	0.56	2.0	0.32	2.0	0,31	2.0	0.30	2.0	0.36
	MIG	8000	N.C.	-	N.C.	-	N.C.	-	N.G. 2.0	0.40	2.0	0.40	2.0	0.38	2.0	0.56	2.0	0.32	2.0	0.31	2,0	0,30	2,0	0.36
		5000	N.C.	-	N.C.	-	2.0	0.40	2.0	0.40	2.0	0.40	2.0	0.38	2.0	0.36	2.0	0.32	2.0	0.31	2.5	0.31	2.0	0.36
		4000	N.C.	-	2.0	0.45	2.0	0.40	2.0	0,40	2.0	0.40	2.0	0.38	2.0	0.36	2.5	0.39	3.1	0.35	3.8	0.34	2,0	0.36
NA	ethod	3500	N.C.	-	2.0	0.45	2.0	0.40	2.0	0.40	2.0	0.40	2,0	0,38	2.3	0.37	2.8	0.34	3.5	0.34	4.3	0.35	2.0	0.36
IVIC		2000	2.0	0.50	2.0	0.45	2.0	0.40	2.0	0.40	2.0	0.40	2.1	0.38	2.7	0.38	3.3	0.36	4.1	0.36	5.0 6.0	0.36	2.4	0.37
		2050	2.0	0.50	2.0	0.45	2.0	0.40	2.0	0.40	2.4	0.41	3.1	0.40	3.9	0.40	4.8	0.40	6.0	0,40	210	0.30	3.4	0.39
		1800	2.0	0.50	2.0	0.45	2,0	0.40	2.1	0.41	2.8	0.42	8.5	0.41	4.4	0.42	5.5	0.42	100				3.9	0.40
		1675	2.0	0.50	2.0	0.45	2,0	0.40	2.3	0.41	3.0	0.42	3.8	0.42	4.8	0.42	5.9	0.43	-				4.2	0.41
		1350	2.0	0.50	2.0	0.45	2.2	0.41	2.9	0.43	3.5	D.44	4.0	0.44	5.9	0.45		-			1	-	5.0	CA.D
		1160	2.0	0.50	2.0	0.45	2.5	0.42	3.4	0.45	4.3	0.46	5.5	0,45								1		12.2
		1075	2.0	0.50	2.0	0.45	2.7	0.43	3.6	0.46	4.7	0.47	5,9	0.47	-		-						1.2.1	
		800	2.0	0.50	2.5	0.47	3.5	0.46	4.5	0.49	9.9	0.50	-	-	-		-	-	- 73		-	-	1	-
		800	2.0	0.50	2.6	0.47	3.6	0.47	4.8	0.50									1.50			1.5	1	
		720	2.0	0.50	2.8	0.49	4.0	0.49	5.4	0.62				-				5.7			-	1.1.1.		
	200	16	1,	\sim	24	1										-	-	-	1		-		1	-
	300	4.6		0.6	зι																			
						_				-						1.5	1.2	11	1.1.5					1
	232	6.0	1	0.6	28															-		1.00	-	-
	232	0.0	<u>۱</u>	0.0	50										. 22		1		1.2	1.05	1			
										-							-							1.20
	Δ % max		1	0.6	36					1	0	0.6	32		12	0.45	1	0.43	2	0.40	26	0.38	1	0.45
	Δ /0 max		L '	0.0	50					1		J.C	2				given b	CUIVES	which :	opproact				
						_												ponding	oseiðu	speed.				
	Rmin	21	32							34	0			1	erwise e									
		20	22						,		0													

Minimum Curve Length

<u>Minimum</u> 15 x Design Speed

Preferred 30 x Design Speed

Compound Curves

Use With Caution CAUTION

Open Highway – Ratio of Flatter Radius to Sharper Radius **1.5 to 1**

Ramps – Ratio of Flatter Radius to Sharper Radius

 2 to 1

Sharper Curves in Advance of Flatter Curves

Remember the Four Types...

Stopping Sight Distance Passing Sight Distance Decision Sight Distance Intersection Sight Distance

"The designer must be aware that both horizontal and vertical alignments need to be considered when designing for sight distance."

Stopping Sight Distance

$$SSD = \frac{R \cos^{-1}(1 - \frac{HSO}{R})}{28.65}$$

Horizontal Sightline Offset

HSO = R [1-cos((28.65 SSD) / R)]

R = Radius of Curve (feet)

HSO = Horizontal Sightline Offset (feet)

SSD = Stopping Sight Distance (feet)

Design Speed	Stopping Sight Distance (Design)
25	155
30	200
35	250
40	305
45	360
50	425
55	495
60	570
65	645
70	730
75	820

Intersection Sight Distance

- Generally, 7.5 Seconds of Entering Sight Distance is Used
 - Passenger Vehicle Stopped on a Minor Road, Grade 3% Max, Turning Left on a Two-Lane Roadway
- Additional 0.5 Seconds Added for Each Lane

Clear Vision

For At Grade Intersections it is Very Important for Safety Reasons, Particularly on High Speed Trunklines

- E. Horizontal Curve Computations
- ∆ = Deflection or Central Angle (Delta), degrees
- R = Radius of Curve, ft
- T = Length of Tangent (P.C. to P.I. or P.I. to P.T.) = R Tan (Δ /2), ft
- E = External Distance = R [Sec (Δ /2) - 1] or T Tan (Δ /4), ft
- HSO = Horizontal Sightline Offset = R Versine ($\Delta/2$) or E Cos ($\Delta/2$), ft
- L = Length of Curve = $\Delta \times R \div 57.2958$, ft
- P.C. = Point of Curvature
- P.I. = Point of Intersection of Tangents
- P.O.C.T. = Point on Curve Tangent
- P.T. = Point of Tangency
- D = Degree of Curvature =

$$\frac{5729.58}{R (ft)}$$
 degrees

IRAL TRANSITIONS SHOULD BE USED ON NEW ALIGNMENTS, BASED ON E DESIGN SPEED OF THE CURVE AND THE RADIUS AS SHOWN IN THE BLE, THE TABLE GIVES THE MAXIMUM RADIUS IN WHICH A SPIRAL OULD BE USED.

10

r

Standard Plan R-107

SPIRAL	CURVE	TRANS	SITIONS
DESIGN SPEED (MPH)	MAXIMUM RADIUS (FEET)	DESIGN SPEED (MPH)	MAX[MUM RADIUS (FEET)
30	456	60	1822
35 40	620 810	65 70	2138 2479
45	1025	75	2846
50	1265	80	3238
55	1531		

- Horizontal Deflections
 - Undesirable Should be Avoided Wherever Practical
 - Should Not be Used on New Construction
 - Should be Limited to 3R Jobs (i.e. Existing Deflections)
 - Should be Limited to Low-Speed Roads (i.e. Posted Speeds of 45 mph or Less)
 - Deflections Should Not Exceed the Rates Given in Geometric Design Guide GEO-650 (i.e. L=W*V or 1/Design Speed)

QUESTIONS

VERTICAL ALIGNMENT

VERTICAL ALIGNMENT

Based on Several Factors Design Speed Existing Terrain Drainage Considerations Bridge Elevations & Locations Cross Road Elevations & Locations Earthwork Balance **Coordination** with Horizontal Alignment

VERTICAL ALIGNMENT

Establishes the Profile Grade of the Roadway

Two Basic Components

Longitudinal Grades

Vertical Curves

GRADES

Maximum Grades Depend On :

- Functional Class of the Roadway
- Urban or Rural
- Design Speed
- Terrain
- Scope of Work

GRADES

Minimum Grades: (RDM 3.03.02D)

- Typically Dictated by/Related to Drainage Considerations
- Uncurbed Roadways
 - Minimum Longitudinal Grade of 0% (level) Acceptable
 - Independent Ditches When Grade < 0.30%</p>
- Curbed Roadways
 - Minimum Longitudinal Grade of 0.30%
 - Desirable Minimum of 0.50%

GRADES (RDM Appendix 3A)

							TRIC	DESI	GN E											
			<u> </u>				I	Maximu	n Gra	de (%) for sp	pecifie	d desi	gn spe	ed (m	ph)				
	Freeway	Type of Terrain		50	6	55				60			65			70		75		
Grade Stopping Sight Distance Cross Slope Superelevation	ev	Level	4				4			3			3			3			3	
	Fre	Rolling		4 4 3 5 5 4 Grades 1% steeper may be provided in urban are Urban 30 35 40 45 50 55 8 7 7 6 6 5 9 8 8 7 7 6 Curbed roadway 0.3% Urban 0 25 30 35 40 45 50 55 60 Ourbed roadway 0.3% Urban Ourbed roadway 0.3% Curbed roadway 0.3% Curbed roadway 0.3% Stailed information on sight distance calculation. De = 2.0%, Paved shoulder cross slope = 4.0% (Alse Stailed information on sight distance calculation. De = 2.0%, Paved shoulder cross slope = 4.0% (Alse Image: State of the ways and the may be preved when Method 5 is not feasible papely to urban freeways and the may be preved when Method 5 is not feasible papely to urban freeways and the may be preved when Method 5 is not feasible papely to urban fre			4			4			4							
	_		Grades 1% steeper may be provided in urban areas. Curbed roadway 0.3% min, 0.5% desirable minimu															3 4 um 55 6 7 1 Distriction ries.)		
		Type of				_						-	_				Rural			
Grade	ray ial	Terrain		_		-			-	_		60		40	45		50	-		
	Non eewa	Level	8			7			-			5		5	5		4	4		3
	Non Freeway (Arterial)	Rolling	9		8	8		7	7		6	6		6	6		5	5	3 4 imum 55 4 5 5 6 7 7 9ht District Series.)	4
								Curt	oed roa	adway	0.3% mi	in, 0.5%	desira	ble min	imum			1		-
	-	Type of														Rura				
	Collector Roads	Terrain	20								60	20	25	30	35	40	45	50		60
Stopping Sight Distance Cross Slope Superelevation Vertical Clearance Horizontal Clearance /	lle	Level	9		-	-	-	-			6	7	7	7	7	7	7	-		5
	S.	Rolling	12	12	11	10	10	-				10 in 0.5%	10 desira	9 ble min	9	8	8	1	1	6
	100000000							c Design	of High	nways						ook). T	he MDC	OT Sigh	t Dista	
Cross Slope	Traveles	Cross s	slope =	= 2.09	%, Pav	ed sho	ulder	cross sl	ope =	4.0%	(Also s	see Se	ction 6	.05.05)					-
	AASHTO	Method 5	in a	ar Re	ation" is	used for	or new	construc	tion/re	constr	uction.	Maximu	m rate	of 7% (Sec	and the lot of the lot	Plan R	-107-Se	eries.)	
Superelevation															see Sec			3 4 55 60 4 3 5 4 5 4 5 4 5 4 50 55 6 6 7 7 DOT Sight Distance 6 -6" -6" -6" -6" freeways. A A		
	The abov	e methods als	so appl	y to u	rban fre	eways a	na un	van ramp			maximu	im rate	is 5% fo	or 60 m	ph desi	gn spe				
	-	-			-					_				-						
Vertical	Freeway	eway (Arter	iel)		-					-				-			14'-6			
				utes'	1/	-6" (1	ft are	eater tha		-	enal ve	hicle h	eight)				14'-6			
Clearance	For ped	estrian bridge	es pro	vide	ft. add	litional	clear	ance ove	er non	-freev	ay and	17 ft. 1	ninimu	im und			over fr	eeway		
				See	definiti	on of te	erms i	in this ch	apter	Also,	see Br	idge D	esign (Guides	, Secti	on 6				

3A-4

Note: Allowances are Provided for 3R Work Types

GRADES

Tangent Grade Lines are Connected & Smoothed Out by Use of Parabolic Vertical Curves.

VERTICAL CURVES (RDM 3.03.02)

VERTICAL CURVES (RDM 3.03.02)

A = Algebraic Difference in Gradients, g_2 - g_1 (In Percent)

L = Total Length of Vertical Curve (In Feet)

K = Rate of Vertical Curvature, L/A

VPC = The Vertical Point of Curvature

VPI = The Vertical Point of Intersection

VPT = The Vertical Point of Tangency

VERTICAL CURVES (RDM 3.03.02)

AASHTO Controls (Crest)

Based on Stopping Sight Distance Minimum Length Must Provide Sight Distance S

Assumes 3.5' & 2.0' Eye/Object Heights

SIGHT DISTANCE

HEIGHT OF EYE 3.5 ft

HEIGHT OF OBJECT 2.0 ft

CREST VERTICAL CURVES

L = Length of Vertical Curve (ft) S = Sight Distance (ft)

A = Algebraic Difference in Grades (percent) h_1 = Height of Eye Above Roadway Surface (ft)

h₂ = Height of Object Above Roadway Surface (ft)

VERTICAL CURVES

AASHTO Controls (Crest)

SSD CREST CURVES

US Customary										
Design	Stopping sight	Rate of vertical curvature, K ^a								
speed (mph)	distance (ft)	Calculated	Design							
15	80	3.0	3							
20	115	6.1	7							
25	155	11.1	12							
30	200	18.5	19							
35	250	29.0	29							
40	305	43.1	44							
45	360	60.1	61							
50	425	83.7	84							
55	495	113.5	114							
60	570	150.6	151							
65	645	192.8	193							
70	730	246.9	247							
75	820	311.6	312							
80	910	383.7	384							

VERTICAL CURVES AASHTO Controls (Sag)

- Based on Headlight Illumination Sight Distance
- Minimum Length Must Provide Adequate Sight Distance
- Assumes 2.0' Object Height

Assumes 2.0' Headlight Height with
 1° Upward Divergence of Light Beam

SAG VERTICAL CURVES

(AASHTO Equations 3-47 through 3-50)

When S < L

$$L = \frac{AS^2}{200[2.0 + S(tan1^\circ)]} \quad \text{or} \quad \frac{AS^2}{400 + 3.5S}$$

When S > L

$$L = 2S - \frac{200[2.0 + S(tan1^{\circ})]}{A} \text{ or } 2S - \frac{400 + 3.5S}{A}$$

L = Length of Sag Vertical Curve (ft) S = Light Beam Distance (ft)

A = Algebraic Difference in Grades (percent)

SSD SAG CURVES

	US Customary											
Design speed	Stopping sight distance	Rate of vertical curvature, <i>K</i> ^a										
(mph)	(ft)	Calculated	Design									
15 20 25 30 35 40 45 50 55	80 115 155 200 250 305 360 425 495	9.4 16.5 25.5 36.4 49.0 63.4 78.1 95.7 114.9	10 17 26 37 49 64 79 96 115									
60 65	570 645	135.7 156.5	136 157									
70 75	730 820	180.3 205.6	181 206									
80	910	231.0	231									

VERTICAL ALIGNMENT

General Controls

- Minimum Desirable Length of Vertical Curves Should be 3 X Design Speed
- Smooth Grade Line with Gradual Changes
- Avoid
 - Hidden Dips/Roller Coaster Profile
 - Avoid Broken Back Vertical Curves
- Desirable to Reduce Grades at At-Grade Intersections on Roadways with Moderate to Steep Grades

VERTICAL ALIGNMENT

General Controls (Continued)

 Sag Vertical Curves Should Be Avoided in Cuts Unless Adequate Drainage Can Be Provided

Feathering (RDM 6.03.11C)

Where Discontinuing HMA Resurfacing...
 ...Transition at a Rate of ³/₄" Vertical per 25' Linear

VERTICAL ALIGNMENT

- Vertical Deflections
 - Undesirable Should be Avoided Wherever Practical
 - Should Not be Used on New Construction
 - Should be Limited to 3R Jobs
 - Should be Limited to Low-Speed Roads (i.e. Posted Speeds of 45 mph or Less)
 - Maximum 1% Algebraic Grade Differential

QUESTIONS

COORDINATION OF HORIZONTAL AND VERTICAL ALIGNMENT

COORDINATION OF HORIZONTAL & VERTICAL ALIGNMENT

- Curve and Grade Should be in Proper Balance
- Vertical Curvature Imposed on Horizontal Curvature or Vice Versa
- Sharp Horizontal
 Curvature Should Not
 Be Introduced At or
 Near the Top of a
 Pronounced Crest Curve

COORDINATION OF HORIZONTAL & VERTICAL ALIGNMENT

- Sharp Horizontal Curvature Should Not Be Introduced At or Near the Bottom of a Steep Grade Near the Low Point of a Pronounced Sag Curve
- Horizontal Curvature and Profile Should Be Made as Flat as Possible at Intersections

Ramps

 Design Speed of Vertical Alignment Must Meet or Exceed Design Speed of Horizontal Alignment

Avoid designing little local dips in an otherwise long, uniform grade. These dips usually result from a desire to balance cut and fill and to reduce overhaul.

Profile with tangent alignment

-A-

The upper line is an example of poor design because the alignment consists of a long tangent with short curves, whereas the balance between the curves and tangents in the lower alignment is the preferred design.

> Horizontal alignment should be balanced -L-

QUESTIONS

Lane Width Impacts

Driver's Safety and Comfort

Wider Lanes Provide for More
 Desirable Lateral Clearance
 (Especially Commercial Vehicles
 on Two-Lane, Two-Way Roads)

Highway Level of Service

 Narrow Lanes Force Drivers to Operate with Less than Desirable Lateral Clearances Between Opposing Traffic, Adjacent Traffic and Roadside Obstacles

Lane Width Impacts

Highway Capacity (Two Lane Rural Roads)

- 12' Lane Width (or More) Usually Will Not Reduce Capacity
- 11' Lane Width Capacity Reduction of 7%
- 10' Lane Width Capacity Reduction of 16%

Additional Costs to Provide 12' Lanes Over Narrower Lanes is Partially Offset by Reduced Surface and Shoulder Maintenance

Appendix 3A GEOMETRIC DESIGN ELEMENTS New Construction / Reconstruction

	Urban	Rural						
Freeway	The greater of postal and a 20 mile	The greater of posted speed, or 70 mph.						
Non Freeway (Art	The greater of posted speed, or 30 mph.	The great of posted speed, or 40 mph						
Collector Roads	Posted speed (minimum).	Posted speed (minim. a).						
Freeway	12 ft.	12 ft.						
	12 ft, lanes are most desirable and should be used where practical. 11 ft. lanes are often used for low speed (45 mph design)	Design Speed,		ADT, veh	nicles/day	ft. Ove		
		(mph)	400	1500	2000	200		
Non	Lane widths of 10 ft. may be used in more constrained areas where truck and bus volumes are relatively low and speeds	40 45	11* 11*	11* 11*	11* 11*	12 12		
Freeway (Arterial)		55	11*	11*	12	12		
	12 ft. lanes on the National Network (NN). Design exceptions / variances are required to maintain existing narrower lanes.	65	12	12	12	12		
	A high burden of justification is required in a design exception / variance to reduce existing lane widths less than or equal to	70 75	12	12 12	12 12	12 12		
	12'-0".	*12 ft. desirable						
		Decian	Minimum Lane Width, ft.					
	Added turn lanes at intersections 10-12 ft.							
	Where right-of-way is restricted. 11 ft. Industrial Areas 12 ft.	(mph)	Under 400	400 to 1500	1500 to 2000	Ove 200		
-		20 25	10* 10*	10* 10*	11* 11*	12 12		
		30	10*	10*	11*	12		
Nuaus						12		
	where shoulders are used, see guidelines for Rural Collectors							
	P	50	10*	11*	11*	12		
		55	11*	11*	12	12		
		60	11*	11*	12	12		
		*12 ft. de tale						
	Non Freeway (Art a) collector Roads Freeway Non Freeway	Freeway Non Freeway (Arthur) The greater of posted speed, or 30 mph. Freeway (Arthur) The greater of posted speed, or 30 mph. Follector Roads Posted speed (minimum). Freeway (Arterial) 12 ft. Non Freeway (Arterial) 12 ft. lanes are most desirable and should be used where practical. 11 ft. lanes are often used for low speed (45 mph design) Lane widths of 10 ft. may be used in more constrained areas where truck and bus volumes are relatively low and speeds are less than 35 mph. 12 ft. lanes on the National Network (NN). Design exceptions / variances are required to maintain existing narrower lanes. A high burden of justification is required in a design exception / variance to reduce existing lane widths less than or equal to 12'-0". Added turn lanes at intersections Noter right-of-way is restricted. 11 ft. Industrial Areas Collector Roads Where shoulders are used, see guidelines for Rural Collectors	Freeway Non Freeway (Artonu) The greater of posted speed, or 30 mph. The greater of Non Roads The greater of posted speed, or 30 mph. Freeway Collector Roads Posted speed (minimum). The greater of posted speed (minimum). Freeway 12 ft. Design practical. 11 ft. lanes are most desirable and should be used where practical. 11 ft. lanes are often used for low speed (45 mph design) Design Speed, (mph) Non Freeway (Arterial) Lane widths of 10 ft. may be used in more constrained areas where truck and bus volumes are relatively low and speeds are less than 35 mph. 40 45 50 55 60 70 70 70 70 70 12 ft. lanes on the National Network (NN). Design exception / variance to reduce existing lane widths less than or equal to 12'-0". 55 65 55 80 30 33 35 80 35 80 35 Collector Roads Added turn lanes at intersections Nore right-of-way is restricted. Nore r	Freeway Non Freeway (Atl au) The greater of posted speed, or 30 mph. The greater of posted speed, or 30 mph. Non Freeway Roads Posted speed (minimum). Posted speed speed (minimum). Posted speed speed speed (minimum). Freeway (Atl au) 12 ft. lanes are most desirable and should be used where practical. 11 ft. lanes are often used for low speed (45 mph design) Design Speed, (mph) Mon Speed, (mph) Non Freeway (Arterial) Lane widths of 10 ft. may be used in more constrained areas where truck and bus volumes are relatively low and speeds are less than 35 mph. Design Speed, (11 ⁺ 50 M 11 ⁺ 50 12 ft. lanes on the National Network (NN). Design exceptions / variance to reduce existing lane widths less than or equal to 12 ⁺ 0 ⁺ . 0 11 ⁺ 12 Added turn lanes at intersections 10 ⁺ 12 ⁻ 0 ⁺ . 10 ⁺ 12 12 11 ⁺ 12 11 ⁺ 10 ⁺ 11 ⁺ 11 ⁺	Freeway Non Freeway (Arterial)The greater of posted speed, or 30 mph. The greater of posted speed, or 30 mph.The greater of posted speed The greater of posted speed (minimum).Collector RoadsPosted speed (minimum).Posted speed (minimum).Freeway (Arterial)12 ft. lanes are most desirable and should be used where practical. 11 ft. lanes are often used for low speed (45 mph design)Design Speed, (Minimum La 400 to 1500Non Freeway (Arterial)Lane widths of 10 ft. may be used in more constrained areas where truck and bus volumes are relatively low and speeds are less than 35 mph.Design exceptions 50Minimum La 4012 ft. lanes on the National Network (NN). Design exception / variances are required to maintain existing narrower lanes. A high burden of justification is required in a design exception 12'-0".Design 40Minimum La 40Added turn lanes at intersections Roads10-12 ft.Design 50Minimum La 400Collector RoadsWhere shoulders are used, see guidelines for Rural Collectors Roads2010"10" 10"Where shoulders are used, see guidelines for Rural Collectors Roads4011"11" 11"	Freeway (Arterial)The greater of posted speed, or 30 mph.The greater of posted speed, or 40 mpl.Non Freeway (Arterial)Posted speed (minimum).Posted speed (minimum).Freeway (Arterial)12 ft.12 ft.I12 ft. lanes are most desirable and should be used where practical. 11 ft. lanes are often used for low speed (45 mph design)Design Speed, (mph)Minimum Lane Width, 1 Minimum Lane Width, 1 11*Non Freeway (Arterial)12 ft. lanes are often used for low speed (45 mph design)Design Speed, (mph)Minimum Lane Width, 1 11*Non Freeway (Arterial)12 ft. lanes on the National Network (NN). Design exceptions A high burden of justification is required in a design exceptions A high burden of justification is required in a design exceptions (variances are required to maintain existing narrower lanes. A kided turn lanes at intersections 10-12*0*.10*11* 11 12 13 <b< td=""></b<>		

Note: Allowances are Provided for 3R Work Types

3R FREEWAY ALLOWANCES

GEOMETRIC REQUIREMENTS FOR FREEWAY PROJECTS INVOLVING 3R WORK TYPES

Geometri	c Design Element	Minimum Required Standard *	Compliance Determination				
Design Speed		Standard at the time of construction or the most recent 4R project	Compliance Assumed				
Horizontal Cur	ve Radius (Rmin.)	Standard at the time of construction or the most recent 4R project	Compliance Assumed				
Longitudinal G	irade (Min./Max.)	Standard at the time of construction or the most recent 4R project	Compliance Assumed				
Stopping Sight (Horizontal and		Standard at the time of construction or the most recent 4R project	Compliance Assumed				
Lane Width		Standard at the time of construction or the most recent 4R project	Compliance Assumed				
Shoulder Widt	h	Standard at the time of construction or the most recent 4R project	Compliance Assumed				
Superelevation	ı	Standard at the time of construction or the most recent 4R project	Compliance Assumed				
Cross-Slope	(Excluding parabolic – Parabolic cross-slopes still require a DE/DV)	Standard at the time of construction or the most recent 4R project (Unless parabolic; Parabolic cross-slopes must be removed or a DE/DV is required)	Compliance Assumed (Unless parabolic; Parabolic cross-slopes must be removed or a DE/DV is required)				
Structural Capacity		Standard at the time of construction or the most recent 4R project	Compliance Assumed				
Vertical Cleara	nce	Standard at the time of construction or the most recent 4R project	Compliance Assumed				
Acceleration/D	Deceleration Length	Existing Length	Compliance Assumed				

* If the project-wide Safety Review identifies a pattern of crashes associated with a particular design element (or elements), then that design element (or those elements) <u>must</u> be bought up to <u>current</u> standards (i.e. the existing design values may <u>not</u> be retained if they do not meet current standards).

