

Michigan DOT Pavement Design

Justin Schenkel, P.E.

Michigan Department of Transportation

OUTLINE

- AASHTO 1993 design method (OLD)
- Mechanistic-Empirical (ME)

design method (NEW)

- AASHTO 1993 Guide for Design of Pavement Structures
 - From AASHO Road Test in 1958-1960 in Ottawa, IL
 - Empirical test
 - Interim design method in 1961
 - Official design method in 1972
 - Updates in 1986, 1993, 1998 (PCC only)

5

Thickness design from an equation:

- Where:
 - W_{18} = Equivalent single axle loads (ESAL's)
 - $Z_R = Reliability$
 - S_0 = Standard deviation
 - SN = Structural number (total for all layers)
 - \circ Δ PSI = Change in serviceability
 - \circ M_R = Resilient modulus of the subgrade
- We are solving for SN (which will be used to determine thickness, see slide # 11)

Thickness design from an equation (continued):

🗋 Rigid

We are solving for D (which is thickness)

- Where:
 - \circ W₁₈ = Equivalent single axle loads (ESAL)
 - \circ Z_R = Reliability
 - \circ S₀ = Standard deviation
 - D = thickness (of the concrete)
 - ΔPSI = Change in serviceability
 - p_t = Terminal serviceability
 - \circ S_c = Modulus of Rupture
 - \circ C_d = Drainage coefficient
 - J = Load transfer coefficient
 - E_c = Modulus of elasticity
 - k = Effective modulus of subgrd reaction

DARWin

(Design, Analysis, and Rehabilitation for Windows)

- 2004 software
- Based on AASHTO93 design method
- Solves for previous equations

Typical Hot Mix Asphalt (HMA) inputs

- Projected ESAL's = Equivalent Single Axle Loads
 - Measure of total damage an axle load does to a pavement in relation to an 18,000 pound axle
 - Is a total derived from the design life (see slide # 20-24)
 - Requested from the Bureau of Transportation Planning.
 - Submit Traffic Analysis Request (TAR) Form 1730
 - Initial Serviceability = 4.5
 - <u>Terminal Serviceability</u> = 2.5
- Reliability = 95%
- Overall Standard Deviation = 0.49

Typical HMA inputs *(continued)*

- <u>Roadbed Soil (aka subgrade) M_R = Resilient Modulus</u>
 - Measure of subgrade material stiffness (psi)
 - MDOT typical values: ~3000 to 5000 psi
 - Stress/strain for rapidly applied load
 - Estimated by the Region Soils Engineer from:
 - Falling Weight Deflectometer backcalculation
 - Soils identification and known correlations
 - Stage Construction = 1

<u>Result</u> is a **Design Structural Number (SN)** that the pavement structure must have to support the projected number of ESAL's over it's life

- SN = $a_1d_1 + a_2d_2m_2 + ... + a_nd_nm_n$
 - Where
 - a = layer structural coeff.
 - o d = layer thickness
 - m = layer drainage coeff.

- HMA Structural Coefficients (a)
 - HMA Top & Leveling Course = 0.42
 - HMA Base Course = 0.36
 - Cement Stabilized Base = 0.26
 - ASCRL = 0.30
 - Asphalt/Emulsion Stabilized Base = 0.20
 - Crush and Shaped HMA = 0.20
 - Rubblized Concrete = 0.18
 - Dense-Graded Aggregate Base = 0.14
 - Open-Graded Aggregate Base = 0.13
 - Sand Subbase = 0.10
- Drainage Coefficients (m)
 - All Layers = 1
 - 16" OGDC = 1.1

🔋 Project1 - Flexible Structural Des	ign1 ×	
Description:		
18-kip ESALs Over Initial Performance Period		
Initial Serviceability		
Terminal Serviceablity		
Reliability Level (%)		
Overall Standard Deviation		
Roadbed Soil Resilient Modulus	psi	
Number of Construction Stage	1 ÷	
Design Structural Number	in	Design ^o
	,	D COIGIT C