LANE WIDTH Non-Freeway, NHS, 3R (3.09.02 A)

MICHIGAN DESIGN MANUAL ROAD DESIGN

3.09.02 (continued)

Geometric Elements	Non-Freeway, NHS 3R Minimum Guidelin	es	
Design Speed (see Section 3.06)	Posted Speed Minimum		
Shoulder Width		ADT	Lane Width
NOTE: Minimum shoulder widths apply for posted speeds greater than 45 mph. Restrictions such		≤750	10'-0"
as right of way and roadside context sensitivity issues may preclude the use of minimum shoulders within city, village or		>750	11'-0"
township limits with posted speeds of 45 mph and less.	Lane Width		10'-0" lanes may be considered in urban areas for multi-lane un-divided (regardless of ADT) and multi-lane divided (ADT < 10,000).
			12'-0" lanes are desirable on the Priority Commercial Network (PCN)
			12'-0" lanes are required on the National Network (also known as the National Truck Network). Design Exceptions / Design Variances to maintain existing narrower lanes generally receive favorable consideration but a high burden of justification is placed on request
Design Loading		2	to reduce lane widths to less than 12'-0".
Structural Capacity		• · · · · · · · · · · · · · · · · · · ·	
	(See Bridge Design Manual Appendix 12.02 for other trunkline class	sifications)	
Horizontal Curve Radius and Stopping Sight Distance	Existing curve radius and stopping sight distance may be retained of the existing curve is not more than 15 mph below the project here is no crash concentration. Otherwise standards for new com 2011 6 th Edition AASHTO Green Book or MDOT Sight Distance Go	design speed and struction apply. See	
Maximum Grade	Review crash data. Existing grade may be retained without crash	concentration.	
Cross Slopes	Traveled way 1.5% - 2%, Shoulder see Section 6.0	5.05	
Superelevation Rate	Standard Plan R-107-Series or reduced maximum (6%) Straight I Chart using the project design speed.	Line Superelevation	
Vertical Clearance	See Section 3.12.		

LANE WIDTH Non-Freeway, Non-NHS, 3R (3.09.02 B)

MICHIGAN DESIGN MANUAL ROAD DESIGN

3.09.02 (continued)

B. Non-Freeway, Non-I	1				
Geometric Elements	Non-F		n-NHS 3R Minimum Guidelines		
Design Speed		Pos	sted Speed Minimum		
Shoulder Width Minimum shoulder widths apply for: Rural: Posted speeds greater than	Current ADT		Inside and Outside Shoulder Width	ADT	Lane Width
45 mph. Urban: Posted speeds greater than 45 mph where sufficient right- of-way exists to include shoulders.	_			≤750	10'-0"
At lower speeds, minimum shoulders are desirable.				>750	11'-0"
Lane Width	-	Lan	e Width		10'-0" lanes may be considered in urban areas for multi-lane un-divided (regardless of ADT) and multi-lane divided (ADT < 10,000).
					12'-0" lanes are desirable on the Priority Commercial Network (PCN) and the National Network (also known as the National Truck Network). Existing narrower lanes may be retained without Design Exceptions / Design Variances. Reduction of
Bridge Width, Structural Capacity & Horizontal Clearances (Existing Bridges to	_				existing lane widths on the National Network to less than 12-0" require a Design Exceptions / Design Variances request having a high burden of justification.
remain in place)	2001 - 4000	HS15	Width of traveled way plus 2' each	side.	
	> 4000	HS15	Width of traveled way plus 3' each	side.	
Horizontal / Vertical Alignment and Stopping Sight Distance	of the existing our (vertical alignment concentration. Oth	rve is not mor it) below the herwise standa	sight distance may be retained if the des re than 15 mph (horizontal alignment) o project design speed and there is ards for new construction apply Se Sight Distance Guidelines.	no crash	
Grade	Review crash data	Existing grad	le may be retained without crash concentr	ration.	
Cross Slopes	Tray	veled way 1.5%	6 - 2%, Shoulder see Section 6,05,05		
Superelevation	Standard Plan R-1 Chart using the pro		educed maximum (6%) Straight Line Supe eed.	erelevation	
Vertical Clearance	See Section 3,12.				

Freeway Ramps:

- 16' Lane Width Used for One-Lane Ramps
- 12' Lane Width Used for "Slip" Ramps
- 12' Lane Widths Used for Multi-Lane Ramps
- Greater Lane Widths May Be Required to Accommodate Off-Tracking of Large Vehicles on Small Radius Curves

Collector-Distributor (C-D) Roads:

- 16' Lane Width Used for One-Lane C-D Roads
- 12' Lane Widths Used for Multi-Lane C-D Roads

Metric								US Customary											
	Pavement width (m)									Pavement width (ft)									
	Case I Case II										Case I Case II								
5 1		-lane, on			ane, on			ase III		Deditor		lane, on			ane, on			Case III	
Radius on		peration-			ration—		Two-lan				Radius on operation-no operation-with Two-lane operat								
inner edge of		sion for p talled ve	biele	provisi	on for p alled vel	assing		one wa vo way		inner edge provision for passing provision for passing either one of a stalled vehicle a stalled vehicle two wa						ronew woway			
pavement.	a ə	taneu ve				nditions		vo way		pavement.						wo waj	/		
R (m)	A	В	C	A	B	C	A	В	С	R (ft)	A	В	C	Å	B	C	A	В	С
15	5.4	5.5	7.0	6.0	7.8	9.2	9.4	11.0	13.6	50	18	18	23	20	26	30	31	36	45
25	4.8	5.0	5.8	5.6	6.9	7.9	8.6	9.7	11.1	75	16	17	20	19	23	27	29	33	38
30	4.5	4.9	5.5	5.5	6.7	7.6	8.4	9.4	10.6	100	15	16	18	18	22	25	28	31	35
50	4.2	4.6	5.0	5.3	6.3	7.0	7.9	8.8	9.5	150	14	15	17	18	21	25 23	26	29	35 32
75	3.9	4.5	4.8	5.2	6.1	6.7	7.7	8.5	8.9	200	13	15	16	17	20	22	26	28	30
100	3.9	4.5	4.8	5.2	5.9	6.5	7.6	8.3	8.7	300	13	15	15	17	20	22	25 25	28	29 28
125 150	3.9 3.6	4.5 4.5	4.8 4.5	5.1 5.1	5.9 5.8	6.4 6.4	7.6 7.5	8.2 8.2	8.5 8.4	400 500	13 12	15 15	15 15	17 17	19 19	21 21	25 25	27 27	28 28
Tangent	3.6	4.5	4.5	5.0	5.0 5.5	6.4 6.1	7.5	0.2 7.9	0.4 7.9	Tangent	12	15	15	17	19	20	25 24	26	26
rangen		Vidth mo						1.5	1.5	Width modification regarding edge treatment							20		
No stabilize		None		No		0.000	None			No stabilize		None		No	<u> </u>	Jo	None		
shoulder	-									shoulder									
Sloping curl	b	None		No	ne		None			Sloping curt	0	None		None None			•		
Vertical curl	o:									Vertical curb):								
one side		Add 0.3	m	No			Add 0	3 m		one side		Add 1 ft		No			Add	1 ft	
two sides		Add 0.6		Ad	d 0.3 m		Add 0	.6 m		two sides Add 2 ft Add 1 ft Add 2					2 ft				
Stabilized		Lane wi	dth for	De	duct sh	oulder	Deduc	t 0.6 w	here	Stabilized		Lane wid	th for	De	duct sh	oulder	Dedu	ict 2 ft v	vhere
shoulder, or	ne or		ns B & C		lth; mini			ler is 1	.2 m or	shoulder, on		condition			dth; mini			lder is 4	l ft or
both sides			ent may		lth as u	nder	wider			both sides		on tange			vement		wider		
			to 3.6 n		se l							reduced			under C	Case I			
	where shoulder is 1.2 m or wider									where sl 4 ft or wi		IS							
Note: A =	pred			des hu	t some	conside	ration fo	r SU tri	ucks	Note: A =		ninantly		es hut	some o	onsider	ation for	SU tru	cks
B =	suffic	cient SU	vehicles	to gove	ern desi	an, but	some co	nsidera	ation			ent SU ve							
	for s	emitraile	r combin	ation tr	ucks.						semitra	ailer com	binatior	n trucks					
C =	suffic	cient bus	and con	nbinatio	on-truck	s to gov	ern desi	gn.		C =	sufficie	ent bus a	nd com	bination	n-trucks	to gove	rn desig	jn.	
										_	_	·	-						

Exhibit 3-51. Design Widths of Pavements for Turning Roadways

QUESTIONS

SHOULDER WIDTH

SHOULDER WIDTH Advantages of Using Paved or Improved Shoulders

- Accommodates Stopped Vehicles
- Provides Increased Lateral Clearance
- Provides Lateral Support for Subbase, Base, and Surface Courses
- Provides for Mail Delivery, Bus Stops, Possible Bike Paths
 - Sight Distance is Improved in Cut Section, Thereby Potentially Improving Safety
- Space is Provided for Maintenance Operations such as Snow Removal and Storage

SHOULDER WIDTH

Shoulder – Measured from the edge of the traveled way to the intersection of the shoulder slope and foreslope planes (the hinge point).

Hinge Point – The point of intersection between the shoulder slope and the foreslope.

SHOULDER WIDTH

- Shoulder Drop-Off Condition where edge of pavement is higher than the abutting shoulder
- Shoulder Ribbon Paved shoulder (usually HMA material) placed normally on a two-lane, two-way roadway, typically 3' wide, used to mitigate shoulder drop-off.

Usable Shoulder – (AASHTO 2011 Definition)

"...the actual width that can be used when a driver makes an emergency or parking stop."

May include rounding at hinge point if foreslope is 1:4 or flatter. Valley gutter and the gutter pan of Type G curb & gutter can be considered part of the useable shoulder.

Gutter pans of mountable curb & gutter types (Types B & D) may be considered part of the usable shoulder width where constrained conditions exist.

To Construct Hard Surfaced Shoulders Adjacent to Travel Lanes on State Trunklines

To Place a Strip of Aggregate (Gravel) Between the Edge of Paved Shoulder and the Shoulder Hinge Point (minimum 1' in width) for Stabilization

New Urban or Rural Construction Projects Should Include Full Shoulders, Where Practical

<u>Flush</u> Shoulders are Required for New Urban Freeways, however, this *May* Not Apply to Urban Freeway Reconstruction

Freeway Design Criteria

Road Design Manual (Appendix 3A & Appendix 6A) (section 3.11.01)

- Standards Do Not Differ between New Construction and Reconstruction. An <u>Allowance</u> is Provided for 3R Work Types.
- 3 or More Lanes Directional Median Shoulder Width Should be the Same as the Right Shoulder Width
- Truck Traffic Exceeds 250 DDHV <u>Use</u> 12' Paved Width Shoulders on Non-Interstate Freeways; <u>Consider</u> Using 12' Paved Width Shoulders on Interstate Freeways (Confer with Geometrics Unit)
- Ramp Gores Should be Paved to the 22' Point

Appendix 3A

			Main	line	Ramp (one l	ane and two lanes)
			Median	Outside	Left	Right
Element	Freeway	Sector For Freeway min 12 n exce For f to tn Whe	8 ft. (4ft. paved) (8 ft. paved at bridge and barrier sections) For 6 or more lane sections (3 or more lanes directional) use 11ft. min (10 ft. paved) and consider 12 ft. paved where truck traffic exceeds 250 DDHV.	10 ft. min (paved) For non-interstate freeways, use 12 ft. paved where truck traffic exceeds 250 DDHV. For interstate freeways consider using 12 ft. paved where truck traffic exceeds 250 DDHV.	6 ft. (4 ft. paved)	
Shoulder Width	Non Freeway (Arterial)	Arterial) shou	to the shoulder hinge for stabilizati	uction, the mainline outside paved ion. oulders to meet current standard wi		
	Collector	A minimum 4 ft. (3 ft. paved) shoulde Minimum shoulder widths apply for desirable. Where shoulders are used, refer to requirements for rural arterials.	ew construction and reconstruction and when feasible on shoulder widenin shoulder is extended with 1 ft. of aggregate to the shoulder hinge for stabilizatio ir is acceptable adjacent for ight turn lanes. posted speeds greater than 45 mph. At lower speeds, minimum shoulder Min shoulder, ft. for specified ADT, veh/day Under 400 400 to 1500 1500 to 2000 Over 20	n	Appe	endix 6
	Collector Collector Road and the radio and t					-0" 11'-0" 1 G LANE 1 - 11'-0" 1

Non-Freeway Design Criteria

Road Design Manual Appendix 3A (4R) & 3.09.02 (3R)

Widths are Determined by

Type of Work: 4R or 3R Highway Classification Average Daily Traffic Design Speed

Non-Freeway, 4R (Appendix 3A)

Shoulder		Urban	Rural									
Width		In those instances where sufficient right-of-way	Min paved shoulder, ft. for specified ADT, veh/day Undivided Roadways*									
		exists to include shoulders,		Under 400	400 to 1500	1500 to 2000	Over 2000					
	20.00	refer to the guidance for		4	6	6	8					
	Non Freeway (Arterial)	Shoulders.* Use full For new paved s A minimum 4 ft. (3 ft. paved) shoulder		Use 8ft. right and 4 ft. left for divided arterials. Use full width (8 ft.) on both sides of divided arterials with 3 lanes in each direction. For new construction and reconstruction and when feasible on shoulder widening paved shoulder is extended with 1 ft. of aggregate to the shoulder hinge for stabilization roulder is acceptable adjacent to right turn lanes. If y for posted speeds greater than 45 mph. At lower speeds, minimum shoulder								
		Where shoulders are used, r	efer to	to Min shoulder, ft. for specified ADT, veh/day								
	Collector	requirements for rural arteria	ls.	Under 400	400 to 1500	1500 to 2000	Over 2000					
	Roads	Gr		2	5	6	8					
	Rouds			The above ranges apply on uncurbed roads and when shoulders are feasible on curbed roads. A minimum paved width of 1 ft. is desirable.								

Non-Freeway, 3R, NHS (3.09.02 A)

3.09.02 (continued) A. Non-Freeway, NHS	Shoulder Width		irrent ADT wo-Way	Inside Shoulder	Outside Shoulder				
A. Non-Preeway, NH3 Geometric Elements Design Speed (see Section 3.06) Shoulder Width Minimum shoulder widths apply for: Rural: Posted speeds greater than 45 mph. Urban: Posted speeds greater than 45 mph. Urban: At speed speeds greater than 45 mph.	Minimum shoulder widths a for: Rural: Posted speeds great than 45 mph. Urban: Posted speeds great than 45 mph where sufficient right-of-way exists to include shoulders.	ter (and three lane when the center lane is a left turn ht lane)	<750 750 - 5000 >5000 - 10,000 >10,000 ≤ 10,000		3'-0" Gravel 6'-0" (3'-0" Paved) 8'-0" (3'-0" Paved) 8'-0" (7'-0" Paved) 6'-0" (3'-0" Paved)				
Lane Width	At lower speeds, minimum shoulders are desirable.	s to maintain existing onsideration but a high	> 10,000 ≤ 10,000 > 10,000	3'-0" Paved 3'-0" Paved	8'-0" (3'-0" Paved) 6'-0" (3'-0" Paved) 8'-0" (3'-0" Paved)				
Bridge Width, Structural Capacity & Horizontal Clearances	less than 12-0°. Rural Traveled way width plus 2'-0° each side. Minimum Design Loading HS20. Kinimum Design Loading HS20.	ading HS20.							
Horizontal / Vertical Alignment and Stopping Sight Distance	Existing alignment and stopping sight distance may be retain the existing curve is not more than 15 mph below the project is no crash concentration. Otherwise standards for new current AASHTO Green Book or MDOT Sight Distance Guide	design speed and there onstruction apply. See							
Grade	Review crash data. Existing grade may be retained without o	sh concentration.							
Cross Slopes	Traveled way 1.5% - 2%, Shoulder see Section	6.05.05							
Superelevation	Standard Plan R-107-Series or reduced maximum (6%) Stra Chart using the project design speed.	ht Line Superelevation							
Vertical Clearance	See Section 3.12.								

Non-Freeway, 3R, Non-NHS (3.09.02 B)

MICHIGAN DESIGN MANUAL

		AD DESIGN			-						
.09.02 (continued) . Non-Freeway, Non- Geometric Elements	T		ulder Width widths apply	Current ADT Two-Way	Inside and Outside Shoulder Width						
Design Speed Shoulder Width dinimum shoulder widths apply	for:		andor maano appry	≤750		2'-0" (Gravel)					
Rural: Posted speeds greater than 45 mph. Urban: Posted speeds greater tian 45 mph where sufficient right- of-way exists to include shoulders.	_ 45 m		d speeds greater than	750 - 2000		3'-0" (Paved)					
At lower speeds, minimum shoulders are desirable.		Urban: Posted speeds greater than 45 mph where sufficient right-		> 2000		6'-0" (3'-0" Paved)					
Lane Width	of-wa	y exists	to include shoulders. eds, minimum	Multi-Lane	Inside (Divided)	Outside (Both sides for un-divided)					
			e désirable.	(Divided & Undivided)	3'-0" Paved	6'-0" (3'-0" Paved)					
				4	1						
Deides Wildt Streetwert	ADT (Design Year)										
Bridge Width, Structural Capacity & Horizontal	0-750	H15	Width of traveled way.								
Clearances	751 - 1500	HS15	Width of traveled way.								
(Existing Bridges to remain in place)	1501 - 2000	HS15	Width of traveled way plus 1' each side.								
	2001 - 4000	HS15	Width of traveled way plus 2' each side.								
	>4000	HS15	Width of traveled way plus 3' each side.								
Horizontal / Vertical Alignment and Stopping Sight Distance Sight Distance AND Green Book or MDOT Sight Distance AND Green Book or MDOT Sight Distance AND Green Book or MDOT Sight Distance Guidelines.		urve is not more ant) below the therwise standa	e than 15 mph (horizontal alignment) or 20 mp project design speed and there is no cras rds for new construction apply See currer	h h							
	Review crash data. Existing grade may be retained without crash concentration. Traveled way 1.5% - 2%, Shoulder see Section 8.05.05										
Grade											
Grade Cross Slopes	Tr	aveled way 1.5%	- 2%, Shoulder see Section 6.05.05								
		107-Series or rec	duced maximum (6%) Straight Line Superelevatio	n							

Adjacent to Truck Climbing Lanes and Passing Relief Lanes

Road Design Manual 3.09.05

Adjacent to Right Turn Lane

4'/(3' Paved) Shoulder or Curb & Gutter

Adjacent to Auxiliary Lanes of 1.0 Mile or Less (Freeway)

2011 AASHTO Page 10-76

(Revised 2-21-13) MINIMUM REQUIRED APPLICATION REFERENCE SHOULDER WIDTH Variable: As specified in the Michigan Michigan Road Design Manual: **3R/4R Freeway** Road Design Manual: Chapter 3, Appendix 3-A; (Typical Width) Chapter 3, Appendix 3-A; Chapter 5, Appendix 6-A Chapter 6, Appendix 6-A Variable: As specified in the 4R Non-Freeway Michigan Road Design Manual: Michigan Road Design Manual: (Typical Width) Chapter 3, Appendix 3-A. Chapter 3, Appendix 3-A. Michigen Road Design Manual: **3R Non-Freeway, NHS** Variable: As specified in the Michigan Road Design Manual: Section 3.09.02A (Typical Width) Section 3.09.02A **3R Non-Freeway, Non-NHS** Variable: As specified in the Michigan Michigan Road Design Manual: (Typical Width) Road Design Manual: Section 3.09.028 Section 3.09.028 Michigan Road Design Manual: Auxiliary Lane Width should desirably match the shoulder Section 6.05.04F (Less than or equal to widths on adjacent roadway sections. one mile in length) A minimum width of 6.0' is allowable. 2011 AASHTO, p. 10-76 Michigen Road Design Manual: Typical mainline shoulder width as Chapter 3, Appendix 3-A: Auxiliary Lane referenced above for roadway and work. Chapter 6, Appendix 6-A; (Greater than one mile in length) types (3R/4R, Freeway/Non-Freeway, etc.) Section 3.09.02A: Section 3.09.02B Geometrics Unit Internal Policy/Practice; 4.0 total width/3.0 paved width: -OR-Left-Turn Passing Flare FHWA Concurrence (e-mail) curb & gutter along tangent portion only. 2011 AASHTO, p. 3-134 Michigan Road Design Manual: 4.0 total width/3.0 payed width: -OR-Chapter 3, Appendix 3-A; curb & gutter along tangent (storage) **Right-Tum Lane** FHWA Concurrence (e-mail) portion only. 2011 AASHTO, p. 9-124 Width should desirably match the shoulder Michigan Road Design Manual: widths on adjacent readway sections. Section 3.09.05C Passing Lane Section A minimum 4.0' total width/3.0' paved 2011 AASHTO, p. 3-134 width shoulder is allowable. Width should desirably match the shoulder Michigan Road Design Manual: widths on adjacent roadway sections. Section 3.09.058: Truck Climbing Lane A minimum 4.0" total width/3.0" payed Section 5.05.04E 2011 AASHTO, p. 3-129 width shoulder is allowable. Geometrics Unit 8.0' total width/7.0' paved width on right; C-D Road (One Lane) Internal Policy/Practice 6.0' total width/4.0' payed width on left. (Lise 16' Lane Width) (Total payed width is 27, including (The same as an interchange Ramp). shoulders: Exceeds AASHTO by T1 10.0 payed width on right: C-D Road (Two or More Lanes) 2011 AASHTO. 8.0' total width/4.0' payed width on left. (Use 12' Lane Width) p. 8-34; p. 10-81 (The same as a four-lane freeway). Michigan Road Design Manual: 8.0° total width/7.0° paved width on right; Interchange Ramp Chapter 3, Appendix 3-A: 6.0' total width/4.0' paved width on left. Chapter 6, Appendix 6-A NOTE: Minimum shoulder widths apoly to roadways with posted speeds greater than 45 mph. Shoulders are desirable on roadways with posted speeds of 45 mph or less, however, they are not required.

SHOULDERS

Corrugations in Paved Shoulders

Refer to R-112-H for Freeway and Non-Freeway Corrugations

Freeway – Outside and Median Shoulders No Ramps

Non-Freeway - Shoulder and Centerline on Candidate Roadways

QUESTIONS

Problem 3:	Non-Freeway, NHS Corridor with a 4R Work Type
	Divided Arterial, 36' Median Width
	3 Lanes in Each Direction
	ADT = 36,000
	Rolling Terrain
	Posted Speed 40 mph

- a. What is the MDOT recommended design speed?
- b. What is the required lane width?
- c. Required shoulder widths left and right?
- d. Required Stopping Sight Distance?
- e. Maximum Allowable Grade (%)?

Problem 3:	Non-Freeway, NHS Corridor with a 4R	Work Type
(Solutions)	Divided Arterial, 36' Median Width 3 Lanes in Each Direction	
	ADT = 36,000 Bolling Terroin	
	Rolling Terrain Posted Speed 40 mph	
a. What is the MDOT	recommended design speed?	
45 mph		(RDM 3.06)
(A 40 mph	<u>minimum</u> design speed may be used per Ri	DM Appendix 3A)
b. What is the require	ed lane width?	
<u>Rural</u> : 12'		
<u>Urban</u> : 12' Desirable/11'	' Minimum (Unless NTN; then 12' min.)	(RDM Appendix 3A)
Urban Restricted Area: 1	0' (Almost Never Applies)	
c. Required shoulder	widths – left and right?	
<u>Rural and/or Urban</u> : 8' R	Right and 8' Left Desirable.	(RDM Appendix 3A)
[However, No Shoulders of	are Required Due to Low Speed (Posted Sp	eed Limit < 50 mph).]
d. Required Stopping	Sight Distance?	
360'		
(305' if 40	(MDOT S) mph design speed is used)	ight Distance Guidelines)
e. Maximum Allowal	ble Grade (%)?	
<u>Rural</u> : 69	% (40 mph or 45 mph design speed)	
<u>Urban</u> : 79	% (45 mph design speed)	(RDM Appendix 3A)

Problem 4:Non-Freeway, Non-NHS Corridor with a 3R Work Type
Undivided, 2-lane Arterial
ADT = 12,300
Rolling Terrain
Posted Speed 55 mph

a. What is the minimum allowable design speed?

- b. What is the required lane width?
- c. Required shoulder widths left and right?
- d. Required Stopping Sight Distance?
- e. Maximum Allowable Grade (%)?

<u>Pro</u>	<u>blem 4</u> :	Undivided, 2-lane Arteria	Corridor with a 3R Work Type
(Sol	utions)	ADT = 12,300 Rolling Terrain Posted Speed 55 mph	
a.	What is the minimu	n allowable design speed?	
	55 mph Min	imum	(RDM 3.06 and RDM 3.09.02B)
b.	What is the required	lane width?	
	11' Minimur	n	(RDM 3.09.02B)
	12' Desirabl	e on the NTN, but existing	widths of less than 12' may be retained.
c.	Required shoulder w	vidth?	
	Rural: 6' Total / 3'	Paved	
		' Paved – If <u>Not</u> Constraine ent, <u>No</u> Shoulders are Requ	
d.	Required Stopping S	Sight Distance?	
	495'		(MDOT Sight Distance Guidelines)
e.	Maximum Allowabl	e Grade (%)?	
		sh patterns/concentrations i , the existing grades may be	related to the existing e retained (i.e. <u>No</u> Maximum).
			(RDM 3.09.02B)
	If there <u>IS</u> a crash p maximum grades av		ng longitudinal grades, then the
	Rura	l: 5%	
	Urba	n: 6%	(RDM Appendix 3A)

Purpose

Control and Direct Drainage Visually and Physically Define the Travel Way Define Driveway Locations Promote Aesthetics of Roadside Development

C&G IN CONJUNCTION WITH SHOULDER

Curb & Gutter Should <u>Not</u> be Used on Roadways with Flush Shoulders, if Feasible

Curb & Gutter Should <u>Not</u> be Used Adjacent to the Travel Lane Where Posted Speeds are 50 mph or Greater

Roll Curb & Gutter is Frequently Used to Define the Radii of Rural Crossroad Intersections, but These are Placed Beyond the Edge of Shoulder and Therefore are not Adjacent to the Traveled Way

CURB & GUTTER IN CONJUNCTION WITH SHOULDER

MDOT Standard Plan R-30-G

Curb & Gutter Should Not be Used Where Open Drainage Ditches Can be Utilized

Most Curb and Curb & Cutter Types are Defined as Either Mountable/Roll or Barrier

MDOT's Detail "B"

May be Used at Any Posted Speed

Usually Used on the Back of Flush Shoulders at Rural Intersections

MDOT's Detail "D"

May be Used at Any Posted Speed

Primarily for Drainage and In Conjunction with Guardrail Sections

Most Curb and Curb & Gutters are Defined as Either Mountable/Roll or Barrier

MDOT's Detail "C"

May be Used Where Posted Speeds are 35 mph or Less

Typical Usage is with Sidewalks, Trees, or Utility Poles Close to Edge of Pavement, Parking Areas, or to Match Existing Pavement

MDOT's Detail "F"

May be Used Where Posted Speeds are 45 mph or Less

May be Used to Replace Detail "C", or in Place of Detail "B" or "D"

MDOT's Detail "G" (Urban Freeway Curb)

- Considered Mountable
- Usually Used on Urban Freeways (Only in Cut Sections), in front of Earth Berms, or Adjacent to Retaining Walls at the Back of Shoulder

	MICHIGAN DEPARTMENT OF TRANSPORTATION BUREAU OF HIGHWAY DEVELOPMENT STANDARD PLAN FOR								
Refer to RDM 6.06.10 and MDOT Special Detail R-33-G			LEY GUT EEWAY C						
		9-26-2007	R-33-F	SHEET					
	F.H.W.A. APPROVAL	PLAN DATE	10 00 1	1 OF 2					

These Curb Details May be Used at Non-Freeway Locations when Approved.

Concrete Valley Gutter - Developed to be Used on Freeways in Order to Provide Flush Shoulders

Replaced Curb & Gutter That was Previously Used Between the Travel Lane and the Paved Shoulder

To Place Concrete Valley Gutter at the Outside Edge of the Shoulder and Adjacent to CMB or Single Face Barrier, if Present

Bridge Approach Curb & Gutter Details

Should be Determined by the Bridge Designer

If a Road Plan is Included with the Bridge Plan, the Quantities will be in the Road Plan

> Refer to RDM 6.06.08 and MDOT Special Detail R-32-F

QUESTIONS

CROSS SLOPE

- Cross Slope Transverse slope rate of travel lane or shoulder.
- Normal Crown Uniform slope towards the outside edge of pavement

Undivided Roadways

Typically Crowned at Centerline or Edge of Center Lane

Divided Roadways

May be Crowned at Centerline or at Inside or Outside Edge of Pavement

The Department Uses a Standard Cross Slope of 2.0%

Allowable Cross Slope Variances for 3R Projects are Given in RDM 3.09.02

A Design Exception is Needed for Cross Slopes that are Less than the Required Minimums, Greater than 2%, or Parabolic in Nature.

Except...

Three or More Lanes Inclined in the Same Direction

(Free Access Curbed Highways)

- Slope May be Increased After the First Two Lanes from the Crown Line
 - Up to 1%
 - When Existing Side Conditions Do Not Allow the Preferred Uniform Standard Crown Rate

Requires Additional Transition in Superelevated Sections

Appendix 3A GEOMETRIC DESIGN ELEMENTS New Construction / Reconstruction

		Maximum Grade (%) for specified design speed (eed (m	ph)																
	Freeway	Type of Terrain		50		55				60			65		70			75												
	ew	Level		4					3			3			3	3 3														
	Fre	Rolling		5			5			4			4			4	4 4													
			Grades 1% steeper may be provided in urban areas. Curbed roadway 0.3% min, 0.5% desirable minimu											num																
		Type of	_					Urban	-				_				Rural													
Grade	ay ial)	Terrain	30)	35	4	0	45	5)	55	60)	40	45		50	55	1	60										
orade	Non eewa	Level	8		7	7	1	6	6		5	5		5	5		4	4		3										
	Non Freeway (Arterial)	Rolling	9		8	8	3	7	7		6	6		6	6		5	5		4										
			Curbed roadway 0.3% min, 0.5% desirable minimum																											
	5	Type of					Urba									Rura														
	ads	Terrain	20	25	30	35	40	45	50	55	60	20	25	30	35	40	45	50	55	6										
	Collector Roads	Rolling	9 12	9	9	9	9	8	8	8	6	10	10	9	9	8	8	6	6											
		Rolling	12	12	11	10	10	-		_	0.3% mi			-		8	8	1	1											
Cross Slope	Traveled	es also provid d way cross	slope =	= 2.0%	6, Pav	ed sho	ulder	cross s	lope =	4.0%																				
	AASHTO	Method 5 "C	urviline	ar Rel	ation" is	used for	or new	constru	ction/re	constr	uction. I	Maximu	m rate		see St	andar	d Plan R	-107-Se	eries.)											
Superenever		Mothod 1 "S																												
	The abov	/e methods a	iso appi	y to ui	ban nee	ewaysa	anu un	oan ramp			maximu	m rate	is 5% f	or 60 m	ph desi	gn spe														
	-	NHS								_	Non NHS																			
	Freeway Non Freeway (Arterial)					16'-0" 16' 0"									14'-6"															
Vertical				utes" 14'-6" (1 ft. greater than Michigan legal vehicle height.)										14'-6"																
Clearance		ors & "Spece estrian bridg													or clos	rance			c A											
	vertical	clearance of	f 23'-0")										
Horizontal Clearance / Bridge Width				See	definiti	on of t	erms i	in this c	hapter	A/so,	see Br	idge D	esign	Guides	, Sectio	on 6				Guides 5.24.03-04.) See definition of terms in this chapter. Also, see Bridge Design Guides, Section 6										

Bridge Design Guides (6.05.01)

Bridge Design Guides (6.05.03)

★ TRANSITION SHOULDER SLOPE ON APPROACH TO MATCH APPROACH ROAD SHOULDER SLOPE.

CROSS SLOPE / CROWN Non-Freeway, NHS, 3R (3.09.02 A)

MICHIGAN DESIGN MANUAL ROAD DESIGN

3.09.02 (continued)

Geometric Elements	Non-Freeway, NHS 3R Minimum Guidelines									
Design Speed (see Section 3.06)	Posted Speed + 5 mph									
Shoulder Width		ment ADT wo-Way	Inside Shoulder	Outside Shoulder						
Minimum shoulder widths apply far: Rural: Posted speeds greater than 45 mph. Urban: Posted speeds greater than 45 mph where sufficient right-of-way exists to include shoulders. At lower speeds, minimum shoulders are desirable.	Two Lane (and three lane when the center lane is a left tum lane) Multi-Lane Undivided Multi-Lane Divided	<750 750 - 5000 >5000 - 10,000 >10,000 < 10,000 > 10,000 > 10,000 > 10,000	3'-0" Paved	3'-0" Gravel 8'-0" (3'-0" Paved) 8'-0" (3'-0" Paved) 8'-0" (7'-0" Paved) 8'-0" (3'-0" Paved) 8'-0" (3'-0" Paved) 8'-0" (3'-0" Paved)						
Lane Width	ADT			Lane Width						
	≤750 >750	un-divided (regard (ADT < 10,000). 12'-0' lanes are desi 12'-0' lanes are requ National Truck Net narrower lanes gene	10'-0" 11'-0" less of ADT) and multi-lane divide able on the Priority Commercial Network (PCN ired on the National Network (also known as th work). Design exceptions to maintain existin raily receive favorable consideration but a high is placed on requests to reduce lane widths to							
	1	Rural	0.0	Urban						
Bridge Width, Structural Capacity & Horizontal Clearances		idth plus 2'-0" each sio In Loading HS20.		Curb to curb approach width. Minimum Design Loading HS20.						

Cross Slopes

Traveled way 1.5% - 2%, Shoulder see Section 6.05.05

Cross Slopes	Traveled way 1.5% - 2%, Shoulder see Section 6.05.05
Superelevation	Standard Plan R-107-Series or reduced maximum (6%) Straight Line Superelevation Chart using the project design speed.
Vertical Clearance	See Section 3.12.

CROSS SLOPE / CROWN

Non-Freeway, Non-NHS, 3R (3.09.02 B)

MICHIGAN DESIGN MANUAL ROAD DESIGN

3.09.02 (continued)

Non-Freeway, Non-NHS B.

Geometric Elements	Non-Freeway, Non-NHS 3R Minimum Guidelines									
Design Speed	Posted Speed Minimum									
Shoulder Width	Current ADT Two-Way	Inside and Outside Shoulder Width								
or:	≤750	2'-0" (Gravel)								
Rural: Posted speeds greater than 45 mph.	750 - 2000		3'-0" (Paved)							
Urban: Posted speeds greater than 45 mph where sufficient right-	> 2000	6'-0" (3'-0" Paved)								
of-way exists to include shoulders. At lower speeds, minimum	Multi-Lane	Inside (Divided)	Outside (Both sides for un-divided)							
shoulders are desirable.	(Divided & Undivided)	3'-0" Paved	6'-0" (3'-0" Paved)							
	ADT		Lane Width							
	≤750	10'-0"								
	>750	11'-0"								
Lane Width		10'-0" lanes may be considered in urban areas for multi-la un-divided (regardless of ADT) and multi-lane divid (ADT < 10,000).								
		12'-0" lanes are desirable on the Priority Commercial Netw (PCN) and the National Network (also known as the Natio Truck Network). Existing narrower lanes may be retail without design exceptions. Reduction of existing lane widths the National Network to less than 12-0" require a der exception request having a high burden of justification.								
	ADT (Design Year)	Minimum Design Loading	Usable Width							
Bridge Width, Structural Capacity & Horizontal	0 - 750	H15	Width of traveled way.							
Clearances	751 - 1500	HS15	Width of traveled way.							
(Existing Bridges to	1501 - 2000	HS15	Width of traveled way plus 1' each side.							
remain in place)	2001 - 4000	HS15	Width of traveled way plus 2' each side.							
	>4000	HS15	Width of traveled way plus 3' each side.							

Cross Slopes

Traveled way 1.5% - 2%, Shoulder see Section 6.05.05

Chart using the project design speed. Vertical Clearance See Section 3.12

CROSS SLOPE / CROWN Where Resurfacing is Less Than 4"... The Crown Point <u>May</u> be Retained in Its Existing Location 2% Cross Slope Should be Established or Maintained

Where Resurfacing is 4" or More...

The Crown Point Should be Moved to Meet Current Standards

CROSS SLOPE / CROWN

Shoulder Slopes

Road Design Manual 6.05.05 and Standard Plan R-107

- Standard Slope for Gravel or Earth Surfaced Shoulder and Shoulder Ribbon is 6% (0.06ft/ft)
- Standard Slope for Paved Shoulder is 4% (0.04ft/ft)
- Standard Slopes for Superelevated Sections

HIGH SI	DE SHOULDER CHART
WHEN RATE OF FULL Superelevation 15	SHOULDER SLOPE AT FULL SUPERELEVATION EQUALS
FROM O TO 3%	RATE OF SUPERELEVATION WINUS Normal shoulder slope
3% TO AND Including 5%	RATE OF SUPERELEVATION
DVER 5%	RATE OF SUPERELEVATION

CROSS SLOPE / CROWN Shoulder Slopes

Slope Rates Between 4% and 6% are Generally Acceptable for Aggregate Shoulders

Slope Rates Between 4% and 6% *May* be Used for Paved Shoulders *if* Side Conditions are Constrained, and *if* it Does Not Result in a Rollover of Greater Than 6%

Slopes of Less Than 4% (Except on Bridges or in Superelevated Sections) or Greater Than 6% (Except in Superelevated Sections) Require a Design Exception

CROSS SLOPE / CROWN

Shoulder Slopes

Do NOT Change Slope Rates Within the Plane of the Shoulder – Keep Paved and Unpaved in Same Plane

CROSS SLOPE / CROWN

Retaining an Existing Parabolic Crown will Require a Design Exception

The Desirable Rollover (Algebraic Difference in Cross Slope) between Traveled Lanes and Shoulders is 6% or Less

> MDOT Maximum Rollover: 6% AASHTO/FHWA Maximum Rollover: 8%

(Design Exceptions Required if These Values are Exceeded)

QUESTIONS

Superelevation – The banking of the roadway in the direction of the curve to help counter balance the perceived "centrifugal force" on the vehicle

The Appropriate Rate of Superelevation is Determined From...

- Design Speed
- Curve Radius
- Maximum Allowable
 Side Friction Factor
- Superelevation Method

SUPERELEVATION Michigan's Climate Limits Superelevation to 7% on...

- Rural Freeways
- Free Access Trunklines
- Rural Ramps

For Maximum Superelevation on "Urban" Freeways (DS = 60 mph) and Ramps See R-107

SUPERELEVATION Obtaining Superelevation Rates

Preferred

MDOT Standard Plan R-107

Minimum

Straight Line Method (RDM 3.04.03)

Interpolating <u>between</u> the AASHTO 6% and 8% E_{max} charts is <u>not</u> appropriate! Interpolating <u>within</u> the R-107

or Straight-Line charts is allowable!

CAUTION

CAUTION

If the Straight-Line superelevation rates cannot be met, a Design Exception/Design Variance is required.

Appendix 3A GEOMETRIC DESIGN ELEMENTS New Construction / Reconstruction

		Maximum Grade (%) for specified design speed (mph)													ph)					
	2	Type of Terrain		50		55			60			65 3			70			75		
	Ne	Level	4			4			1	3					1	3		3		
	Freeway	Rolling					5		4			4			4				4	
			Grades 1% steeper may be provided in urban areas.																	
Maximum	Non Freeway (Arterial)	Type of Terrain	Urban								Rural									
Grade			3	D	35	4	0	45	5)	55	60		40	45	;	50	55		60
	Non Freewa	Level	8		7	7		6	6		5	5	6.0	5	5		4	4		3
	L S	Rolling	9	к. —	8	8	3	7	7		6	6	41	6	6		5	5		4
	r.	Type of Terrain		Urban Rural																
	Collector Roads		20	25	30	35	40	45	50	55	60	20	25	30	35	40	45	50	55	6
		Level	9	9	9	9	9	8	7	7	6	7	7	7	7	7	7	6	6	1
		Rolling	12	12	11	10	10	9	8	8	7	10	10	9	9	8	8	7	7	
Stopping Sight Distance	Follow 2011 6 th Edition of AASHTO *A Policy on Geometric Design of Highways and Streets* (AKA AASHTO Green Book). The MDOT Sight Distance Guidelines also previde the second stance carculation.																			
Cross Stope	Traveled way cross slope = 2.0%, Paved shoulder cross slope = 4.0% (Also see Section 6.05.05)																			
Sum and such as	AASHTO	Method 5 *0	Curviline	ar Rela	ation" is	used for	or new	constru	ction/re	constru	iction. 1	Maximu	m rate	of 7%.	(See St	andard	Plan R	-107-Se	eries.)	
Superelevation Rate	AASHTO	AASHTO Method 1 "Straight Line Relation" is allowed when Method 5 is not feasible. Maximum rate of 6%. (See Section 3.04.03)																		
Rate	The abov	The above methods also apply to urban freeways and urban ramps, except the maximum rate is 5% for 60 mph design speed.																		
			NHS																	
	Freeway					10.40									14'-6"					
Vertical	Non Freeway (Arterial)					16'-0"									14'-6"					
Clearance	Collectors & "Special Routes"					'-6" (1	ft. grea	ater that	an Mich	ligan l	egal ve	hicle h	eight.)				14'-6	"		
	vertical o	estrian bridg clearance o 5.24.03-04.	f 23'-0'																	

SUPERELEVATION Point of Rotation (RDM 3.04.01)

Crowned Multi-Lane Roadways

Single-Lane or Unidirectionally Crowned Roadways (i.e. Ramps)

Point of Rotation (RDM 3.04.01)

Special consideration should be given to superelevating an odd number of lanes (i.e. three-lane or five-lane sections) as the point of rotation should be determined by site conditions. See Standard Plan R-107-Series.

Superelevation Transitions (RDM 3.04.02)

Consists Of...