AASHTO93 DESIGN METHOD

\square	Thicknes	s Designs							×		
\mathcal{D}	Layered	Specified Optimized									
								<u>∽</u> [▲ ▼]∋			
	Layer	Material Description	Struct Coeff. (Ai)	Drain Coeff. (Mi)	Thick. (Di) (in)	One Direct. Width (ft)	Structural Number (in)	Thickness to match Design SN (in)			
	1 2 3 4										
			' l'hicknes	s Sum						Calculated SI	N
		Design SN Source Desig Flex Design SN	n SN (ir			lated SN	in)		-	must be ≥ Design SN	
•				Materia	115					-	

Additional Notes:

Layered

- This approach solves for the structural number of a layer based on the elastic modulus of the underlying layer.
- The elastic modulus is used in the design equation as the resilient modulus.
- Algorithm starts by solving for the thickness of the bottom layer and working up.
- A layer with specified thickness isn't considered as part of elastic layered analysis calcs (for purpose of determining thicknesses).
- Specified
 - User supplies all inputs for each layer and DARWin calculates the SN contribution of the individual layers & of the total structure.

Typical Concrete (PCC) inputs

- Projected ESAL's
- Initial Serviceability = 4.5
- Terminal Serviceability = 2.5
- Reliability = 95%
- Overall Standard Deviation = 0.39
- <u>28-day Modulus of Rupture</u> = 670 psi
- <u>28-day Elastic Mod. of Slab</u> = 4,200,000 psi
 - Load Transfer Coefficient
 - Tied shoulder, tied curb & gutter, or 14' outside lane = 2.7
 - Untied shoulder = 3.2

Typical Concrete inputs (continued)

- <u>Drainage Coefficient</u> = 1 to 1.05, (or 1.1 for 16" of OGDC)
- Effective Modulus of Subgrade Reaction (k-value)
 - Determined from Subgrade Resilient Modulus, depth of base/subbase, and Elastic Modulus of base/subbase
 - Figures 3.3 & 3.6 from <u>1993 AASHTO Guide for Design of</u> <u>Pavement Structures</u> is used to obtain the value
 - Loss of support of 0.5 used in Figure 3.6
 - Subgrade M_R comes from Region Soils Engineer

<u>Estimation of Composite Modulus of Subgrade Reaction, Assuming a Semi-Infinite Subgrade</u> Correction of Effective Modulus of Subgrade Reaction for Potential Loss of Subbase Support

CS	JN	D _{SB} (in)	E _{SB} (psi)	M _R (psi)
		16	20000	3500

\mathbf{K}_{∞} (pci)	LS	K _{LS} (pci)
309	0.5	186

Per MDOT results using the AASHTO Guide for Design of Pavement Structures 1993, Part II Figures 3.3 & 3.6, K_{∞} and K_{LS} are calculated from the equations below:

 $\ln K_{\infty} = \ln(1.09) * (-2.807 + 0.1253(\ln(D_{SB})^2 + 1.062(\ln(M_R)) + 0.1282(\ln(D_{SB}))(\ln(E_{SB})) - 0.4114 (\ln(D_{SB})) - 0.0581(\ln(E_{SB})) - 0.1317(\ln(D_{SB})\ln(M_R))$

 $\log_{10} K_{LS} = 0.8218 \log_{10} K_{\infty} + 0.2234$

🔋 Project1 - Rigid Structural Design	12	×
Description:		
I		
18-kip ESALs Over Initial Performance Period		
Initial Serviceability		
Terminal Serviceability		
28-day Mean PCC Modulus of Rupture		psi
28-day Mean Elastic Modulus of Slab		psi
Mean Effective k-value		psi/in
Reliability Level (%)		
Overall Standard Deviation		
Load Transfer Coefficient, J		
Overall Drainage Coefficient, Cd		
Calculated Design Thickness		in
*	,	