Tangent Runout

(Crown Runout (C))

Length of Roadway Needed to Accomplish a Change in Outside-Lane Cross Slope from the Normal Cross Slope Rate to Zero (Flat) or Vice Versa

Superelevation Transition

(Transition (L))

Length of Roadway Needed to Accomplish a Change in Outside-Lane Cross Slope from Zero (Flat) to Full Superelevation or Vice Versa

Superelevation Transitions (RDM 3.04.02)

Relative Gradient Along the Edges of the Pavement

(Delta Percent), (Δ %)

- Dependent on Superelevation Rates and Design Speeds
- May be Increased as Needed Up to the Maximum Relative Gradient for the Design Speed
- Requires a Design Variance if Values Exceed the Maximum for the Design Speed

Superelevation Transitions (RDM 3.04.02)

MDOT Standard Plan R-107

RAMPS

LEGEND

- NC = NORMAL CROWN RATE
- W = DISTANCE IN FEET FROM POINT OF ROTATION TO FARTHEST OUTSIDE EDGE
- D = W × NC
- e = RATE OF SUPERELEVATION

S = W × e

- C = CROWN RUNOUT / TANGENT RUNOUT (ADVERSE CROWN REMOVED)
- L = TRANSITION LENGTH OR SUPERELEVATION RUNDFF OF INSIDE OR OUTSIDE EDGE OF PAVEMENT
- Δ% = SUPERELEVATION TRANSITION SLOPE OF PAVEMENT EDGES

HIGH SI	DE SHOULDER CHART
WHEN RATE OF FULL SUPERELEVATION IS	SHOULDER SLOPE AT FULL SUPERELEVATION EQUALS
FROM 2% TO 3%	RATE OF SUPERELEVATION MINUS NORMAL SHOULDER SLOPE
3% TO AND [NCLUD]NG 5%	RATE OF SUPERELEVATION
OVER 5%	RATE OF SUPERELEVATION

	RATE OF SUPERELEVATION AND SUPERELEVATION TRANSITION SLOPE																					
RADIUS (FEET)	30	MPH	35	MPH	IPH 40 MPH		45 MPH		50 MPH		55 MPH		60 MPH		65 MPH			FREE	URBAN FREEWAYS AND URBAN RAMPS			
																	70	MPH	60 MPH			
	е%	۵%	е %	Δ%	е%	∆%	е%	۵%	е%.	Δ%	е%,	Δ%	е%	Δ%	е%.	Δ%	е%,	Δ%	е%.	Δ%	е%,	Δ%
23000	NC		NC		NC		NC		NC		NC		NC	—	NC		NC		NC		NC	
20000	NC		NC		NC		NC	—	NC		NC		NC	—	NC		NC		NC		NC	—
17000	NC		NC		NC		NC		NC		NC		NC		NC		NC		NC		NC	—
14000	NC		NC		NC		NC		NC		NC		NC		NC		2.0	0.31	2.0	0.30	NC	
12000	NC		NC		NC		NC	—	NC		NC		NC	—	2.0	0.32	2.0	0.31	2.0	0.30	NC	—
10000	NC		NC		NC		NC	—	NC		NC		2.0	0.36	2.0	0.32	2.1	0.31	2.3	0.31	2.0	0.34
8000	NC		NC		NC		NC		2.0	0.40	2.0	0.38	2.1	0.36	2.3	0.33	2.6	0.32	2.9	0.31	2.0	0.34
6000	NC		NC		NC		2.0	0.40	2.0	0.40	2.3	0.39	2.7	0.37	3.0	0.34	3.3	0.33	3.7	0.33	2.4	0.36
5000	NC		NC		2.0	0.40	2.0	0.40	2.3	0.41	2.7	0.39	3.1	0.38	3.5	0.35	3.9	0.34	4.4	0.34	2.8	0.37
4000	NC		2.0	0.45	2.0	0.40	2.4	0.41	2.8	0.42	3.3	0.40	3.8	0.39	4.2	0.37	4.7	0.36	5.3	0.35	3.3	0.39
3500	NC		2.0	0.45	2.2	0.41	2.6	0.42	3.1	0.42	3.6	0.41	4.2	0.40	4.7	0.38	5.2	0.37	5.9	0.36	3.5	0.40
3000	2.0	0.50	2.0	0.45	2.5	0.42	3.0	0.43	3.5	0.43	4.1	0.42	4.7	0.41	5.2	0.39	5.9	0.38	6.5	0.37	3.8	0.41
2500	2.0	0.50	2.4	0.46	2.9	0.43	3.5	0.44	4.1	0.44	4.7	0.43	5.3	0.42	5.9	0.41	6.5	0.39	7.0	0.38	4.2	0.42
2000	2.3	0.51	2.9	0.48	3.5	0.45	4.1	0.46	4.7	0.45	5.4	0.44	6.1	0.43	6.6	0.42	7.0		R M[N.	= 2344'	4.6	0.44
1800	2.5	0.52	3.1	0.49	3.8	0.46	4.4	0.47	5.1	0.46	5.7	0.45	6.4	0.44	6.9		R MIN.	= 1922']		4.8	0.44
1600	2.7	0.52	3.4	0.50	4.1	0.48	4.8	0.48	5.4	0.47	6.1	0.45	6.7	0.44	7.0	0.43					4.9	0.45
1400	3.0	0.53	3.7	0.51	4.5	0.49	5.1	0.49	5.8	0.48	6.5	0.46	6.9		R MIN.	= 1565']				R MIN.	= 1412'
1200	3.4	0.54	4.1	0.52	4.9	0.50	5.6	0.50	6.3	0.49	6.8		R MEN.	= 1263'								
1150	3.5	0.55	4.3	0.53	5.0	0.51	5.7	0.50	6.4	0.49	6.9	0.47										
1000	3.8	0.56	4.6	0.54	5.4	0.52	6.1	0.52	6.7		R MIN.	= 1008'										
900	4.1	0.57	4.8	0.55	5.7	0.53	6.4	0.52	6.9	0.50												
820	4.3	0.57	5.1	0.55	5.9	0.54	6.6	0.53	7.0	0.50		NOTES:										
800	4.4	0.58	5.1	0.56	6.0	0.54	6.7	0.53	7.0	0.50												
720	4.6	0.58	5.4	0.57	6.3	0.55	6.9		R M[N.	= 794']	LOOP RA	MPS SH	ALL HAV	/E A 7%	RATE	OF SUPE	ERELEVA	TION.			
700	4.7	0.59	5.5	0.57	6.3	0.56	6.9		{			THE RAT	FOFS			EOR C	IRVES A	APPROAC	HING R	AMP TER	MINALS	
600	5.0	0.60	5.9	0.58	6.7		R MIN.	= 614'	J			STOPPI										
500	5.4	0.61	6.4	0.60	7.0	0.58											ANNOT -		-		DECTOR	
450	5.7	0.62	6.6		R MIN.	= 464						IF DELT RADIUS,										
400	6.0	0.63	6.8	0.61																		
350	6.3	0.64	7.0 R M[N.	0.62								FOR RAD										
300	6.7		K MEN.	= 321	1							USE en « RAMPS (
265	6.9	0.66										1. AME 5 1	=1111 A	JO MEI	01310	IN SPEED	07 13 .		EARL 3E	- nox		
225	7.0	0.66																				
L L	R MIN.	- 222																				

MDOT Standard Plan R-107

THE CROWN POINT AND POINT OF ROTATION WILL NORMALLY BE AT THE CENTER OF TWO-LANE AND FOUR-LANE UNDIVIDED PAVEMENTS AND AT THE EDGE OF AN INSIDE LANE OF FIVE-LANE UNDIVIDED PAVEMENTS. THE POINT OF ROTATION WILL NORMALLY BE AT THE INSIDE EDGES OF DIVIDED PAVEMENTS.

THE CROWN POINT AND POINT OF ROTATION WILL NORMALLY BE AT THE CENTER OF TWO-LANE AND FOUR-LANE UNDIVIDED PAVEMENTS AND AT THE EDGE OF AN INSIDE LANE OF FIVE-LANE UNDIVIDED PAVEMENTS. THE POINT OF ROTATION WILL NORMALLY BE A THE INSIDE EDGES OF DIVIDED PAVEMENTS.

MDOT Standard Plan R-107

THE CROWN IS TO BE REMOVED IN SUPERELEVATION SECTIONS.

THE CROWN IS TO BE REMOVED IN SUPERELEVATED SECTIONS.

MDOT Standard Plan R-107

ON URBAN SERVICE ROADS AND URBAN FREE ACCESS TRUMKLINE CURVES WHERE DRIVENAYS ARE PREVALENT. AND WHERE NORMAL SUPERELEVATION CANNOT BE OBTAINED. A WINIWUN OF 1% TO 2% SUPERELEVATION IN THE DIRECTION OF THE CURVE MAY BE USED TO REMOVE THE ADVERSE CROWN.

ON URBAN SERVICE ROADS AND URBAN FREE ACCESS TRUNKLINE CURVES WHERE DRIVEWAYS ARE PREVALENT, AND WHERE NORMAL SUPERELEVATION CANNOT BE OBTAINED, A MINIMUM OF 1.5% TO 2% SUPERELEVATION IN THE DIRECTION OF THE CURVE MAY BE USED TO REMOVE THE ADVERSE CROWN.

MDOT Standard Plan R-107

DESIGN NODIFICATION OF TRANSITIONS, POINT OF ROTATION, AND CROWNS NAY BE NECESSARY TO INFROVE RIDING QUALITY AND APPEARANCE.

DESIGN MODIFICATION OF TRANSITIONS, POINT OF ROTATION, AND CROWNS MAY BE NECESSARY TO IMPROVE RIDING QUALITY AND APPEARANCE.

MDOT Standard Plan R-107

THE LOCATION. LENGTH OF SUPERELEVATION TRANSITIONS. CROWN RUNOFF LENGTHS. SUPERELEVATION RATES. AND POINT OF RUTATION WILL BE AS SPECIFIED ON THE PLANS.

THE LOCATION, LENGTH OF SUPERELEVATION TRANSITIONS, CROWN RUNOFF LENTGHS, SUPERELEVATION RATES, AND POINT OF ROTATION WILL BE AS SPECIFIED ON THE PLANS.

MDOT Standard Plan R-107

SPIRAL LENGTHS WILL BE EQUAL TO OR LONGER THAN TRANSITION SLOPE LENGTHS.

SPRIAL LENGTHS WILL BE EQUAL TO OR LONGER THAN TRANSITION SLOPE LENGTHS.

MDOT Standard Plan R-107

SPIRAL TRANSITIONS SHOULD BE USED ON NEW ALIGHNENTS, BASED ON THE DESIGN SPEED OF THE CURVE AND THE RADIUS AS SHOWN ON THE TABLE. THE TABLE GIVES THE MAXIMUM RADIUS IN WHICH A SPIRAL SHOULD BE USED.

SPIRAL TRANSITIONS SHOULD BE USED ON NEW ALIGNMENTS, BASED ON THE DESIGN SPEED OF THE CURVE AND THE RADIUS AS SHOWN IN THE TABLE. THE TABLE GIVES THE MAXIMUM RADIUS IN WHICH A SPIRAL SHOULD BE USED.

MDOT Standard Plan R-107

BEGIN THE HIGH SLOE SHOULDER TRANSITION AT THE PAVEMENT CROWN RUN OUT POINT (CROWN REMOVED). TRANSITION THE SHOULDER IN THE DISTANCE "L" TO THE SHOULDER SLOPE RATE REQUIRED AT FULL PAVEMENT SUPERELEVATION.

BEGIN THE HIGH SIDE SHOULDER TRANSITION AT THE PAVEMENT CROWN RUN OUT POINT (CROWN REMOVED). TRANSITION THE SHOULDER IN THE DISTANCE "L" TO THE SHOULDER SLOPE RATE REQUIRED AT FULL PAVEMENT SUPERELEVATION.

MDOT Standard Plan R-107

JF THE RATE OF FULL PAYEMENT SUPERELEVATION IS GREATER THAN THE NORMAL SHOULDER SLOPE, BEGIN THE LOW SIDE SHOULDER TRANSITION WREN THE PAYEMENT REACHES THE SAME PLANE AND SLOPE RATE AS THE NORMAL SHOULDER.

IF THE RATE OF FULL PAVEMENT SUPERELEVATIONS IS GREATER THAN THE NORMAL SHOULDER SLOPE, BEGIN THE LOW SIDE SHOULDER TRANSITION WHEN THE PAVEMENT REACHES THE SAME PLANE AND SLOPE RATE AS THE NORMAL SHOULDER.

MDOT Standard Plan R-107

WHEN TRANSITIONING THE SHOULDER SLOPE TO/FROM A BRIDGE SECTION. DISTANCE CALCULATE THE TRANSITION US ING THE SUPERELEVATION TRANSITION SLOPE REQUIRED CURVE + $(\Delta %)$ FOR THE OR. TANGENT ΤN SECTIONS USE THE MINEMUM VALUE FOR SUPERFLEVATION TRANSTTION SI DPF $(\Delta \chi)$ GIVEN IN THE TABLE. THE COLUMN FOR EN. THE SPEED OF THE ROADWAY. SHOULDER WIDTH X (TRANSITION DISTANCE = (RATE OF MINUS ROAD RATE OF SHOULDER BRIDGE SHOULDER SUPERELEVATION SUPERELEVATION) \times 100 / Δ %)

SPIRAL	. CURVE	TRANS	SITIONS
DESIGN	MAXIMUM	DESIGN	MAXIMUM
SPEED	RADIUS	SPEED	RADIUS
(MPH)	(FEET)	(MPH)	(FEET)
30	456	60	1822
35	620	65	2138
40	810	70	2479
45	1025	75	2846
50	1265	80	3238
55	1531		

								5	TRA	GHT	LINE	SUP	EREL	EVAT	ION								
Straig	RADIUS	-	mph	35	mph	T ⁰	mp / T	45	mph	50	nph	55	mph	60 (nph	65 (mph		Free	ways		Freew	ban ays and Rampe
SIF 910			200								YA			202004				70	mph	75	mph	60	mph
Juarg		2 3			1%				<u>.</u>	e	4	0	4%	8	3%	6	-3%	6	1%	0	Δ%	0	Δ%
RDM	20000	N.C.		N.C.		N.C.	-	N.C.		N.C.		N.C.	-	N.C.		N.C.	-	N.C.		N.C.	-	N.C.	
	170 0	NA		NLC	L F	N.C.	-	N.C.		N.C.		N.C.		N.C.		N.C.	-	N.C.		2.0	0.30	N.C.	
	140_0			N.C.	LĿ	N.C.		N.C.		N.C.		N.C.		N.C.		2.0	0.32	2.0	0.31	2.0	0.30	N.C.	
				N.C.	/-	N.C.		N.C.		N.C.		N.C.	-	2.0	0.36	2.0	0.32	2.0	0.31	2.0	0.30	2.0	0.36
	10000	N.C.		N.C.	-	N.C.		N.C.		N.C.		2.0	0.38	2.0	0.36	2.0	0.32	2.0	0.31	2.0	0.30	2.0	0.36
	8000	N.C.		N.C.	-	N.C.	-	N.C.	~	2.0	0.40	2.0	0.38	2.0	0.36	2.0	0.32	2.0	0.31	2.0	0.30	2.0	0.36
	6000	N.C.		N.C.	-	N.C.		2.0	0.40	2.0	0.40	2.0	0.38	2.0	0.36	2.0	0.32	2.0	0.31	2.5	0.31	2.0	0.36
	5000	N.C.		N.C.	=	2.0	0.40	2.0	0.40	2.0	0.40	2.0	0.38	2.0	0.36	2.0	0.32	2.5	0.32	3.0	0.32	2.0	0.36
	4000	N.C.		2.0	0.45	2.0	0.40	2.0	0.40	2.0	0.40	2.0	0.38	2.0	0.36	2.5	0.33	3.1	0.33	3.8	0.34	2.0	0.36
	3500	N.C. 2.0	0.50	2.0	0.45	2.0	0.40	2.0	0.40	2.0	0.40	2.0	0.38	2.3	0.37	2.8	0.34	3.5	0.34	4.3	0.35	2.0	0.36
	2500	2.0	0.50	2.0	0.45	2.0	0.40	2.0	0.40	2.0	0.40	2.1	0.38	2,7	0.38	3.3	0.36	4.1	0.36	5.0	0.36	2.4	0.37
	2050	2.0	0.50	2.0	0.45	2.0	0.40	2.0	0.40	2.0	0.40	2.5	0.39	3.2	0.39	4.0	0.37	4.9	0.38	6.0	0.38	2.8	0.38
	1800	2.0	0.50	2.0	0.45	2.0	0.40	2.1	0.40	2.4	0.41	3.5	0.40	4,4	0.40	5.5	0.42	0.0	0,40			3.9	0.38
	1675	2.0	0.50	2.0	0.45	2.0	0.40	2.3	0.41	3.0	0.42	3.8	0.41	4.8	0.42	5.9	0.42	ing or of a second s		New York		4.2	0.41
	1425	2.0	0.50	2.0	0.45	2.0	0.40	2.7	0.42	3.5	0.44	4.5	0,44	5.6	0,44	0.000	1020180				11111	5.0	0.43
	1350	2.0	0.50	2.0	0.45	2.2	0.41	2.9	0.43	3.7	0.44	4.7	0.44	5.9	0.45					10000		01713.0	1000
	1150	2.0	0.50	2.0	0.45	2.5	0.42	3,4	0.45	4.3	0.46	5.5	0.46	C.110.25		2.111		1.28	1.000				61767
	1075	2.0	0.50	2.0	0.45	2.7	0.43	3.6	0.46	4.7	0.47	5.9	0.47	and the			1967					2000	12.00
	850	2.0	0.50	2.4	0.47	3.4	0.46	4.5	0.49	5.9	0.50		19.000		in a starte	-	1.00	1000					
	820	2.0	0.50	2.5	0.47	3.5	0.47	4.7	0.49														0.85
	800	2.0	0.50	2.6	0.47	3.6	0.47	4.8	0.50														
	720	2.0	0.50	2.8	0.49	4.0	0.49	5.4	0.52				1.1								1 area		
	650	2.1	0.51	3.1	0.50	4.5	0.51	5.9	0.54				1.11										
	600	2.3	0.51	3.4	0.51	4.8	0.53										12.0						
	500	2.8	0.53	4.1	0.54	5.8	0.57							2.22	1.5					1000	1.556		
	450	3.1	0.54	4.5	0.56	GRENC!	0.0028		1000	1009383				1.19	127.12		0.0283	0.000			1.983		
	400	3.5	0.56	5.1	0.58				1000													1965.5	
	345	4.0	0.58	5.9	0.62	1.1.1							Colores -	10.000	1		11111			-			
	300	4.6	0.61		104.00.81	000000		1000														102.20	1
	232	6.0	0.66		0.62	200633337	0.50	220230	0.54	201102	0.50	0.216(1)	20005555		0.45	SERVENT.	0.42	15 6 1	0.40	110000	0.00	1960.0	
		-				4		-						40		40		~		ā			0.45
	∆% max Rmin Use 7% s condition)	uperele	0.66 32 vation fo	r loop n	0.62 40 amps (s %) value	ee Star	0.58 85 Idard Pl the table	an R-10	0.54 43 07-Serie	s). How	0.50 33 vever, sp	pecial c	0.47 061 onsidera	ation she	0.45 33 ould be	given to	0.43	which a	0.40 042 approac		0.38 500 p termin		

Maximum superelevation for urban freeways and urban ramps (with 60 mph design speed) is 5%, otherwise erras = 6%.

QUESTIONS

Problem 5:

Non-Freeway, NHS Corridor (4R Work Type) Divided Arterial, Three lanes in each direction ADT = 15,000 Level terrain Posted speed 50 mph

- a. What is the design speed?
- b. What is the lane width?
- c. Paved shoulder width left and right?
- d. Stopping sight distance?
- e. Maximum grade %?
- f. Cross-slope for the traveled way and shoulders in a normal crown section?
- g. Minimum required superelevation rate for a horizontal curve with R=1800'?
- h. Superelevation rate for a horizontal curve with R=1800' using Standard Plan R-107?

	blem <u>5</u> : utions)	Div AD Lev		orridor (4R Work Type) e lanes in each direction
a.	What is the	e design speed	?	
	55	mph / 50 mph		(RDM 3.06 / RDM Appendix 3A)
b.	What is the	e lane width?		
	Ru	ral <u>or</u> Urban:	12'	(RDM Appendix 3A)
c.	Paved show	ulder width – le	eft and right?	
	<u>Rural</u> :	8' Right a	nd 8' Left	(RDM Appendix 3A)
	<u>Urban</u> :			Constrained by ROW. t, <u>No</u> shoulders are required.
d.	Stopping s	ight distance?		
	493	5' (55 mph) / 42	25' (50 mph)	(MDOT Sight Distance Guidelines)
e.	Maximum	grade %?		
			uph <u>or</u> 55mph desig uph design speed) /	n speed) (RDM Appendix 3A) 6% (50 mph design speed)
f.				rs in a normal crown section?
	Tra	weled Way:	2.0%	
	She	oulders:	4.0%	(RDM Appendix 3A)
g.	<u>Minimum</u>	required supere	elevation rate for a h	norizontal curve with R=1800'?
	3.5	% (55 mph)	(Strain 1.4 1.	Sumanda Data DDM 20402
	2.8	% (50 mph)	(Straight-Line	Superelevation Rate - RDM 3.04.03)
h.	Supereleva	ation rate for a l	horizontal curve wit	h R=1800' using Standard Plan R-107?
	5.7	% (55 mph)	(D 107 S	longing Data Standard Dim D 107
	51	% (50 mph)	(K-107 Supere	levation Rate - Standard Plan R-107)

Problem 6:

- b. Delta Percent Value
- c. Crown Runout Length (C)
- d. Superelevation Transition Length (L)
- e. Superelevation Transition Distribution/Placement Inside and Outside of the Curve.
- f. Determine the Required Horizontal Sightline Offset (HSO) to Ensure Adequate Stopping Sight Distance. Is the Required HSO Provided in this Case?
- g. Determine the K Value Based on the Proposed Vertical Alignment. Does this K Value Meet for the Design Speed of the Roadway?

Determine/Calculate the following:

- a. Superelevation Rate:
- b. Delta Percent Value:
- c. Crown Runout Length (C):
- d. Superelevation Transition Length (L):
- e. Superelevation Transition Distribution/Placement Inside/Outside of the Curve:
- f. Determine the Required Horizontal Sightline Offset (HSO) to Ensure Adequate Stopping Sight Distance. Is the Required HSO Provided in this Case?
- g. Determine the K Value Based on the Proposed Vertical Alignment. Does this K Value Meet for the Design Speed of the Roadway?

(NOTE: This Would be an Allowable Vertical Alignment for a 3R, Non-Freeway Project).

INTERCHANGE DESIGN

INTERCHANGE - GENERAL

 Interchange – A system of interconnecting roadways in conjunction with grade separations providing for the interchange of traffic between two or more intersecting roadways

INTERCHANGE - GENERAL

Two Types

- System
- Service
- Configuration Based on Service Demand
- Spacing
 - Rural
 - Urban
- Approach to Structures
- Sight Distance

INTERCHANGE

Design Principles

 Interchanges Should be Designed to Best Serve the Projected Design Hourly Volume Safely and Efficiently

Operational Uniformity Concept

 Interchange Design Should Reinforce Driver
 Expectancies that Conform with (or Reinforce) a Prior Experience

INTERCHANGE LAYOUT

Road Design Manual (3.07.02 B)

- Adequate Visibility on Ramps
 - Sight Distance at Least as Long as SSD
 - Clear View of Entire Exit Terminal
 - Exit Nose
 - Section of Ramp Roadway Beyond Gore
- Exit Ramps Should Begin Where the Freeway is on a Tangent
- Exit in Advance of Structure
 - Loop Ramps Beyond a Structure Usually Need a Parallel Deceleration Lane

INTERCHANGE LAYOUT

Road Design Manual (3.07.02 B)

- Extreme Care Exercised to Avoid Left-Hand Entrances and Exits
- Avoid Lane Drops between Closely Spaced Interchanges
- Loop Ramps should be Designed with a Minimum Radius of 260' If Possible
- Gore Areas Should be Designed as Flat as Possible
- Consistency Should be Provided in Interchange and Ramp Design and Utilization

Spacing

- Impacts Freeway Operations
- Capacity/Congestion
- Urban Areas
 - Difficult to Get Spacing 1 Mile Spacing Desirable
- Rural Areas
 - 2 Mile Spacing Desirable

EN-EN O	R EX-EX	EX-	EN	TURNING	ROADWAYS		EN-EX (W	EAVING)	
						-		L. PLICABLE TO	
FULL	CDR OR	FULL	CDR OR FDR	SYSTEM INTER-	SERVICE INTER-	SYSTEM SERV INTERCO	ICE	SERVIO SERV INTERC	ICE
	FDR		FDR	CHANGE	CHANGE	FULL FWY.	CDR OR FDR	FULL FWY.	CDR OR FDR
		MIN	IMUM LENGTHS	MEASURED BETWEE	N SUCCESSIVE RAMP TI	ERMINALS			
300 m [1000 ft]	240 m [800 ft]	150 m (500 ft)	120 m [400 ft]	240 m [800 ft]	180 m [600 ft]	600 m [2000 ft]	480 m [1600 ft]	480 m [1600 ft]	300 m [1000 ft]
	NC)TES:		EEWAY DISTRIBUTOR		EN - EN Ex - Exi	10-11-10-10-10-10-		
1	SIGNING. TH	EY SHOULD B	E CHECKED IN		IENCE AND NEED FOR F THE PROCEDURE OUTLIN FOR USE.				

THE "L" DISTANCES NOTED IN THE FIGURES ABOVE ARE BETWEEN LIKE POINTS, NOT NECESSARILY "PHYSICAL" GORES. A MINIMUM DISTANCE OF 90 m [270 ft] IS RECOMMENDED BETWEEN THE END OF THE TAPER FOR THE FIRST ON RAMP AND THE THEROETICAL CORE FOR THE SUCCEDING ON RAMP FOR THE EN-EN (SIMILIAR FOR EX-EN).

RAMP TYPES

GEO-100-F One Lane Tapered Entrance

GEO-101-F One Lane Parallel Entrance

GEO-110-C Two Lane Entrance

GEO-120-C Successive Entrance

GEO-130-D One Lane Tapered Exit

CHSK I		
1	-	1
Pablic Contractor	and and the	manna - 1 are
- And States		
CASE 11	-	
*		- 4
与能		1
4	all	
AND DESCRIPTION OF TAXABLE PARTY.	The sector of th	and of the Name of Street
	C-640	USING THE DESIDE GARD FOR DRE-SLIPE TAPTIED CAST MAR*
Withor * man		Callen Ho-the-t

GEO-131-D One Lane Parallel Exit

GEO-140-B Two Lane Exit

GEO-150-C Successive Exit

GEO-202-B 12' Width Entrance & Exit Slip

MINIMUM ENGLISH LENGTHS FOR TAPERED ENTRANCE RAMPS

		TAPER ∆=0°5			=60:1 7'17"	TAPER ∆=1°0		TAPER ∆=1°0	=50:1 8'45"	TAPER Δ=1°1	
RAMP DESIGN SPEED (MPH)	PERCENT GRADE OF THROUGH	RDAD DES[GN = 75	SPEED	ROAD DESIGN = 70 M	SPEED	ROAD DESIGN = 60	SPEED		WAY SPEED 50 MPH	ROAD DESIGN 45 or I	SPEED =
(MPH)	ROADWAY	T = 7 Lgap =		T = 7 Lgap =	20 FT 360 FT	T = 6 Lgap =		T = 6 Lgap =	00 FT 300 FT	T = 5 Lgap =	
		La	Q	La	Q	La	Q	La	Q	La	Q
		(FT)	(FT)	(FT)	(FT)	(FT)	(FT)	(FT)	(FT)	(FT)	(FT)
	-3 TO LESS THAN -5	978	27.1	912	27.2	660	24.0	506	22.2	450	22.0
20	BETWEEN -3 AND +3	1630	37.1	1520	37.4	1100	32.0	810	28.2	450	22.0
	+3 TO LESS THAN +5	2528	50.9	2280	50.0	1540	40.0	1094	33.9	608	25.5
	-3 TO LESS THAN -5	948	26.6	852	26.2	612	23.2	500	22.0	450	22.0
25	BETWEEN -3 AND +3	1580	36.4	1420	35.7	1020	30.6	780	27.6	450	22.0
	+3 TO LESS THAN +5	2528	50.9	2201	48.7	1479	38.9	1092	33.9	608	25.5
	-3 TO LESS THAN -5	906	26.0	810	25.5	555	22.0	500	22.0	450	22.0
30	BETWEEN -3 AND +3	1510	35.3	1350	34.5	910	28.6	670	25.4	450	22.0
	+3 TO LESS THAN +5	2492	50.4	2160	48.0	1365	36.9	972	31.5	608	25.5
	-3 TO LESS THAN -5	852	25.2	738	24.3	550	22.0	500	22.0	450	22.0
35	BETWEEN -3 AND +3	1420	33.9	1230	32.5	800	26.6	550	23.0	450	22.0
	+3 TO LESS THAN +5	2450	49.7	2030	45.9	1200	33.9	798	28.0	608	25.5
	-3 TO LESS THAN -5	696	22.8	600	22.0	550	22.0	500	22.0	450	22.0
40	BETWEEN -3 AND +3	1160	29.9	1000	28.7	550	22.0	500	22.0	450	22.0
	+3 TO LESS THAN +5	2088	44.2	1700	40.4	825	27.0	725	26.5	608	25.5
	-3 TO LESS THAN -5	650	22.0	600	22.0	550	22.0	500	22.0	450	22.0
45	BETWEEN -3 AND +3	1040	28.0	820	25.7	550	22.0	500	22.0	450	22.0
	+3 TO LESS THAN +5	1924	41.6	1435	36.0	825	27.0	725	26.5	608	25.5
	-3 TO LESS THAN -5	650	22.0	600	22.0	550	22.0	500	22.0		
50	BETWEEN -3 AND +3	780	24.0	600	22.0	550	22.0	500	22.0		
	+3 TO LESS THAN +5	1482	34.8	1080	30.0	825	27.0	725	26.5		
	-3 TO LESS THAN -5	650	22.0	600	22.0	550	22.0	500	22.0		
55	BETWEEN -3 AND +3	650	22.0	600	22.0	550	22.0	500	22.0		
	+3 TO LESS THAN +5	1268	31.5	1080	30.0	825	27.0	725	26.5		
	-3 TO LESS THAN -5	650	22.0	600	22.0	550	22.0				
60	BETWEEN -3 AND +3	650	22.0	600	22.0	550	22.0				
	+3 TO LESS THAN +5	1268	31.5	1080	30.0	825	27.0				
	-3 TO LESS THAN -5	650	22.0	600	22.0						
65	BETWEEN -3 AND +3	650	22.0	600	22.0						
	+3 TO LESS THAN +5	1268	31.5	1080	30.0						
	-3 TO LESS THAN -5	650	22.0	600	22.0						
70	BETWEEN -3 AND +3	650	22.0	600	22.0						
	+3 TO LESS THAN +5	1268	31.5	1080	30.0						
	-3 TO LESS THAN -5	650	22.0								
75	BETWEEN -3 AND +3	650	22.0								
	+3 TO LESS THAN +5	1268	31.5								
·											

								TAPER=65:1 ∆=0°52′53″	TAPER=60:1 ∆=0°57′17″	TAPER=55:1 A=1*02'30"	TAPER=50:1 ∆=1*08'45″	TAPER=45:1 ∆=1°16′23″
мт	NIMUM ENGL	ISH LENG	THS FOR F	PARALLEL	ENTRANCE	RANP DESJGN SPEED (WPH)	PERCENT GRADE OF THROUGH	RDADWAY DESIGN SPEED = 75 WPH	ROADWAY DESIGN SPEED = TO NPH	ROADWAY DESIGN SPEED = 60 MPH	ROADWAY DESIGN SPEED = 55 to 50 MPH	ROADWAY DESIGN SPEED = 45 or less WPH
		TAPER-45:1		TAPER-55:1	TAPER-10:1		ROADWAY	B = 390 FT C = 260 FT	B = 360 FT C = 240 FT	B = 330 FT C = 220 FT	B = 300 FT C = 200 FT	B = 270 FT C = 180 FT
RAMP	PERCENT	A=0"52'53" ROADMAY	TAPER-60:1 4=0*57'17" Roadway	4=1*02'30" ROADWAY	A=1°08'45" PO406AY			Lgap = 390 FT	Lgap = 360 FT	Lgap = 330 FT	Lgap = 300 FT	Lgap = 270 FT
DESCON	GRADE	DESIGN SPEED 75 MPH	DESIGN SPEED - TO MPH	DESIGN SPEED = 60 MPH	DESCRIM SPEED = 55 to 50 NPH			La (FT)	La (FT)	La (FT)	La (FT)	La (FT)
(HPH)	THROUGH ROADWAY	8 = 398 FT	2 = 348 日	8 = 330 FT C = 220 FT	8 = 300 FT C = 200 FT		-3 TO LESS THAN -5	978	912	660	506	450
		Lgap = 390 FT	Lgap = 360 FT	Lgap = 330 FT	Lgap = 300 FT	20	BETWEEN -3 AND +3	1630 2528	1520	1100 1540	810 1094	450
	-3 TO LESS THAN -5	L _G (FT) 978	La (FT) 912	La (FT) 660	L ₀ (FT) 506		+3 TO LESS THAN +5 -3 TO LESS THAN -5	2528	2280 852	612	500	608 450
20	BETWEEN -3 AND +3 +3 to less than +5	1630 2528	1520 2280	1100	810 1094	25	BETWEEN -3 AND +3	1580	1420	1020	780	450
25	-3 TO LESS THAN -5 Between -3 and +3	948 1580	852 1420	6L2 1020	500 780	_	+3 TO LESS THAN +5	2528	2201	1479	1092	608
	+3 TO LESS THAN +6 -3 TO LESS THAN -5	2528 906	220L 810	1479 550	1092 500		-3 TO LESS THAN -5	906	810	550	500	450
30	BETWEEN -3 AND +3 +3 TO LESS THAN +0	1510	1350 2160	910	670 972	30	BETWEEN -3 AND +3	1510	1350	910	670	450
35	-3 TO LESS THAN -5 Between -3 and +3	852 1420	738	550	500		+3 TO LESS THAN +5	2492	2160	1365	972	608
~	+3 TO LESS THAN +6 -3 TO LESS THAN -5	2400	2030	1200 550	718	35	-3 TO LESS THAN -5 BETWEEN -3 AND +3	852 1420	738 1230	550 800	500 550	450 450
40	BETWEEN -3 AND +3 +3 TO LESS THAN -6	1160 2088	1000	550 825	500	33	+3 TO LESS THAN +5	2450	2030	1200	798	608
	-3 TO LESS THAN -5	650	600	550	500		-3 TO LESS THAN -5	696	600	550	500	450
45	HETWEEN -3 AND +3 +3 to less than +5	1040 1924	820 1435	550 825	500 725	40	BETWEEN -3 AND +3	1160	1000	550	500	450
50	-3 TO LESS THAN -5 Between -3 and +3	650 780	600 600	550 550	500 500		+3 TO LESS THAN +5	2088	1700	825	725	608
	+3 to less than +6 -3 to less than -5	1482 650	1080 600	825 550	725 500		-3 TO LESS THAN -5	650	600	550	500	450
55	BETWEEN - <u>3 and +3</u> +3 to less than +5	650 1268	600 1080	550 825	500 725	45	BETWEEN -3 AND +3 +3 TO LESS THAN +5	1040 1924	820 1435	550 825	500 725	450 608
60	-3 TO LESS THAN -5 BETWEEN -3 AND +3	650 650	600 600	550 550		<u> </u>	-3 TO LESS THAN -5	650	600	550	500	000
	+3 TO LESS THAN +5 -3 TO LESS THAN -5	1268 650	1080 600	825]	50	BETWEEN -3 AND +3	780	600	550	500	
65	BETWEEN -3 AND +3 +3 TO LESS THAN +5	650 1268	600 1080				+3 TO LESS THAN +5	1482	1080	825	725	
70	-3 TO LESS THAN -5 Between -3 and +3	650 650	600 600	1			-3 TO LESS THAN -5	650	600	550	500	
	+3 TO LESS THAN -5	1268	1080	1		55	BETWEEN -3 AND +3	650	600	550	500	
	BETWEEN -3 AND +3 +3 TO LESS THAN +6	650 1248					+3 TO LESS THAN +5 -3 TO LESS THAN -5	1268 650	1080 600	825 550	725	
	10 LE33 IMAN 13	1246				60	BETWEEN -3 AND +3	650	600	550		
							+3 TO LESS THAN +5	1268	1080	825		
							-3 TO LESS THAN -5	650	600			
						65	BETWEEN -3 AND +3	650	600			
							+3 TO LESS THAN +5	1268	1080			
						70	-3 TO LESS THAN -5	650	600			
						10	BETWEEN -3 AND +3 +3 TO LESS THAN +5	650 1268	600 1080			
							-3 TO LESS THAN -5	650	2000	I		
						75	BETWEEN -3 AND +3	650				
							+3 TO LESS THAN +5	1268				

NOT	FF C .
- NU	1.5.5

- The designer has the flexibility to choose either the taper type ramp or the parallel type ramp. However, the same type of entrance and exit ramp should be used within an interchange and corridor. Uniformity in design is needed to aid driver expectancy. On sharp curves, it may be preferable to use parallel type ramps.
- Select design speed based on a combination of the superelevation rate and the radius of the curve. See also chapter 3 of the MDDT Road Design Manual.
- If an additional through lane is provided or the entrance ramp joins the mainline on the high side (outside) of the curve, use GEO-101-Series.
- If the through pavement is curved, plot offsets for taper and connect with appropriate curve.
- 5. Prepare detail grades and profiles from Section A-A to section B-B.
- 6. The value of La or Lgap, whichever produces the greater distance downstream from the 2 ft (0.6 m) point, is suggested for use in the design of the ramp entrance. La is the acceleration distance. Lgap is the minimum distance required to find a gap in traffic and merge onto the mainline.
- 7. Spirals transitions should be used on new ramp alignments based on the design speed of the curve and the radius as shown in the table of the Road Standard Plan R-107-Series. The table gives the maximum radius in which a spiral should be used.
- The maximum algebraic difference in pavement cross slope between the mainline and the ramp auxiliary lane should not exceed 5%.
- 9. The cross slope in the gore area between the 2 ft (0.6 m) point and the 22 ft (6.6 m) point should not exceed 8%, with a 6% maximum algebraic difference in cross slope between the gore and the adjacent paved lane. This algrebraic difference also applies within crowned gores.
- The design speed of the ramp vertical alignment should meet or exceed the design speed of the ramp horizontal alignment.
- The mainline shoulder width should extend along the ramp to where the gore is 2 ft (0.6 m) wide. Use a 1:25 taper transition where it joins the ramp shoulder paving.
- Each ramp should be carefully studied to provide maximum vision at its merge points. See Geometric Design Guide GEO-300-Series.
- These design concepts are for new construction. Where modification may be needed for retrofitting to existing road features, consult the Geometric Design Unit of Lansing Traffic and Safety.

NOT TO SCALE				
MECHIGAN DEPARTMENT OF TRANSPORTATION TH	AFF[C AND SAFETY GEOMETR]C DES]GN G	UIDE 09/06/2007	CE0-100-E	SHEET
FILE:PW/RD/TS/Geom D/mdot GE0100E E0C.dgn	REV. 05/24/2011 j†	PLAN DATE:	GEU-100-F	4 OF 4

RAMP DES]GN SPEED	PERCENT GRADE OF	TAPER=30:1 ∆=1°54′33″ RDADWAY DESIGN SPEED		∆=1°5 RDAD DESIGN	SPEED	∆=2°1 ROAD DESJGN	WAY SPEED	∆≕2°1 ROAD DESIGN	WAY	∆=2°1 RDAD DES[GN	
(MPH)	THROUGH		= 75 MPH = 70 MPH L _d min = 330 L _d min = 330			= 60 MPH L _d min = 300			0 MPH	OR LESS L _d min = 300	
		Ld (FT)	Q (FT)	Ld (FT)	Q (FT)	La (FT)	Q (FT)	Ld (FT)	Q (FT)	La (FT)	Q (FT)
20	-3 TO LESS THAN -5 BETWEEN -3 AND +3	744 620	36.8 32.7	684 570	34.8 31.0	576 480	35.1 31.2	528 440	33.2 29.6	390 325	27.6 25.0
	+3 TO LESS THAN +5 -3 TO LESS THAN -5	558 720	30.6 36.0	513 660	29.1 34.0	432 552	29.3 34.1	396 492	27.9 31.7	300 354	24.0 26.2
25	BETWEEN -3 AND +3 +3 TO LESS THAN +5	600 540	32.0 30.0	550 495	30.4 28.5	460 414	30.4 28.6	410 369	28.4 26.8	300 300	24.0 24.0
30	-3 TO LESS THAN -5 BETWEEN -3 AND +3	690 575	35.0 31.2	624 520	32.8 29.4	516 430	32.7 29.2	456 380	30.3 27.2	300 300	24.0 24.0
	+3 TO LESS THAN +5 -3 TO LESS THAN -5	518 642	29.3 33.4	468 588	27.6 31.6	387 486	27.5 31.5	342 420	25.7 28.8	300 300	24.0 24.0
35	BETWEEN -3 AND +3 +3 TO LESS THAN +5	535 482	29.9 28.1	490 441	28.4 26.7	405 365	28.2	350 315	26.0 24.6	300 300	24.0 24.0
40	-3 TO LESS THAN -5 BETWEEN -3 AND +3	588 490	31.6 28.4	528 440	29.6 26.7	420 350	28.8 26.0	342 300	25.7 24.0	300 300	24.0 24.0
45	+3 TO LESS THAN +5 -3 TO LESS THAN -5	441 528	26.7	396 468	25.2	315 360	24.6	300 300	24.0	300 300	24.0
45	BETWEEN -3 AND +3 +3 TO LESS THAN +5 -3 TO LESS THAN -5	440 396 468	26.7 25.2 27.6	390 351 432	25.0 23.7 26.4	300 300 300	24.0 24.0 24.0	300 300 300	24.0 24.0 24.0	300 300	24.0 24.0
50	BETWEEN -3 AND +3 +3 TO LESS THAN +5	390 351	25.0	360	24.0	300 300	24.0	300 300 300	24.0		
55	-3 TO LESS THAN -5 BETWEEN -3 AND +3	468	27.6	432 360	26.4	300 300	24.0	300 300	24.0		
	+3 TO LESS THAN +5 -3 TO LESS THAN -5	351 468	23.7	330 432	23.0 26.4	300 300	24.0	300	24.0		
60	BETWEEN -3 AND +3 +3 TO LESS THAN +5	390 351	25.0 23.7	360 330	24.0 23.0	300 300	24.0				
65	-3 TO LESS THAN -5 BETWEEN -3 AND +3	468 390	27.6 25.0	432 360	26.4 24.0			I			
	+3 TO LESS THAN +5 -3 TO LESS THAN -5	351 468	23.7 27.6	330 432	23.0 26.4						
70	BETWEEN -3 AND +3 +3 TO LESS THAN +5	390 351	25.0 23.7	360 330	24.0 23.0						
75	-3 TO LESS THAN -5 BETWEEN -3 AND +3	468 390	27.6 25.0								
	+3 TO LESS THAN +5	351	23.7]							

RAMP DESIGN SPEED	PERCENT GRADE OF	TAPER=30:1 ∆=1*54'33" ROADWAY DESJGN SPEED = 75 MPH	TAPER=30:1 ∆=1*54'33" ROADWAY DESIGN SPEED = 70 WPH	TAPER=25:1 ∆=2*17'26" ROADWAY DESIGN SPEED = 60 MPH	TAPER=25:1 Δ=2*17'26" ROADWAY DESJGN SPEED = 55 MPH TO 50 MPH	TAPER=25:1 ∆=2*17'26" ROADWAY DESIGN SPEED = 45 WPH OR LESS
(MPH)	THROUGH ROADWAY	0 = 23' Lomin = 350'	0 = 23' L _d min = 350'	0 = 24' L _d min = 300'	0 = 24' L _d min = 300'	0 = 24' L _d min = 300'
		Ld (FT)	Ld (FT)		La (FT)	(FT)
	-3 TO LESS THAN -5	744	684	576	528	390
20	BETWEEN -3 AND +3	620	570	480	440	325
	+3 TO LESS THAN +5	558	513	432	396	300
25	-3 TO LESS THAN -5 BETWEEN -3 AND +3	720	660 550	552 460	492 410	354 300
25	+3 TO LESS THAN +5	540	495	460	410	300
	-3 TO LESS THAN -5	690	624	516	456	300
30	BETWEEN -3 AND +3	575	520	430	380	300
	+3 TO LESS THAN +5	518	468	387	342	300
75	-3 TO LESS THAN -5	642	588	486	420	300
35	BETWEEN -3 AND +3 +3 TO LESS THAN +5	535 482	490 441	405 365	350 315	300 300
	-3 TO LESS THAN -5	588	528	420	342	300
40	BETWEEN -3 AND +3	490	440	350	300	300
	+3 TO LESS THAN +5	441	396	315	300	300
	-3 TO LESS THAN -5	528	468	360	300	300
45	BETWEEN -3 AND +3 +3 TO LESS THAN +5	440	390	300	300 300	300
	-3 TO LESS THAN -5	396 468	351 432	300 300	300	300
50	BETWEEN -3 AND +3	390	360	300	300	
	+3 TO LESS THAN +5	351	350	300	300	
	-3 TO LESS THAN -5	468	432	300	300	
55	BETWEEN -3 AND +3	390	360	300	300	
	+3 TO LESS THAN +5 -3 TO LESS THAN -5	351 468	350 432	300 300	300	
60	BETWEEN -3 AND +3	390	452	300		
00	+3 TO LESS THAN +5	351	350	300		
	-3 TO LESS THAN -5	468	432			
65	BETWEEN -3 AND +3	390	360			
	+3 TO LESS THAN +5	351	350			
70	-3 TO LESS THAN -5 BETWEEN -3 AND +3	468 390	432 360			
	+3 TO LESS THAN +5	351	350			
	-3 TO LESS THAN -5	468		I		
75	BETWEEN -3 AND +3	390				
Note:	<u>+3 TO LESS THAN +5</u> When an L _d value the parallel por- with the mainling	tion of the rar	np is om itted,	and the ramp to	of 60 mph and aper connects o	∣ess. direct∣y

NOTES: 1. The designer has the flexibility to choose the taper type ramp or the parallel type ramp. However, the same type of entrance and exit ramp should be used within an interchange and corridor. Uniformity in design is needed to aid driver expectancy. On sharp curves, it may be preferable to use parallel type ramp. 2. Select design speed based on a combination of the superelevation rate and the radius of the curve. See also chapter 3 of the MDOT Road Design Manual. 3. If an additional through lane is provided or the exit ramp leaves the mainline on the high side (outside) of the curve, use GEO-131-Series. 4. If the through payement is curved, plot offsets for taper and connect with the appropriate curve. 5. Prepared detail grades and profiles from Section B-B through Section A-A. 6. Spirals transitions should be used on new ramp alianments based on the design speed of the curve and the radius as shown in the table of the Road Standard Plan R-107-Series. The table gives the maximum radius in which a spiral should be used. 7. The maximum algebraic difference in pavement cross slope between the mainline and the ramp auxiliary lane should not exceed 5%. 8. The cross slope in the gore area between the 2 ft (0.6m) point and the 22 ft (6.6 m) point should not exceed 8%, with a 6% maximum algebraic difference in cross slope between the gore and the adjacent paved lane. This algebraic difference also applies within crowned gores. 9. The design speed of the ramp vertical alignment should meet or exceed the design speed of the ramp horizontal alignment. 10. The mainline shoulder width should extend along the ramp to where the gore is 2 ft (0.6 m) wide. Use a 1:25 taper transition where it joins the ramp shoulder paving. 11. Each ramp will be carefully studied to provide maximum vision at its merge points. See Geometric Design Guide Geo-300-Series. 12, Caution must be used in positioning a taper type deceleration lane on a left turning highway. The exit should begin before or after the P.C. or S.T. to avoid having the appearance of an extension of the mainline to the motorist. Consider using a parallel type deceleration lane. 13. The sight distance in advance of the exit ramp gore should be at least 25% longer than the minimum stopping sight distance for the design speed of the mainline. 14. These design concepts are for new construction. Where modification may be needed for retrofitting to existing road features, consult with the Geometric Design Unit of Lansing Traffic and Safety. NOT TO SCALE MECHIGAN DEPARTMENT OF TRANSPORTATION TRAFFIC AND SAFETY GEOMETRIC DESIGN GUIDE 08/07/2008 SHEET GEO-130-D FILE:PW RD-TS-T-Geometrics/GE0130C DEVDAT.dgn PLAN DATE: REV, 05/24/2011 it 5 OF 5