Project1 - Overlay Design1	Effective ThicknessCondition Survey Method	×
Unbonded PCC Overlay of PCC or AC/PCC Pavement Description:	Existing PCC Thickness	in
	Existing AC Thickness 😽	in
	Milling Thickness	in
Future Structural Capacity	Durability Adjustment Factor (Fdur)	_
Pavement Thickness for Future Traffic	Fatigue Damage Adjustment Factor (Ffat)	_
Effective Existing and Overlay Structural Capacity	AC Quality Adjustment Factor (Fac)	_
Existing Pavement Effective Existing Overlay	No. of Unrepaired Deteriorated Joints	per mi
Condition Survey	No. of Unrepaired Deteriorated Cracks	per mi
Remaining Life in in	No. of Unrepaired Punchouts	per mi
	No. of Expansion Joints, Exceptionally Wide Joints or AC Full Depth Patches	per mi
	Calculated Results	
	Joints and Cracks Adjustment Factor	
	Effective Existing Pavement Thickness	in
	OK Cancel Clear	
7/23/2020		19

Material Elastic Moduli (psi)

- HMA Top and Leveling Course = 390,000 to 410,000
- HMA Base Course = 275,000 to 320,000
- Cement Stabilized Base = 1,000,000
- ASCRL = 210,000
- Asphalt/Emulsion Stabilized Base = 160,000
- Crush and Shaped HMA = 100,000 to 150,000
- Rubblized Concrete = 45,000 to 55,000
- Dense-Graded Aggregate Base = 30,000
- Open-Graded Aggregate Base = 24,000
- Sand Subbase = 13,500

Elastic Modulus used in HMA layered design or PCC k-value

- Equivalent Single Axle Loads (ESAL's)
 - Traffic component that is requested at the preliminary planning stages
 - ESAL's = CADT * 365 * DD * LD * TF * GF
 - CADT = truck volume
 - DD = directional distribution
 - LD = lane distribution
 - TF = truck factor
 - GF = growth factor

- Equivalent Single Axle Loads (ESAL's) (continued)
 - Compound growth factor (GF):
 - \circ GF = ((1+g)ⁿ 1)/g
 - g = growth rate expressed as a decimal (e.g. 2% = 0.02)
 - Based on review of historic truck volumes
 - May be adjusted (up or down) based on very limited economic information
 - n = number of years; (use design life)

- Equivalent Single Axle Loads (ESAL's) (continued)
 - Truck factors (TF):
 - Average ESAL per truck
 - Different truck types accounted for
 - Different factor used for each FHWA classifications 5-13
 - Overall TF weighted according to the volume of each class
 - Some routes only have vehicle/medium, truck/heavy-truck percentages rather than classification, so only TF for medium/heavy used.
 - Medium = classes 5 though 8
 - Heavy = classes 9 though 13
 - "<u>Rule of thumb</u>": ESAL's for PCC are typically 1.4 to 1.5 times the ESAL's for HMA

AASHTO93 DESIGN METHOD (OLD) <u>Design Lane Example</u>

CADT = 3000

Traffic data generally consists of 2 types:

- Permanent traffic recorders embedded in the pavement
 - Weigh-In-Motion sites
 - Classification sites
 - Traffic count sites
 - Speed sites (not used for AASHTO 1993)
- Short term measurements
 - Classification
 - Traffic count
 - Speed
 - Other (turning movements, etc.)

Typical Freeway New/Reconstruct Cross-Sections

- LCCA Analysis (pavt costs > \$1.5 million) compares PCC vs HMA alternatives:
 - New/reconstruction project
 - PCC = Jointed Plain Concrete Pavement (JPCP)
 - HMA = Full-depth (Superpave mix)
 - Major rehabilitation project
 - PCC = Unbonded concrete overlay of existing PCC
 - HMA = HMA overlay of rubblized concrete

Note that there are other types of pavement projects, but the above types are what are used in LCCA.