Upgrading Existing One-Lane ENTRANCE Ramps on "3R" Freeway Projects

Tapered GEO-100

(Meet L_a and L_{gap})

Locate 12' Width Point

Stub on Length of Parallel 12' Lane as Needed to Achieve Required L_a and L_{gap} Distances

Add 300' Closing Taper

Parallel GEO-101

 $(\text{Meet } L_a \text{ and } L_{gap})$

Locate End of 12' Parallel Lane

Stub on Length of Parallel 12' Lane as Needed to Achieve Required L_a and L_{gap} Distances

Add 300' Closing Taper

Upgrading Existing One-Lane EXIT Ramps on "3R" Freeway Projects

Tapered GEO-130

(Meet L_d)

Locate 12' Width Point

Stub on Length of Parallel 12' Lane as Needed to Achieve Required L_d Distance

Add 300' Opening Taper

Parallel GEO-131

(Meet L_d)

Locate End of 12' Parallel Lane

Stub on Length of Parallel 12' Lane as Needed to Achieve Required L_d Distance

Add 300' Opening Taper

		US (Custor	mary						
Highway design speed (mph)	30	35	40	45	50	55	60	65	70	75
Ramp design speed (mph)										
Upper range (85%)	25	30	35	40	45	48	50	55	60	65
Middle range (70%)	20	25	30	33	35	40	45	45	50	55
Lower range (50%)	15	18	20	23	25	28	30	30	35	40
Corresponding minimum radius (ft)	To D				n Radi In R-10					Ramp

Exhibit 10-56. Guide Values for Ramp Design Speed as Related to Highway Design Speed

12' Width Entrance and Exit Slip Ramps

Slip Ramps Connect a Freeway to a Parallel Service Road Not a Perpendicular Crossroad

> Only for Use on True "Urban" Freeways Maximum Design Speed 60 mph

Minimum Radii of 1145' (Maximum Curvature of 5°) for Any Horizontal Curves

_	
NO	TES:
1	Select design speed based on a combination of the superelevation rate and the radius of the curve. See also chapter 3 of the MDDT Road Design Nanual.
2.	. If an additional through lane is provided or the entrance ramp joins the mainline on the high side (outside) of the curve, use GEO-101-Series.
3.	If the through povement is curve, plot offsets for toper and connect with appropriate curve.
4,	Prepare detail grades and profiles from Section A-A to Section 8-8.
5.	A curve on the exit romp beyond the gore may be introduced when mecessary but should have a 1145 ft (350ml minimum rodius for slip exit romps.
6.	A parallel entrance acceleration lane length "5" of at least 1000' (324 m), plus taper, is desirable wherever it is anticipated that the ramp and freeway will carry traffic volumes approximately equal to the design capacity of the merging area.
7,	Spirals transition should be used on new ramp alignments based on the design speed of the ourve and the radius as shown in the table of the Road Standard Plan R-107-Series. The table gives the Maxium radius in which a spiral should be used.
Β,	The maximum algebraic difference in pavement cross slope between the mainline and the ramp ouxiliary lane should not exceed 5%.
9,	Superelevation should conform to Standard Plan R-107-Series. The maximum rate of superelevation for ramp curves should be 5%.
10.	The cross slope in the gore area between the 2 ft (D.6m) point and the 22 ft (6.6 m) point should not exceed 8%, with a 6% maximum algebraic difference in cross slope between the gore and the adjacent paved lane. The algebraic difference also applies within crowned gores.
1.	The design speed of the ramp vertical alignment should meet or exceed the design speed of the ramp horizontal alignment.
2.	The mainline shoulder width should extend along the ramp to where the gare is 2 ft (0.6 m) wide. Use a 1:25 taper transition where it joins the ramp shoulder paving.
3.	Each ramp should be corefully studied to provide maximum vision at their merge points. See Geometric Design Guide GEO-300-Series.
4.	The sight distance in advance of the exit ramp gare should be at least 25% longer than the minimum stopping sight distance for the design speed of the mainline.
5,	These design concepts are for new construction. Where modifications are needed for retrofitting to existing road features, consult the Geometric Design Unit of Lansing Traffic and Safety.
)T	TO SCALE
nu DA En Pa	N DEPARTMENT OF THANSPORTATION TRAFFIC AND SAFETY DEDMETRIC DESIGN QUIDE REVISED GED-202-B SHEET / D RD TS T D GEON DAGED2028 Devist.2001 HEV. 04/09/2008 PLAN DATE: GED-202-B

CLEAR VISION AREAS

- Geometric Design Guidance 1.1.3
- Geometric Design Guide
 GEO-300-D
- Ramps
- Crossroad
- Terminals
- Merge/Diverge Areas

1.1.3 Clear Vision Areas

In order to enhance the safe and efficient movement of traffic, the acquisition of certain properties (or portions thereof) at intersections sometimes is necessary. The following guidelines should be followed.

Clear vision areas will be obtained at all at-grade intersections of trunklines with other roads or streets in rural areas including freeway ramps. Interchange ramps are considered trunkline.

Clear vision areas will not be obtained within urban areas as determined by the Bureau of Transportation Planning's urban area boundary description and map. Clear vision areas will not be obtained within rural areas contiguous to sections of trunkline where urban conditions exist to the extent that 50 percent or more of the trunkline frontage is occupied by residential, business, or industrial development.

The Region/TSC Traffic and Safety Representative reviews each case from a traffic operational and safety standpoint and recommends one of the following courses of action: acquire all or part of area, defer acquisition in particular quadrant to future date, or eliminate all clear vision.

For additional information and guidance regarding clear vison areas, please refer to <u>MDOT</u> <u>Geometric Design Guide GEO-300</u> and the <u>Michigan Road Design Manual, Chapter 5</u>. <u>Right Of Way</u>.

CLEAR VISION AREAS

1.1.3 Clear Vision Areas

In order to enhance the safe and efficient movement of traffic, the acquisition of certain properties (or portions thereof) at intersections sometimes is necessary. The following guidelines should be followed.

Clear vision areas will be observed at all at-grade intersections of trunklines with other roads or streets in rural areas in adding freeway ramps. Interchange ramps are considered trunkline.

Clear vision areas will not be obtained within urban areas as determined by the Bureau of Transportation Planning's urban area boundary description and map. Clear vision areas will not be obtained within rural areas contiguous to sections of trunkline where urban conditions exist to the extent that 50 percent or more of the trunkline frontage is occupied by residential, business, or industrial development.

The Region/TSC Traffic and Safety Representative reviews each case from a traffic operational and safety standpoint and recommends one of the following courses of action: acquire all or part of area, defer acquisition in particular quadrant to future date, or eliminate all clear vision.

For additional information and guidance regarding clear vison areas, please refer to <u>MDOT</u> <u>Geometric Design Guide GEO-300</u> and the <u>Michigan Road Design Manual, Chapter 5</u>, Right Of Way.

L.A. ROW & CLEAR VISION AREAS

L.A. ROW & CLEAR VISION AREAS

GEO-300-D

(Sheet 5 of 6)

L.A. ROW & CLEAR VISION AREAS

GEO-300-D (Sheet 3 of 6)

QUESTIONS

INTERSECTION DESIGN

INTERSECTIONS

Intersection – The general area where two or more roadways join or cross, including the roadway and roadside facilities for traffic movements within the area.

INTERSECTIONS

Types T - Three Leg 4 – Leg Multi-Leg

INTERSECTIONS

Provide Ease/Control of Access Consistent with the Function of Intersecting Roadways

The...

Efficiency Safety Speed Delay Capacity

...of the Facility Depend on the Design

INTERSECTION DESIGN ELEMENTS

INTERSECTIONS

Keep Access Points Out of Functional Intersection Area

INTERSECTIONS

Intersecting Roads Should Meet At Right Angles

75° to 105° Desirable

Side Roads Landings $\leq 2\%$

Adequate ISD & Clear Vision Corners Should be Provided

TURNED IN ROADWAYS

TRAFFIC AND SAFETY NOTE 612A

- SUBJECT: Clear Vision Areas
- PURPOSE: Provide Guidance on When to Obtain Clear Vision Areas

COORDINATING UNIT: Geometric Design Unit

INFORMATION: In order to enhance the safe and efficient movement of traffic, the acquisition of certain properties, or portions thereof, at intersections sometimes is necessary. The following guidelines should be followed.

Clear vision areas will be obtained at all at-grade intersections of trunklines with other roads or streets in rural areas including freeway ramps. Interchange ramps are considered trunkline.

Clear vision areas will not be obtained within urban areas as determined by the Bureau of Transportation Planning's urban area boundary description and map. Clear vision areas will not be obtained within rural areas contiguous to sections of trunkline where urban conditions exist to the extent that 50 percent or more of the trunkline frontage is occupied by residential, business, or industrial development.

The Region/TSC Traffic and Safety Representative reviews each case from a traffic operational and safety standpoint and recommends one of the following courses of action: acquire all or part of area, defer acquisition in particular quadrant to future date, or eliminate all clear vision.

INTERSECTIONS

INTERSECTIONS

GEO-650

NOTES:

- An intersecting road as herein defined may be a city street, county road or state highway.
- 2. 12' (3.6m) while lanes are to be used unless conditions require narrower lanes.
- 3. On horizontal curves, the cross slope on turn lanes should be the same as the through pavement. Where physical constraints do not make this practical the maximum allowable algebraic difference in cross-slope between the turn lane and mainline is 5%, with a desirable maximum of 4%.
- 4. See Standard Plan R-30-Series for curb and gutter details.
- 5. Clear vision areas should be considered at all intersections.
- Alternate Typical A may be used when construction and maintenance make the 13.5' (4.1m) curb setback undesirable or the crossroad is curbed.
- Current AASHTO "A Policy on Geometric Design of Highways and Streets" and WDOT Guidelines should be used for sight distance requirements.
- See Traffic & Safety Note 614A for guidance on nearside and farside lane drops at intersections.
- 9. These design concepts are for new construction. Where modification may be needed for retrofitting to existing road features, consult the Geometric Review and Congestion Analysis Unit, Division of Operations.

Potential Benefits:

- Reduced Delay
- > Reduced Conflict Points
- Reduced Crash Severity
- > Reduced Bridge Width
- > Reduced Design Requirements

Yield at Entry

Deflected at Entry

Flared at Entry

Traffic Calming

Exhibit 9-16. Typical Modern Roundabout

Common Misconceptions:

> **Do Not Accommodate Large Trucks**

> Difficult to Navigate/Confusing to Motorists

ROUNDABOUTS IN MICHIGAN

Number of Roundabouts (Existing/Constructed)	Location	County	Time of Construction
3 (2 trunkline)	US-23/8 Mile Road Interchange 8 Mile Road and Whitmore Lake Road	Washtenaw/ Livingston	
2	US-23/N. Territorial Road Interchange	Washtenaw	
	M-52 at Church/Broad Street	Lenawee	
1	US-41 at Grove Street	Marguette	
1	US-41 at Marguette Hospital Drive	Marquette	
2	1-94 at Sprinkle Rd, interchange	Kalamazoo	
ī	US-12 at old M-205 and Five Points Road	Cass	
2	M-72 near US-31, Acme	Grand Traverse	
I	US-131 at Fife Lake Road	Grand Traverse	
1	M-52 at Werkner Rd.	Washtenaw	
1	US-41/M-28 at 2nd St.	Marquette	
ı	M-11 at Remembrance Rd., Walker	Kent	September 2015
I	M-30 at WB US-10 Ramps, Sanford	Midland	June, 2015
1	US-10 BR/ M-20 at Patrick Road, Midland	Midland	2014
1	M-37/M-115 east junction near Mesick	Wexford	September 2013
2	US-23/US-223 interchange	Monroe	August 2013
L	M-93 at Camp Grayling/ Howe Road, Grayling Township	Crawford	2012
1	M-5 at Pontiac Trail, Commerce Township	Oakland	2012
2	the I-94 at Main Street interchange, Mattawan	Van Buren	September 2011
2	US-23 at Geddes Road interchange, Ann Arbor and Ann Arbor Township	Washtenaw	October 2010
1	US-41/M-28 at Front Street, Marquette	Marquette	September 2010
2	I-94 Business Loop/Main Street at Riverview Drive and at 5th Street, Benton Harbor	Berrien	November 2009
1	M-46 at M-37/ Newaygo Rd	Muskegon	October 2009
1	US-127 Business Route at Mission Road, Clare	Isabella	June 2009
2	M-53 at 26 Mile Road interchange	Macomb	July 2009
1	M-43 at the intersection of 72nd St. / County Road (CR) 689 and 12th Avenue CR 384, South Haven	Van Buren	November 2008
2	M-14 at Maple Road interchange, Ann Arbor	Washtenaw	July 2007
2	1-75/M-81 interchange	Saginaw	December 2006
3 (2 trunkline)	US-23 at Lee Rd. Interchange (US- 23/Lee Rd./ Whitmore Lake Rd.)	Livingston	2006
i	M-53 at 18 ½ Mile (Van Dyke) Road, Sterling Heights	Macomb	June 2005
Total:			
44	30		

Location	County	Time of Construction
I-75BL/Mackinac Trail/3 Mile Road		February 2018 Letting
I-94/Cooper Street Interchange		June 2018 Letting
NB 1-75 Ramps at Bristol Rd.		
US-23/US-12 Interchange		
M-343 at G Avenue	Kalamazoo	
5		
	I-75BL/Mackinac Trail/3 Mile Road I-94/Cooper Street Interchange NB I-75 Ramps at Bristol Rd. US-23/US-12 Interchange	I-75BL/Mackinac Trail/3 Mile Road I-94/Cooper Street Interchange NB I-75 Ramps at Bristol Rd. US-23/US-12 Interchange

Roundabout in Saginaw County at I-75@M-81

ROUNDABOUT DESIGN GUIDANCE

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

Roundabout Design Aid

PREPARED BY TRAFFIC AND SAFETY

October 2019

NCHRP REPORT 672

Roundabouts: An Informational Guide

Second Edition

Lee Rodegerdts, Justin Bansen, Christopher Tiesler, Julia Knudsen, and Edward Myers KITTELSON & ASSOCIATES, INC. Portland, OR

> Mark Johnson MTJ ENGINEERING, INC. Madison, WI

Michael Moule LIVABLE STREETS INC. Tampa, FL

Bhagwant Persaud and Craig Lyon PERSAUD AND LYON Toronto, ON, Canada

Shauna Hallmark and Hillary Isebrands Center for Transportation Research and Education Iowa State University Ames, IA

> R. Barry Crown RODEL SOFTWARE LTD United Kingdom

> > Bernard Guichet CETE L'OUEST France

Andrew O'Brien O'BRIEN TRAFFIC Australia

Subscriber Categories Highways • Design

Research sponsored by the American Association of State Highway and Transportation Officials in cooperation with the Federal Highway Administration

TRANSPORTATION RESEARCH BOARD

WASHINGTON, D.C. 2010 www.TRB.org

DIVIDED ROADWAY INTERSECTIONS

Michigan Vehicle Code

"...where a highway includes two roadways 30 feet or more apart, then every crossing of each such divided highway by an intersecting highway shall be regarded as a separate intersection..."

MMUTCD

Provides direction for use and placement of TCD's at divided highway intersections

CR

BI-DIRECTIONALS

FREE-ACCESS

Dimensions may vary depending on design vehicle and turning movements. See GED-650-Series for addtional details.

7**0-E**)

CR

MINIMUM DESIGNS FOR U-TURNS

M - Min. width of median -7**0-**E) ft (m) for design vehicle WB-65 Type of Maneuver Ρ SU WB-50 BUS Left 44' 76' 82' 82' 80' Lane (.6m) (13.4m) (23.2m) (24m) (25m) (25m) to 12' (3.6m) [nner Lane Left 32' 64' 68' 70' 70' Lane 2' (.6m) 12' (3.6m) (9.8m) (19.5m) (20.7m) (21m) (21m) to 2nd Lane Left 22' 54' 58' 60' 60' Lane ≥ 2' to 3rd (.6m) 12' (3.6m) (6.7m) (16.5m) (17.7m) (18m) (18m) _____ Lane Vehicle Codes and Length of Design Vehicle - ft (m) * To accommodate WB-65 semi-trucks, provide 36' (11m) crossover width P = Passenger, 19' (5.8m) or 4' (1.2m) poved area behind curb SU = Single Unit Truck, 30' (9m) on the inside rodius, from spring point BUS = Bus, 40' (12m) to spring point. WB-50 = Semi-Truck Medium Size, 55' (16.5m) WB-65 = Semi-Truck Large Size, 70' (21m) NOTES: 1. Crossovers should be called for by their respective detail number or detailed in the plans. 2. Crossover details are to be used on free-access facilities only. 3. Bi-directional crossovers should have a minimum width of 30' (9m) at intersecting streets or commercial driveways which are 30' (9m) or less in width. For intersecting streets or commercial driveways that have a width of greater than 30' (9m), the width of the crossover should match the cross street width. 4. Desirably, free-access crossover grades should not exceed 3%; steeper grades require special study. 5. For type of curb on crossovers, see Sec. 6.06.06 of Road Design Manual. 6. For typical joint layouts on concrete pavement, see Standard Plan R-42-Series. 7. These design concepts are for new construction. Where modification may be needed for retrofitting to existing road features, consult the Geometric Review and Congestion Analysis Unit, Division of Operations. 8. Current AASHTD "A Policy on Geometric Design of Highways and Streets" and MDOT Guidelines should be used for sight distance requirements. NOT TO SCALE MICHIGAN DEPARTMENT OF TRANSPORTATION TRAFFIC AND SAFETY GEOMETRIC DESIGN GUID FILE:PW RD TS Geo/mdot traf GEO-670-E.don REV. 06/10/2014 SHEET GE0-670-E PLAN DATE: 5 DE 5

CROSSOVERS

Truck Loon Detail

INDIRECT LEFT TURNS

Advantages Safety Capacity Efficiency

Disadvantages

Adverse Distance Weaving

INDIRECT LEFT TURNS

DIRECT LEFT TURNS

1. Ensure design vehicle can turn opposite another design vehicle without encroaching. This can be verified with turning templates. Widen the median opening as needed.

2. Ensure (in high speed areas) that the left turn bay is placed such that a median shoulder can still be provided.

3. Ensure that there is adequate storage length for left-turning vehicles.

4. Ensure that once the design vehicle completes the left-turn that it does not encroach into the crossroad traffic's outbound lanes. This can be verified with turning templates.

RIGHT TURN LANES AND TAPERS

(Geometric Design Guidance Document 1.1.4) (Formerly Traffic and Safety Note 604A)

- At Any Intersection Where a Capacity Analysis Determines a Right Turn Lane is Required for a Desired LOS
- Crash Experience, Engineering Judgment, Indicates a Right Turn Lane will Improve Operations
- Any Unsignalized Intersection which Satisfies the Criteria on the Following Charts...

RIGHT

(Geomet (Form

APERS

nt 1.1.4) 604A)

Sample Problem: The Design Speed is 55 mph. The Peak Hour Approach Volume is 300 vph. The Number of Right Turns in the Peak Hous is 100 vph. Determine if a right turn lane is recommended.

Solution: Figure indicates that the intersection of 300 vph and 100 vph is located above the upper trend line; thus, a right-turn lane may be recommended.

LEFT TURN LANES AND FLARES (Geometric Design Guidance Document 1.1.5) (Formerly Traffic and Safety Note 605A)

- Unsignalized Intersections on Two-Lane Highways: Charts for 35 mph, 45 mph, and 55 mph
- Unsignalized Intersections on Four-Lane Highways: Chart for any/all speeds
- Any Intersection where...
 - Crash Experience
 - Traffic Operations
 - Sight Distance Concerns

... Indicate that a Left Turn would Improve Operations

LEFT ' (Geomet (Form

Two-Lane Highways

ARES nt 1.1.5)

nt 1.1.5 505A)

Instructions:

- The family of curves represent the percentage of left turns in advancing volume (V_A). The designer should locate the curve for the actual percentage of left turns. When this is not an even increment of 5, the designer should estimate where the curve lies.
- 2. Read VA and Vo into the chart and locate the intersection of the two volumes.
- Note the location of the point in #2 relative to the line in #1. If the point is to the right of the line, then a left-turn lane is recommended. If the point is to the left of the line, then a left-turn is not recommended based on traffic volumes.

LEFT T

(Geometr (Forme

Four-Lane Highways

FOUR-LANE HIGHWAYS

NOTE:

When $V_0 \leq 400$ vph (dashed line), a Left-Turn Lane is Not Normally Warranted Unless The Advancing Volume (V_A) in The Same Direction as the Left-Turning Traffic Exceeds 400 vph (V_A > 400 vph). LARES

ent 1.1.5) e 605A)

DRIVEWAY PASSING FLARES (Geometric Design Guidance Document 1.2.3) (Formerly Traffic and Safety Note 603A)

- Function of Peak Hour Left Turn Volume and 24 Hour Two-Way Volume
- Prohibit Left Turns
- Provide Driveway Passing Flare
- Cost Should be Borne by Developer
- See GEO-650-D for Design Considerations

1.2.3 Traffic Volume Guidelines for Driveway Passing Flares

DRI

Driveways serving large developments along state trunkline highways frequently generate large numbers of left-turns. On two-lane, two-way roadways, this situation can aggravate the efficiency of traffic operations and often make shoulder maintenance difficult. In such situations, prohibition of left-turns at driveways to large developments or construction of driveway passing flares should be considered. RES

it 1.2.3)

03A)

(Geome (For

In an attempt to alleviate the types of problems outlined above, the following chart is provided showing the relationship between peak hour left-turns and 24-hour volumes. When peak hour leftturns and 24-hour volumes fall within the area above and to the right of the trend line, left-turns should be prohibited or a driveway passing flare be installed. If a driveway passing flare is constructed, the entire cost should be borne by the developer. For additional information and geometric design guidance regarding driveway passing flares, please refer to <u>Geometric Design</u> <u>Guide GEO-650</u>.

TWO-WAY 24 HOUR VOLUME

1.2.2 Spacing for Commercial Drives and Streets

SPACING

(Ge

The spacing of access for commercial driveways and streets is an important element in the planning, design, and operation of roadways. Access points are the main location of crashes and congestion. Their location and spacing directly affect the safety and functional integrity of the roadway.

<u>Region Review:</u> The Region/TSC Utility and Permit Engineer shall forward the site plan and the access request to the Region/TSC Traffic and Safety Representative for review. In general, one access point is adequate for a single business. When one-way pair driveways (In-Out) are requested and the inside traffic circulation promotes such operation, these driveways may be considered as a single access point. In some cases multiple access points are requested. In this case, the Region/TSC Traffic and Safety Representative may require a traffic impact study from the business owner/property owner to justify the need for the multiple accesses. A copy of the following information may be sent to the business owner/property owner to outline the traffic analysis needed.

Unsignalized Access Spacing: Adjacent accesses should be spaced as far apart as on-site circulation allows. In some cases the Region/TSC Traffic and Safety Representative may require that the business owner/property owner redesign his site plan, and relocate the access point to meet the desirable spacing distance. Table 1 shows the desirable unsignalized access spacing as a function of posted speed. These distances are based on average acceleration and deceleration considered adequate to maintain good traffic operations. The sight distance at the access points must also be investigated.

Posted Speed mph (km/hr)	Center-to-Center of Access feet (meters)
25 (40)	130 (40)
30 (50)	185 (55)
35 (60)	245 (75)
40 (60)	300 (90)
45 (70)	350 (105)
50 (80) and above	455 (140)

Table 1

Lack of Sufficient Frontage to Maintain Adjacent Spacing: In the event that a particular parcel lacks sufficient frontage to maintain adequate spacing, the Region/TSC Traffic and Safety and Utility and Permit Engineers have the following options.

Choose the next lowest spacing from Table 1. For example, on 30 mph (50 km/hr) roadway requiring 185 ft (56 m) spacing, the distance may be reduced to no less than 130 ft (40 m) which is the spacing from 25 mph (40 km/hr) speed.

STREETS

2.2)

SPACING

(Ge

2.

Encourage a shared driveway with the adjacent owners. In such case the driveway midpoint may be located at the property line between two parcels. However, all parties must agree to the joint driveway in writing.

- Provide an access point to the side street when it is possible.
- In areas where frontage roads or service drives exist or can be constructed, individual properties shall be provided access to these drives rather than directly to the main highway.
- After all the above options are exhausted, an access point may be allowed within the property limits as determined by the Region/TSC Traffic and Safety and the Utility and Permit Engineers.

Intersection Corner Clearance: AASHTO specifically states that driveways should not be situated within the functional boundary of at-grade intersections. This boundary includes the longitudinal limits of auxiliary lanes. An access point may be allowed within the above boundary if the entire property frontage is located within this boundary. In all quadrants of an intersection access points should be located according to the dimensions shown in Figure 1.

<u>Conflict Reductions:</u> Restricting or prohibiting left turns at unsignalized access points aligned across from each other can greatly reduce safety and operational problems. A typical four-legged intersection, such as where two accesses line up across a four-lane roadway, has 36 conflict points. By prohibiting left turns and through movements the number of conflicts can be reduced from 36 to four, as illustrated in Figure 2.

In cases where these movements cannot be prohibited, the Region/TSC Traffic and Safety Representative may choose to offset the access points. Table 2 provides the desirable distances between two access points on the opposite side of the roadway.

Posted Speed mph (km/hr)	Desirable Offset Between Access Points on Opposite Sides of the Roadway Center-to-Center of Access On Undivided Highways feet (meters)
25 (40)	255 (80)
30 (50)	325 (100)
35 (60)	425 (130)
40 (60)	525 (160)
45 (70)	630 (190)
50 (80) and above	750 (230)

STREETS

2.2)

1.1.6 Near Side/Far Side Lane Drops

The following guidelines, based on an ITE report, are qualitative in order to encourage the evaluation of lane drops at intersections on an individual basis:

General

(Geome 1. (For 2.

INT

- Engineering judgment is the primary basis for determining the appropriate intersection lane drop, near-side or far-side. Additionally, engineering judgment should prevail when applying the distances recommended in these guidelines to specific traffic conditions.
- Intersection capacity, intersection turning volumes (especially right turns), parking and right of way restrictions, design speed, lighting, and safety are significant considerations in the evaluation of the appropriate intersection lane drop, either near-side or far-side.
- The Decision Sight Distance concept is applicable to the geometric design and placement of traffic control devices for both near-side and far-side intersection lane drops.
- Intersection lane drops present the driver with a high judgment, complex driving situation and, therefore, the most effective signing and pavement marking is recommended (please refer to the appropriate figures).
- Far-side intersection lane drops are preferred over near-side. To some extent both types of lane drops have been used for different purposes (far-side for capacity; near-side for operations).
- 6. Intersection lane drops can be associated with an interim condition before a highway widening is extended at a future date. If it is planned to continue the widening, a far-side lane drop has the advantage of placing the beginning of the new construction well beyond the intersection (please refer to the appropriate figures).

Near-Side Intersection Lane Drop

- A near-side intersection lane drop is applicable at an urban area intersection with a heavy right turn volume and is not recommended for use in a high speed, unlighted rural area. The "trap lane" should be avoided except where extenuating circumstances such as a heavy right turn volume and/or where a far-side intersection lane drop is not feasible due to constraints (e.g. prohibitive right of way costs).
- 2. The Decision Sight Distance concept can be applied to the placement of traffic control devices for near-side intersection lane drops. The distances traveled during the reaction time (detection, recognition, decision, response) plus the vehicle maneuver time will produce the total Decision Sight Distance values required for various posted speeds (please refer to Table 1). These Decision Sight Distance values, in addition to allowances for queue lengths (assumed signalized intersection), will establish reasonable sign and pavement marking locations (please refer to the top figure).

OPS (t 1.1.6) 14A)

INT]^{3.}

(Geom (For

The signing and pavement markings for near-side intersection lane drops need special emphasis. An advance warning sign, THRU TRAFFIC MERGE LEFT (W4-7), is recommended. Advance street name signs and special pavement markings in the dropped lane will also reinforce the advance warning sign and provide motorists with the necessary guidance to react and maneuver the vehicle safely and effectively to avoid the "trap lane" (please refer to the top figure). In addition, lane control signs (R3-7 series) or RIGHT LANE MUST TURN RIGHT (R3-7R) support the use of the right turn lane. The same sign should be used at both locations.

Far-Side Intersection Lane Drop

- A far-side intersection lane drop is applicable to both an urban and rural areas, and is considered to be the preferred intersection lane drop treatment (please refer to the bottom figure).
- At unsignalized intersections, Decision Sight Distance can be utilized to determine the length beyond the intersection at which the lane should be dropped using the values indicated in Table 1.
- 3. At signalized intersections, a two part analysis is required. Adequate vehicle storage beyond the intersection, brought about by the release of vehicles from the traffic signal, must be considered in addition to the Decision Sight Distance requirement. The larger of the values calculated using these analyses will provide the required length beyond the intersection as measured from the stop bar.
- Proper taper lengths (L) are calculated from the following formulas: L = W x S, for S greater than or equal to 45 mph, or, L = WS²/60, for S less than 45 mph (where W = width in feet and S = speed in mph).
- Effective signing and pavement markings are necessary components to ensure a successful lane drop operation. The signing and pavement markings shown in the bottom sketch are recommended for far-side intersection lane drops.

XOPS nt 1.1.6) 14A)

IN

(Geo (F

Posted		Decision	sight dis	tance (ft)
speed		Avoid	ance ma	neuver	
(mph)	Α	B	С	D	E
30	220	490	450	535	620
35	275	590	525	625	720
40	330	690	600	715	825
45	395	800	675	800	930
50	465	910	750	890	1030
55	535	1030	865	980	1135
60	610	1150	990	1125	1280
65	695	1275	1050	1220	1365
70	780	1410	1105	1275	1445
75	875	1545	1180	1365	1545
80	970	1685	1260	1455	1650

PS .1.6) A)

Avoidance Manuever A: Stop on rural road -t = 3.0 s

Avoidance Manuever B: Stop on urban road -t = 9.1 s

Avoidance Manuever C: Speed/path/direction change on rural road - t varies between 10.2 and 11.2 s

Avoidance Manuever D: Speed/path/direction change on suburban road – t varies between 12.1 and 12.9 s

Avoidance Manuever E: Speed/path/direction change on urban road - t varies between 14.0 and 14.5 s

Decision Sight Distance TABLE 1

QUESTIONS

DESIGN EXCEPTIONS DESIGN VARIANCES

DESIGN EXCEPTIONS / VARIANCES (RDM 3.08.01E)

Non-Standard Design Element (NHS and Non-NHS)	Design Exc	ability of eption (DE) riance (DV)
(See Section 3.11.01 for DE Criteria for 3R freeway work)	Design	Speed
	≥ 50 MPH	< 50 MPH
Design Speed < Posted Speed	DE	DE
Lane Width*	DE	DV
Shoulder Width	DE	DV
Horizontal Curve Radius*	DE	DV
Superelevation Rate*	DE	DV
Superelevation Transition*	DV	DV
Maximum Grade*	DE	DV
Stopping Sight Distance (Horizontal and Vertical)*	DE	DV
Cross Slope	DE	DV
Vertical Clearance	DE	DE
Design Loading Structural Capacity	DE	DE
Ramp Acceleration / Deceleration Length*	DV	DV
*Values based on design speeds less than posted.		

*Values based on design speeds less than posted.

DESIGN CRITERIA

3R PROJECTS

Road Design Manual 3.09 & 3.11.01

<u>NHS</u> d Design M

Road Design Manual 3.09.02A

Non-NHS Road Design Manual 3.09.02B

4R PROJECTS

Road Design Manual 3.11

Freeway Road Design Manual Appendix 3A

Non-Freeway

Road Design Manual Appendix 3A

MICHIGAN DESIGN MANUAL ROAD DESIGN

3.09.02 (continued)

A. Non-Freeway, NHS

Geometric Elements	1	Non-Freeway, NH	IS 3R Minimum	Guidelines
Design Speed (see Section 3.06)		Poster	d Speed Minimum	
		rrent ADT wo-Way	Inside Shoulder	Outside Shoulder
Shoulder Width	Two Lane	<750		3'-0" Gravel
NOTE: Minimum shoulder widths apply for posted speeds greater than 45 mph. Restrictions such as right of way and roadside	(and three lane when the center lane is a left turn lane)	750 - 5000 >5000 - 10,000 >10,000		6'-0" (3'-0" Paved) 8'-0" (3'-0" Paved) 8'-0" (7'-0" Paved)
context sensitivity issues may preclude the use of minimum shoulders within city, village or	Multi-Lane Undivided	≤ 10,000 > 10,000		6'-0" (3'-0" Paved) 8'-0" (3'-0" Paved)
township limits with posted speeds of 45 mph and less.	Multi-Lane Divided	≤ 10,000 > 10,000	3'-0" Paved 3'-0" Paved	6'-0" (3'-0" Paved) 8'-0" (3'-0" Paved)
	Se	e Bridge Design Manu	al Appendix 12.02	for Bridge Widths
	ADT		Lane Widt	lh
	≤750		10'-0"	
	>750		11501	
Lane Width		un-divided (regard (ADT < 10,000). 12'-0" lanes are desi 12'-0" lanes are requ National Truck Netw maintain existing	diess of ADT) inable on the Priorit uired on the Nation vork). Design Exc narrower lanes high burden of just	urban areas for multi-lane and multi-lane divided y Commercial Network (PCN) al Network (also known as the eptions / Design Variances to generally receive favorable tification is placed on request ".
Design Loading		Rural		Urban
Structural Capacity		n Loading HS20.		sign Loading HS20.
Horizontal Curve Radius and Stopping Sight Distance	Existing curve r of the existing there is no cras	adius and stopping sig curve is not more that	ght distance may b an 15 mph below rwise standards fo	Inkline classifications) the retained if the design speed the project design speed and or new construction apply. See Natance Guidelines.
Maximum Grade	Review crash d	ata. Existing grade m	ay be relained with	out crash concentration.
Cross Slopes		Traveled way 1.5% - 2	2%, Shoulder see \$	Section 6.05.05
Superelevation Rate		R-107-Series or reduc project design speed.) Straight Line Superelevation
Vertical Clearance	See Section 3.1	2.		

RDM 3.09.02A

MICHIGAN DESIGN MANUAL ROAD DESIGN

3.09.02 (continued)

B. Non-Freeway, Non-NHS

Geometric Elements	Non-	Freeway, Non-	NHS 3R Minimum Guidelines
Design Speed		Posted	Speed Minimum
Shoulder Width	Current ADT Two-Way	In	side and Outside Shoulder Width
NOTE: Minimum shoulder widths	≤750		2'-0" (Gravel)
apply for posted speeds greater than 45 mph. Restrictions such as right of way and roadside context	750 - 2000		3'-0" (Paved) 6'-0" (3'-0" Paved)
sensitivity issues may preclude the use of minimum shoulders within city, village or township limits with posted speeds of 45 mph and	> 2000 Multi-Lane (Divided &	Inside (Divided)	Outside (Both sides for un-divided)
less.	Undivided)	3'-0" Paved	6'-0" (3'-0" Paved)
	See B	ridge Design Manu	al Appendix 12.02 for Bridge Widths
	ADT	1	Lane Width
	≤750		10'-0"
	>750		1150*
Lane Width		un-divided (reg (ADT < 10,000). 12'-0" lanes are (PCN) and the Truck Network) without Design existing lane wid	desirable on the Priority Commercial Network National Network (also known as the Nationa . Existing narrower lanes may be related Exceptions / Design Variances. Reduction o this on the National Network to less than 12-0 Exceptions / Design Variances request having
Design Loading Structural Capacity	ADT (Design Year)		Minimum Design Loading
(Existing Bridges to	0 - 750		H15
remain in place)	> 750		HS15
Horizontal Curve Radius and Stopping Sight Distance	speed of the exist below the project	ing curve is not mo t design speed an construction apply	sight distance may be retained if the design re than 15 mph (horizontal) or 20 mph (vertical) d there is no crash concentration. Otherwise r. See 2011 6 th Edition AASHTO Green Book or
Maximum Grade	Review crash data	a. Existing grade m	ay be retained without crash concentration.
Cross Slopes	Tra	veled way 1.5% - 2	%, Shoulder see Section 6.05.05
Superelevation Rate		107-Series or reduc oject design speed	ed maximum (6%) Straight Line Superelevation
Vertical Clearance	See Section 3.12.		

RDM 3.09.02B

GEOMETRIC REQUIREMENTS FOR FREEWAY PROJECTS INVOLVING 3R WORK TYPES

3R FREEWAY ALLOWANCES

Geometrie	c Design Element	Minimum Required Standard *	Compliance Determination
Design Speed		Standard at the time of construction or the most recent 4R project	Compliance Assumed
Horizontal Cur	ve Radius (Rmin.)	Standard at the time of construction or the most recent 4R project	Compliance Assumed
Longitudinal G	rade (Min./Max.)	Standard at the time of construction or the most recent 4R project	Compliance Assumed
Stopping Sight (Horizontal and		Standard at the time of construction or the most recent 4R project	Compliance Assumed
Lane Width		Standard at the time of construction or the most recent 4R project	Compliance Assumed
Shoulder Widt	h	Standard at the time of construction or the most recent 4R project	Compliance Assumed
Superelevation	1	Standard at the time of construction or the most recent 4R project	Compliance Assumed
Cross-Slope	(Excluding parabolic – Parabolic cross-slopes still require a DE/DV)	Standard at the time of construction or the most recent 4R project (Unless parabolic; Parabolic cross-slopes must be removed or a DE/DV is required)	Compliance Assumed (Unless parabolic; Parabolic cross-slopes must be removed or a DE/DV is required,
Structural Cap	acity	Standard at the time of construction or the most recent 4R project	Compliance Assumed
Vertical Cleara	nce	Standard at the time of construction or the most recent 4R project	Compliance Assumed
Acceleration/D	eceleration Length	Existing Length	Compliance Assumed

* If the project-wide Safety Review identifies a pattern of crashes associated with a particular design element (or elements), then that design element (or those elements) <u>must</u> be bought up to <u>current</u> standards (i.e. the existing design values may <u>not</u> be retained if they do not meet current standards).

Element		Urban			Rural				
	Freeway	The greater of posted speed, or 60 mph.	The g	reater of p	osted spe	ed, or 70 n	nph.		
Design Speed	Non Freeway (Arterial)	The greater of posted speed, or 30 mph.	The g	greater of p	osted spee	ed, or 40 m	ph		
	Collector Roads	Posted speed (minimum).	Posted speed (minimum)						
	Freeway	12 ft.			12 ft.				
		12 ft, lanes are most desirable and should be used where practical. 11 ft. lanes are often used for low speed (45 mph design)	Design Speed,	M		ne Width, nicles/day 1500 to	ft. Over		
			(mph)	400	1500	2000	2000		
Lane Width	Non Freeway (Arterial)	Lane widths of 10 ft. may be used in more constrained areas where truck and bus volumes are relatively low and speeds are less than 35 mph. 12 ft. lanes on the National Network (NN). Design exceptions / variances are required to maintain existing narrower lanes. A high burden of justification is required in a design exception / variance to reduce existing lane widths less than or equal to 12'-0". Added turn lanes at intersections 10-12 ft.	40 45 50 55 60 65 70 75 Design Speed,	11* 11* 11* 12 12 12 12 12 *12 *12	11* 11* 11* 12 12 12 12 12 ft. desirab inimum La ADT, veh	11* 11* 12 12 12 12 12 12 12 12 12 12 12 12 12	12 12 12 12 12 12 12 12 12 12 12		
		Where right-of-way is restricted.11 ft.Industrial Areas12 ft.	(mph)	Under 400 10*	400 to 1500 10*	1500 to 2000 11*	Over 2000 12		
	Collector Roads	Where shoulders are used, see guidelines for Rural Collectors	25 30 35 40 45 50 55 60	10* 10* 10* 10* 10* 10* 11*	10* 10* 11* 11* 11* 11* 11* 11*	11* 11* 11* 11* 11* 11* 11* 12 12	12 12 12 12 12 12 12 12		
				*12	ft. desirab	le			

Element				Urban & Rural							
			Main	line	Rai	mp (one lan	e and two lanes)				
		Median		Outside	Le	eft	Right				
	_	8 ft. (4ft. paved) (8 ft. paved at bridge and bar sections) For 6 or more lane sections ((3 or	10 ft. min (paved) For non-interstate freeways, use 12 ft. paved where truck traffic exceeds 250 DDHV.	6 ft. (4 ft. paved)		3 ft. (7ft. paved)				
	Freeway	more lanes directional) use 1 paved min and consider 12 ft paved where truck traffic exceeds 250 DDHV.		For interstate freeways consider using 12 ft. paved where truck traffic exceeds 250 DDHV.							
Shoulder	to the shou When wide foot of agg	to the shoulder hinge for stat When widening existing pave foot of aggregate when feasi	For new construction and reconstruction, the mainline outside paved shoulder is extended with 1 ft. of aggregat to the shoulder hinge for stabilization. When widening existing paved shoulders to meet current standard widths, it is desirable to provide the additional foot of aggregate when feasible.								
Width		Urban	Rural								
width		In those instances where sufficient right-of-way		Min paved shoulder, ft. for specified ADT, veh/day Undivided Roadways*							
		exists to include shoulders,		Under 400	400 to 1500	1500 to 20	000 Over 2000				
	the second second	refer to the guidance for		4	6	6	8				
	Non Freeway (Arterial)	non freeway rural shoulders.*	Use f	Use 8ft. right and 4 ft. left for divided arterials. Use full width (8 ft.) on both sides of divided arterials with 3 lanes in each direction. For new construction and reconstruction and when feasible on shoulder widening, paved shoulder is extended with 1 ft. of aggregate to the shoulder hinge for stabilization.							
			should	er is acceptable adjacent to right turn r posted speeds greater than 45	lanes.						
		Where shoulders are used, n	efer to	Min shoulder,	ft. for spec	ified ADT, y	veh/day				
	Collector	requirements for rural arteria	Is.	Under 400	400 to 1500	1500 to 20	000 Over 2000				
	Roads	æ		2	5	6	8				
				The above ranges apply on uncurbed roads and when shoulders are feasible on curbed roads. A minimum paved width of 1 ft. is desirable.							