Mechanistic-Empirical (ME) Pavement Design

- ME Pavement Design Guide (MEPDG)
 - Original Version 1st Edition 2007/2008
 - Current Version 3rd Edition 2020
- Mechanistic Based on the theories of mechanical properties of materials
- <u>Empirical</u> Use observed performance measures to calibrate the performance models

- It is AASHTO's recommended pavement design method, replacing AASHTO '93
- Software name changed in 2013 from:
 - DARWin-ME to <u>Pavement ME Design</u>

- Pavement response for every anticipated axle load is calculated and damage is estimated and summed.
- Result is <u>distress prediction</u> (not a pavement cross-section) for the expected design period
 - Concrete distresses:
 - % slabs cracked, faulting, IRI
 - HMA distresses:
 - transverse cracking, longitudinal cracking, % fatigue cracking, rutting, IRI

AASHTOWare Pavement ME Design Version 2.0 E	Build 2.0.19 (Date: 01/23/2014)			
Explorer 4 ×	Menu	the second s	4 F	Progress P X
E- Projects	Recent Files *	🚽 🦉 💭 📩 🏠 🏠 🏹 🧖		Stop All Analysis
Single Axle Distribution	47013 81075 115399 . Project		- *	
Tridem Axle Distribution	General Information	Parformance Criteria	lie# Bateloite	
Quad Axle Distribution	Design type: New Pavement	Prenomance Citeria	C7	
Climate	Pavement type: Flexible Pavement		172 05	
AC Layer Properties	Design life (years): 20 -	reminal ini (n./mie)	1/2 55	
Layer 1 Rexible : 5E3 Top Course	Base construction: July 2017	Ac top-down fatigue cracking (t/mile)	2000 95	
Layer 2 Rexible : 4E3 Level Course	Programment experimentian August	AC bottom-up fatigue cracking (percent)	20 95	
Layer 3 Hexible : 3E3 Base Course		AC thermal cracking (ft/mile)	1000 95	-
Layer 5 Non-stabilized Base : Sand S	Tranic opening: September	Permanent deformation - total pavement (in.)	0.5 95	
Layer 6 Subgrade : Sandy Clay Subgra Project Specific Calibration Factors	Special traffic loading for flexible pavements	Permanent deformation - AC only (n.)	0.5 95	
	🛙 🌵 Add Layer 🞇 Remove Layer			
New Rigid				
Bonded Rigid				
- 🖉 Optimization				
				-
Multiple Project Summary		Layer 1 Asphalt Concrete:5E3 Top Course	•	
Batch Run	Click here to edit Layer 2 Flexible : 4E3 Level Course			
Tools	Click here to edit Laver 3 Elevible : 3E3 Base Course	A Asphalt Layer	· · · · · · · · · · · · · · · · · · ·	
H-ME Design Calibration Factors		I hickness (in.)		
	Click here to edit Laver 4 Non-stabilized Base : Ago, Base	Unit weight (pcf)	✓ 145.9	
	ALAK STALL	Effective binder content (%)	✓ 12.1	
		Air voids (%)	✓ 5.9 0.25	
		Mechanical Properties	0.55	
	Click here to edit Layer 5 Non-stabilized Base : Sand Subbase	Dynamic modulus	✓ Input level:1	
		 Select HMA Estar predictive model Reference temperature (dec 5) 	Use Viscosity based model (nationally calibrated).	
		Asphalt binder	Level 1 - SuperPave:	
	第二人が見たいというときが 秋波	Indirect tensile strength at 14 deg F (psi)	√ 479	
	The same that have a series of the series	Creep compliance (1/psi)	✓ Input level:1	
		Thermal conductivity (BTU/hr-ft-deg F)	I 0.67	
		Heat capacity (BTU/Ib-deg F)	✓ 0.23	
	的人。我们就是你们的问题。" ————————————————————————————————————	Thermal contraction	1.265E-05 (calculated)	
		Display name/identifier	5E3 Top Course	
		Description of object		
	States and the states of the states	Author		
		Date created		
	Click here to edit Layer 6 Subgrade : Sandy Clay Subgrade	Date approved		
		State		
	N	District		
	the Palace Parts	Highway		Output
		Disnlay name/identifier		
	Carpon the state of the state of the	Display name of object/material/project for outputs and graphical interface		
	the sector dealers and the sector of			
4 m >				-
Fror List Compare				
Tel anor and Tel compare				