Element		Urban &	& Rural
Design	Freeway	HS-25	/HL93
Loading		State Trunkline	HS-25/HL93
Structural	Non	Local Roads Over Freeways and State Trunkline	HS-25/HL93
Capacity (Also see Bridge	Freeway	Local Roads and Streets	Design according to county or city standards, HS20/HL93 min.
Design Manual)		Use HS-25/HL93 for all structures in a	n interchange regardless of route type
	Freeway		
	Non		
	Freeway		
	(Arterial) Collector		
Horizontal	Roads		
Curve Radius	Non Freeway (Arterial) Collector	See Standard Plan R-107-S	Series and Section 3.04.03
	Roads		

							M	aximu	m Gra	de (%) for sp	ecifie	d desi	ign spe	ed (m	ph)				
	Ň	Type of Terrain		50			55			60			65			70			75	
	Freeway	Level		4			4			3		3				3			3	
	Free	Rolling		5			5			4			4			4			4	
	_							Gra	des 1%	steep	er may	be prov	ided in	urban a	areas.			<u></u>		
Maximum	2	Type of		-				Urban								1	Rural			
Grade	Non Freeway (Arterial)	Terrain	3	0	35	40	0	45	50	0.00	55	60		40	45		50	55		60
	Arte	Level	8	3	7	7		6	6		5	5		5	5		4	4		3
		Rolling	9)	8	8		7	7		6	6		6	6		5	5		4
	-	Type of					Urba	n								Rural			_	
ecto	Collector Roads	Terrain	20	25	30	35	40	45	50	55	60	20	25	30	35	40	45	50	55	60
	Rolle	Level	9	9	9	9	9	8	7	7	6	7	7	7	7	7	7	6	6	5
	0	Rolling	12	12	11	10	10	9	8	8	7	10	10	9	9	8	8	7	7	6
Stopping Sight Distance		011 6 th Edition also provid									and St	reets" (/	AKA A	ASHTO	Green	Book).	The MD	OT Sig	ht Dista	ance
Cross Slope	Traveled	way cross sl	ope = 2	2.0%, F	aved s	houlder	cross	slope =	4.0% (/	lso se	e Sectio	on 6.05.	05)							
Cumanalauntian	AASHTO	Method 5 "C	urviline	ear Rela	ation" is	used fo	or new	constru	ction/re	constru	uction. I	Maximu	m rate	of 7%.	See St	andard	Plan R	-107-Se	ries.)	
Superelevation Rate	AASHTO	Method 1 "S	traight	Line R	elation"	is allow	ed whe	en Meth	od 5 is	not fea	sible. M	laximum	n rate o	of 6%. (S	See Sec	tion 3.0	04.03)			
Rate	The abov	ve methods a	lso app	ly to ur	ban free	eways a	and urb	an ramp	os, exce	pt the	maximu	m rate i	s 5% f	or 60 m	ph desi	gn spe	ed.			
									NH	S							Non N	HS		
	Freewa	У							16'-	0"							14'-6			
Vertical	Non Fre	eway (Arte	rial)						16'-)"							14'-6	"		
Clearance		ors & "Spec					~			~	egal ve		~				14'-6			
	vertical	estrian bridg clearance of 5.24.03-04.)	23'-0'																	

FORM DE26

	-	FRICK	EVOE	DTION				-		_	Clea	Form
Michigan Department of Transportation DE26 (03/19)		ESIGN									,	Page 1 o
PROJECT DESCRIPT	TION (FILL IN PR	ROJECT INF	ORMATION	AND PRO	VIDE A	BRIEFW	RITE-UP	OF PR	DJECTAR		i)	
CONTROL SECTION(S	5)		JOB NUMB	BER(S)			PHYSIC/	AL REFI	RENCE	UMBER	S)	
CONSTRUCTION GUID	ELINE		L HIGHWAY			OVERS	GHT AP	PROVA				
		YE	s 📋	NO			MDOT		E EHW	A PoDI		
LOCATION						· · · · · · · · · · · · · · · · · · ·						
DESCRIPTION OF WO	ORK											
PLAN REVIEW DATE			PLAN COM	PLETION	DATE	1	APPROV	EDLET	TING DAT	E		
L LEGAL SPEED AND	EXISTING AND	FUTURE T	RAFFIC VO	LUMES								
		Ex ADT		ECTED AD	TE	Ex % COM	MM-		Ex COMM	. DDHV (Fwy only)	
mph FIX LIFE YEA	MPROJECTED	FIX YEAR +	FIX LIFE)	PROJECT	TED % C	OMMERC	IAL	PROJE	CTED CO	MMERCI	AL DDHV	Fwy
Years								only)				
IL DESIGN EXCEPTIO	N FOR THE FOL	LOWING E	LEMENT (ID	DENTIFY L	OCATIO	N BELOW	ŋ					
ELEMENT: Select from	drop down men	u										
Describe existing road mile point).	fway/bridge geo	ometric feat	ures includi	ing elemen	t values	for each	exceptio	in locat	ion (iden	tify locati	ons by st	ation a
Design criteria for thes	se features (pro	vide the app	propriate re	ferences, i	including	docume	nt to the	chapte	r, page ar	id design	values):	_
MDOT CRITERIA												
					AASHT	D CRITER						
Proposed design valu	es for the excep	tion elemen	nt (identify)	what desig		DCRITER	IA	dimensi		reatment	meets if	
applicable).					n speed	and appr	tiA ropriate d		ons this t			
	must have a sit nt 4 years of cri	e specific C ish data ava	rash Analy allable on R	sis attache loadSoft. F	in speed ed. The c atalities	and appr rashes m (K) and S	epriate o oust be a serious h	nalyzed	ons this t for the re A) must t	equested be review	Geometri ed and co	mmen
applicable). All Design Exceptions utilizing the most rece	must have a sit nt 4 years of cri nalysis. Access ialysis may be i	e specific C ish data ava High Load POB-POE if	rash Analy allable on R Hits databa the geomet	sis attache loadSoft. F ise (mainte tric elemen	in speed ed. The c atailities inance) a it in que	and appr rashes m (K) and S and inclusion is al	ust be a serious li de with a so POB-	nalyzed njuries nalysis	ons this t for the re A) must t for vertic	equested be review al clearar	Geometri ed and co nce desig	nmen n
applicable). All Design Exceptions utilizing the most rece on in the review and ar exceptions. A crash ar	must have a sit at 4 years of cr nalysis. Access talysis may be i w and Crash An	e specific C ash data ava High Load I POB-POE if alysis" doc	rash Analy allable on R Hits databa the geomet ument is no	sis attache loadSoft. F ise (mainte tric elemen ot applicab	ed. The c atalities mance) a it in ques	and appr rashes m (K) and S stion is all sign exce	tiA ropriate of ust be a serious li de with a so POB- eptions.	nalyzed njuries nalysis POE (e.	ons this t for the re A) must I for vertic g., should	equested be review al clearar der width	Geometri ed and co nce desig). The pro	ommen n ject
applicable). All Design Exceptions utilizing the most rece- on in the review and an exceptions. A crash an acoping "Safety Review	must have a sit nt 4 years of cri nalysis. Access nalysis may be i w and Crash An Specific crass sts of bringing i	e specific C ash data ava High Load POB-POE if alysis" doc th analysi the features	rash Analy allable on R Hits databa the geomet ument is no is (and ap up to stand	sis attache toadSoft. F ise (mainte tric elemen ot applicab oproval n dard as sp	ed. The c atalities mance) a ht in ques de for de memo i ecified u	and appr rashes m (K) and S and including stion is all sign excel f a consist inder Design	ropriate o pust be a ferious in de with a so POB- eptions. sultant ign Crite	nalyzed nalysis POE (e. perfor	ons this t for the m A) must t for vertic g_ should med th _ impacts	equested al clearan der width e crash to other	Geometri ed and co ice desig . The pro analysi design fe	in ject (S).
applicable). All Design Exceptions utilizing the most rece on in the review and an exceptions. A crash an ecoping "Safety Revie See attached site impacts other than co	must have a sit nt 4 years of cra nalysis. Access alysis may be i w and Crash An specific crass sts of bringing i effects, preserve	e specific C ash data ava High Load POB-POE if alysis" doc th analysi the features atten of hist	rash Analy ailable on R Hits databa the geomet ument is no s (and ap up to stand orical featu	sis attache toadSoft. F ise (mainte tric elemen ot applicab oproval n dard as sp	ed. The c atalities mance) a tt in quest le for de memo i ecified u action is:	and appr rashes m (K) and S and including stion is all sign excel f a consist inder Design	entries and a serious in de with a serious in de with a iso POB- eptions. sultant ign Crite ial conce ST TO MS	nalyzed njuries (nalysis POE (e perfor ria (e.g erns, re EET Mit	ons this t for the m A) must t for vertic g., should med th , impacts duction o	equested te review al clearar der width e crash to other f design l	Geometri ed and co nce desig). The pro analysi design fe life)	ommen n ject is). atures,
applicable). All Design Exceptions utilizing the most rece on in the review and an acceptions. A crash an accoping "Safety Revie See attached site Impacts other than co ROW, environmental o	must have a sit nt 4 years of crr nalysis. Access alysis may be wand Crash An specific crass sts of bringing iffects, preserve TRUCTION CO:	e specific C ash data ava High Load POB-POE if poB-POE if alysis" doc the features ation of hist ation of hist ST OF PROJ	rash Analy allable on R Hits databa Hits databa the geometric ument is no s (and ap up to stam orical featu IECT sures to ad	isis attachi toadSoft. F ise (mainte tric elemen of applicab oproval r dard as sp re, constru-	n speed ed. The c atalities mance) a ti in que le for de memo i ecified u uction is INCREA REQUE gn excep	and appr rashes m (K) and S and inclu- stion is all sign exce f a cons inder Des sues, soc	tia ropriate of serious in de with a so POB- eptions. sultant ial conce stat conce stat conce stat conce	nalyzed njuries (nalysis POE (e perfor ria (e.g erns, re EET MIR CEPTIC	ons this t for the rd A) must l for vertic g., should med the , impacts duction o	equested er review al clearan der width e Crash to other f design i SIGN CR	Geometri eed and co cce desig). The pro analysi design fe ife) ITERIA F(n ject s). atures, DR
applicable). All Design Exceptions utilizing the most rece on in the review and an exceptions. A crash an acoping "Safety Revie See attached site impacts other than co ROW, environmental of PROGRAMMED CONS List the proposed and	must have a sil nt 4 years of cri nalysis. Access lalysis may be i w and Crash An specific crass sts of bringing i flocts, preserve TRUCTION CO:	e specific C ash data ava High Load POB-POE if poB-POE if alysis" doc the features ation of hist ation of hist ST OF PROJ	rash Analy allable on R Hits databa Hits databa the geometric ument is no s (and ap up to stam orical featu IECT sures to ad	isis attachi toadSoft. F ise (mainte tric elemen of applicab oproval r dard as sp re, constru-	n speed ed. The c atalities mance) a ti in que le for de memo i ecified u uction is INCREA REQUE gn excep	and appr rashes m (K) and S and inclu- stion is all sign exce f a cons inder Des sues, soc	tia ropriate of serious in de with a so POB- eptions. sultant ial conce stat conce stat conce stat conce	nalyzed njuries (nalysis POE (e perfor ria (e.g erns, re EET MIR CEPTIC	ons this t for the rd A) must l for vertic g., should med the , impacts duction o	equested er review al clearan der width e Crash to other f design i SIGN CR	Geometri eed and co cce desig). The pro analysi design fe ife) ITERIA F(n ject s). atures, DR
applicable). All Design Exceptions utilizing the most rece- on in the review and a exceptions. A crash an exceptions. A crash an exceptions. A crash an exceptions. A crash an exceptions. A crash state of the state See attached site impacts other than co- ROW, environmental of PROGRAMMED CONS List the proposed and future work to address	must have a sil nt 4 years of cri nalysis. Access lalysis may be i w and Crash An specific crass sts of bringing i flocts, preserve TRUCTION CO:	e specific C ash data ava High Load POB-POE if poB-POE if alysis" doc the features ation of hist ation of hist ST OF PROJ	rash Analy allable on R Hits databa Hits databa the geometric ument is no s (and ap up to stam orical featu IECT sures to ad	isis attachi toadSoft. F ise (mainte tric elemen of applicab oproval r dard as sp re, constru-	n speed ed. The c atalities mance) a ti in que le for de memo i ecified u uction is INCREA REQUE gn excep	and appr rashes m (K) and S and inclu- stion is all sign exce f a cons inder Des sues, soc	tia ropriate of serious in de with a so POB- eptions. sultant ial conce stat conce stat conce stat conce	nalyzed njuries (nalysis POE (e perfor ria (e.g erns, re EET MIR CEPTIC	ons this t for the rd A) must l for vertic g., should med the , impacts duction o	equested er review al clearan der width e Crash to other f design i SIGN CR	Geometri eed and co cce desig). The pro analysi design fe ife) ITERIA F(n ject s). atures, DR
applicable). All Design Exceptions utilizing the most rece on in the review and an exceptions. A crash an accepting "Safety Revie See attached site Impacts other than co ROW, environmental of PROGRAMMED CONS List the proposed and future work to address ADDITIONAL COMMEN	must have a sil nt 4 years of cri nalysis. Access lalysis may be i w and Crash An specific crass sts of bringing i flocts, preserve TRUCTION CO:	e specific C ash data ava High Load POB-POE if poB-POE if alysis" doc the features ation of hist ation of hist ST OF PROJ	rash Analy allable on R Hits databa Hits databa the geometric ument is no sis (and ap up to stam orical featu IECT sures to ad ental impro	isis attachi toadSoft. F ise (mainte tric elemen of applicab oproval r dard as sp re, constru-	n speed ed. The c atalities mance) a ti in ques le for de memo i ecified u uction is: INCREA REQUE gn excep)	and appr rashes m (K) and S and incluc stion is al sign exce f a cons nder Des sues, soc ASED COS STED DE ption feat	tia ropriate of serious in de with a so POB- eptions. sultant ial conce stat conce stat conce stat conce	nalyzed njuries (nalysis POE (e perfor ria (e.g erns, re EET MIR CEPTIC	ons this t for the rd A) must l for vertic g., should med the , impacts duction o	equested er review al clearan der width e Crash to other f design i SIGN CR	Geometri eed and co cce desig). The pro analysi design fe ife) ITERIA F(n ject s). atures, DR
applicable). All Design Exceptions utilizing the most rece- on in the review and a exceptions. A crash an exceptions. A crash an exceptions. A crash an exceptions. A crash an exceptions. A crash state of the state See attached site impacts other than co- ROW, environmental of PROGRAMMED CONS List the proposed and future work to address	must have a sil nt 4 years of cri nalysis. Access lalysis may be i w and Crash An specific crass sts of bringing i flocts, preserve TRUCTION CO:	e specific C ash data ava High Load POB-POE if poB-POE if alysis" doc the features ation of hist ation of hist ST OF PROJ	rash Analy allable on R Hits databa Hits databa the geometric ument is no sis (and ap up to stam orical featu IECT sures to ad ental impro	sis attacht loadSoft. F ise (mainte tric alemen of applicab oproval r dard as sp re, constru- idress desi vements	n speed ed. The c atalities inance) a it in quet le for de nemo i ecified u action is: INCREA REQUE gn excep- -)	and appr rashes m (K) and S and incluc stion is al sign exce f a cons nder Des sues, soc ASED COS STED DE ption feat	tia ropriate o serious li de with a iso POB- sptions. Sultant iagn Crite ial conce ST TO Mi SIGN EX ure if ap	nalyzed njuries nalysis POE (e. perfoi ria (e.g erns, re ceptic ceptic plicable	ons this t for the rd A) must l for vertic g., should med the , impacts duction o	equested er review al clearan der width e Crash to other f design i SIGN CR	Geometri eed and co cce desig). The pro analysi design fe ife) ITERIA F(is). atures,
applicable). All Design Exceptions utilizing the most rece on in the review and an exceptions. A crash an accoping "Safety Revie See attached site Impacts other than co ROW, environmental of PROGRAMMED CONS List the proposed and future work to address ADDITIONAL COMMEN	must have a sit nt 4 years of cra- nalysis. Access alysis may be 1 w and Crash An specific crass sts of bringing 1 iffects, preserva TRUCTION CO: Nor existing mild a design except VTS	e specific C Ish data avi High Load 108-POE it alysis" doc ich analysi the features ation of hisb T OF PROJ Igation mea- ion, increment	rash Analy allable on R Hits databa Hits databa the geometric ument is no sis (and ap up to stam orical featu IECT sures to ad ental impro	sis attacht loadSoft. F ise (mainte tric alemen of applicab oproval r dard as sp re, constru- idress desi vements	n speed ed. The c atalities inance) a it in quet le for de nemo i ecified u action is: INCREA REQUE gn excep- -)	and appr rashes m (R) and S and incluc- tion is all sign exce f a cons nder Des sues, soc SED COS STED DE ption feat	tia ropriate o serious li de with a iso POB- sptions. Sultant iagn Crite ial conce ST TO Mi SIGN EX ure if ap	nalyzed njuries nalysis POE (e. perfoi ria (e.g erns, re ceptic ceptic plicable	ons this t for the rd A) must l for vertic g., should med the , impacts duction o	equested er review al clearan der width e Crash to other f design i SIGN CR	Geometri eed and co cce desig). The pro analysi design fe ife) ITERIA F(is). atures,

FORM DV26

DESIGN VARIANCE REQUEST - TRUNKLINE

	P	age	1	of	1
--	---	-----	---	----	---

Clear Form

Michigan Department of Transportation DV26 (03/19)	DESIGN VARIANCE REQUEST - TRUNKLINE			
I. PROJECT DESCRIPTION				
CONTROL SECTION(S) or PR N	NUMBERS(S)	JOB NUMBER(S)		
CONSTRUCTION GUIDELINE 3R 4R	NATIONAL HIGHWAY SYSTEM	POSTED SPEED mph	DESIGN SPEED mph	
LOCATION				
DESCRIPTION OF WORK				
II. DESIGN VARIANCE CRITER	A			
ELEMENT: Select from drop do	wn menu			
Describe existing features incl	uding element values for each varia	nce location (include stationing	g).	
MDOT CRITERIA		AASHTO CRITERIA		
Proposed design values for th	e variance			
utilizing the most recent 4 year on in the review and analysis. J The project scoping "Safety Re See attached site specifi	rs of crash data available on RoadSi A crash analysis may be POB-POE i eview and Crash Analysis" documen c crash analysis (and approv	oft. Fatalities (K) and Serious in f the geometric element in ques at is not applicable for design v val memo if a consultant j	alyzed for the requested Geometric element juries (A) must be reviewed and commented stion is also POB-POE (e.g., shoulder width). ariance. performed the crash analysis).	
Justification for not meeting th	ne standard (Cost, Environmental, H	listorical, ROW, etc.)		
ADDITIONAL COMMENTS				
	its of the DV that influences/affects the es been coordinated with the Bridge D		YES NO YES Not Applicable	
	SIGNAT	URES REQUIRED		
APPROVED BY : Associate Reg		RECOMMENDED BY: Proje	ect Manager	

Design Exception Crash Analysis Instructions

REQUIRED ELEMENTS OF A COMPREHENSIVE DESIGN EXCEPTION REQUEST CRASH ANALYSIS

- Subject heading which includes a description of the project (route number, control section, P.R. number, control section and P.R. beginning and ending mile points, and job number).
- A statement that the crash analysis is in relation to a specific design exception request (as opposed to a project wide analysis).
- A statement indicating which geometric feature the design exception has been requested for, and the location to which it applies (Control Section or P.R. number and mile points).
- A description of the existing condition or value of the geometric feature in question.
- A description of the proposed condition or value of the geometric feature in question.
- A statement detailing what the standard value is for the geometric feature in question, and a reference to the appropriate governing Standard or Guide.
- A description of the crash data used in the analysis (time span and mile point limits of the data query). This should be the most recent four years for which crash data is available, using the Safety Management System in TMS.
- A summary of the total numbers and types of crashes found in the analysis.
- 9) A statement that the crash types associated with the geometric feature in question were specifically investigated in detail. Refer to Table A to determine which crash types are associated with which geometric features. This detailed investigation shall include a review of all crash reports (UD-10's) for these crash types. If there are a large number of crashes of the associated types, a representative sample of UD-10's may be selected for review (as opposed to all of them).
- A statement that the analysis did not (or conversely, did) find a pattern or concentration of crashes associated with the geometric feature for which the design exception has been requested.

Design Exception Crash Analysis Instructions

TABLE A				
GEOMETRIC FEATURE TO WHICH DESIGN EXCEPTION APPLIES	ASSOCIATED CRASH TYPES			
Design Speed	All Crash Types			
Lane Width	Sideswipe, Fixed-Object, Run-Off, Overturn			
Shoulder Wildth	Sideswipe, Fixed-Object, Run-Off, Overturn			
Bridge Width	Sideswipe, Fixed-Object			
Structural Capacity	N/A			
Horizontal Alignment	Fixed-Object, Run-Off, Overtum, Sideswipe, Head-On			
Vertical Alignment	Rear-End, Sideswipe, Head-On, Fixed-Object, Run-Off, Overturn, Angle			
Longitudinal Grade	Rear-End, Sideswipe, Head-On			
Stopping Sight Distance "	Rear-End, Sideswipe, Head-On, Fixed-Object, Run-Off, Overtum, Angle			
Cross-Slope/Roll-Over	Too Little: Rear-End, Percent Wet, Percent Icy Too Great: Fixed-Object, Run-Off, Overturn			
Superelevation	Fixed-Object, Run-Off, Overturn, Sideswipe, Head-On			
Vertical Clearance	High-Load Hits			
Horizontal Clearance (Excluding Clear Zone)	Sideswipe, Rear-End, Head-On, Fixed-Object			
Ramp Acceleration or	Sideswipe, Rear-End, Fixed-Object,			
Deceleration Length	Run-Off, Overtum			

* At night, the available sight distance through sag vertical curves is largely determined by headlight illumination distance. Therefore, when reviewing crashes in relation to sag vertical curves, particular attention should be paid to night-time crashes, including animal collisions. A high percentage of night-time crashes could indicate a crash pattern related to insufficient stopping sight distance. While animal collisions are not generally included in crash analyses due to the large uncertainty as to their causes and/or exact locations, they should not be summarily dismissed, either. Animal crashes can be taken with together with the crash data set as a whole, and can sometimes help identify crash patterns specifically related to restricted sight distance.

When performing a crash analysis as part of a design exception request, focus the review on the crash types which are associated with the geometric feature in question. Use the table above to determine which crash types are associated with each geometric feature. Also, consider only the crashes which have occurred in the vicinity of the subject geometric feature (not necessarily project wide). It is usually sufficient to set the mile point limits of the crash data query to a few hundred feet on either side of the geometric feature in question.

Crash analysis is, by its nature, an inexact and subjective exercise. There will often times be uncertainty as to whether or not a particular geometric feature contributed towards a given crash. The information provided in the UD-10's, along with engineering judgement, can usually resolve any questions adequately.

QUESTIONS

Superelevation Transitions for 2 Lane 2 Way (Reference R-107 sheet 3 of 7)

Problem 8:

Given the following information:

Given the following curve information, determine the following design criteria using R-107:

- Proposed Superelevation Rate
- Delta Percent Value
- Shoulder Cross-Slopes in Superelevated Section (High-Side and Low-Side)
- Crown Runout Length (C) and Superelevation Transition Length (L)
- Placement of Superelevation Transition with Respect to the PC and PT

Answers:

Superelevation = 4.2% Delta = 0.40 Shoulder Cross-slopes = Same as Super (4.2%) on Low-Side and -1.0% on High-Side

Super Transition Length = (12' x 4.2%) / 0.40 = <u>126ft</u> 126ft / 3 = 42ft PC Station <u>100+50</u> + 42ft = Sta. <u>100+92</u> - 126 ft = Sta. <u>99+66</u>

PT Station 104+20 - 42ft = Sta. 103+78 + 126ft = Sta. 105+04

Super Transition from Station 99+66 to Station 100+92 (PC) Super Transition from Station 103+78 to 105+04 (PT)

Crown Runout = $(12' \times 2\%) / 0.40 = \underline{60ft}$ PC Station 100+50: Crown Runout Sta. <u>99+66</u> - 60ft = Sta. <u>99+06</u>. Crown Runout from Sta. <u>99+06</u> to Sta. <u>99+66</u>.

Crown Runout Sta. 105+04 + 60ft=Sta. 105+64. Crown Runout from Sta. 105+04 to Sta. 105+64.

PT 104+20

99+06 100 + 92103 + 78105+0499+66 105+64Crown Runout Super Transition Super Transition Crown Runout 4.2 % Super L/3 = 42ftL/3 = 42ftC = 60 ftC = 60 ft $L = 126 ft^{-1}$ $L = 126 ft^{-1}$

Superelevation Transitions for Odd Number of Lanes (Reference R-107 sheet 7 of 7)

<u>**Problem 9**</u>:

Given the following information:

Given the following curve information, determine the following design criteria using R-107:

- Proposed Superelevation Rate
- Delta Percent Value
- Shoulder Cross-Slopes in Superelevated Section (High-Side and Low-Side)
- Crown Runout Length (C) and Superelevation Transition Length (L)
- Placement of Superelevation Transition with Respect to the PC and PT

Super Transition = L1 + L2 L1 = (12' x 2.0%) / (0.5 x 0.44) = 109ft L2 = [24' x (3.5% - 2%)] / (0.44) = 82ft L = L1 + L2 = 109ft +90ft = <u>191ft</u> 191ft / 3 = <u>64ft</u> PC Station <u>56+10</u> + 64ft = Sta. <u>56+74</u> - 191 ft = Sta. <u>54+83</u> PT Station <u>84+20</u> - 64ft = Sta. <u>83+56</u> + 191ft = Sta. <u>85+47</u> Super Transition from Station 54+83 to Station 56+74 (PC) Super Transition from Station 83+56 to 85+47 (PT)

Crown Runout = $(12^{\circ} \times 2\%) / (0.5 \times 0.44) = 109$ ft PC Station 56+10 Sta. 54+83 - 109ft = Sta. 53+74PT Station 84+20 Sta. 85+47 + 109ft = Stat 86+56Crown Runout at station 53+74 to 54+83

Crown Runout at station 85+47 to 86+56