Climate:

- Data from 39 weather stations in Michigan
 - Recently completed Michigan Tech project added more years of data to existing stations and additional weather stations from the existing 19 (included in ME package).
- Each weather station over 10 years of monthly climatic data
- Water table depth is an input

Locations of – Weather Stations

Materials:

- Many more material inputs
- Examples:
 - Gradations (for calculating modulus values)
 - Thermal properties of the paved surface (expansion, conductivity, heat capacity)
 - Concrete shrinkage (ultimate, reversible, and time to 50%)
- A lot more material testing has been occurring
 - This will continue into the future

		Sieve Size	Percent Passing	Liquid Limit	0
		0.001mm		Plantinity Jadam	-
		0.002mm		Flasticity index	0
Layer 2 Non-stabilized Base: Agg. Base (A-1-a)	•	0.020mm		V Is layer compacted?	
		#200	7.7	Maximum dry unit weight (pcf)	127.0
		#100		Saturated hydraulic conductivity (ft/hr)	3 478e-02
Layer thickness (in.)	Semi-infinite	#80			0.1100 02
Poisson's ratio	✓ 0.35	#60		Specific gravity of solids	2.7
Coefficient of lateral earth pressure (k0)	✓ 0.5	#50			1 50
▲ Modulus		#30		Optimum gravimetric water content (•) 5.9
Resilient modulus (psi)	✓ 33000	#40		User-defined Soil Water Characteristic	c Curve (SWCC)
▲ Sieve		#30			
Gradation & other engineering properties	🖌 A-1-a 🔍 🗖	#20		af 5.859671	58740529
▲ Identifiers	E	#16		bf 1.732401	10376227
Display name/identifier	Aggregate Base	#10		cf 0.689751	920445787
Description of object		#10	22.2	100	520110707
Approver		#8	33.Z	nr 100	
Date approved		#4			
Author		3/8-in.			
Date created		1/2-in.	67.7		
County		3/4-in		-	
State			010	-	
District		I-In.	94.2	_1	
Direction of travel		1 1/2-in.			
From station (miles)		2-in.			
To station (miles)	-	2 1/2-in.	100		
		3-in.			
		3 1/2-in			

Example of materials inputs – Concrete Layer

Lay	ver 1 PCC:JPCP		•
] ♠↓		
4	PCC		*
	Thickness (in.) PropertyGridToolBar	✓ 10	
	Unit weight (pcf)	✓ 145	
	Poisson's ratio	✓ 0.2	
4	Thermal		
	PCC coefficient of thermal expansion (in./in./deg F x 10 ⁻⁶)	✓ 5.8	
	PCC thermal conductivity (BTU/hr-ft-deg F)	✓ 1.25	
	PCC heat capacity (BTU/Ib-deg F)	✓ 0.28	
4	Mix		
	Cement type	Type I (1)	
	Cementitious material content (Ib/yd^3)	✓ 500	-
	Water to cement ratio	✓ 0.42	=
	Aggregate type	Limestone (1)	
\triangleright	PCC zero-stress temperature (deg F)	Calculated	
\triangleright	Ultimate shrinkage (microstrain)	530.8 (calculated)	
	Reversible shrinkage (%)	✓ 50	
	Time to develop 50% of ultimate shrinkage (days)	✓ 35	
	Curing method	Curing Compound	
4	Strength		
	PCC strength and modulus	Level:3 Compressive(5600)	

Example of materials inputs – HMA Layer

Lay	ver 1 Asphalt Concrete:5E3 Top Course		•
	2 ↓ ■		
4	Asphalt Layer		*
	Thickness (in.)	✓ 1	
4	Mixture Volumetrics		
	Unit weight (pcf)	✓ 145.9	
	Effective binder content (%)	✓ 12.1	
	Air voids (%)	✓ 5.9	
Þ	Poisson's ratio	0.35	
4	Mechanical Properties		
	Dynamic modulus	✓ Input level:1	
Þ	Select HMA Estar predictive model	Use Viscosity based model (nationally calibrated).	
	Reference temperature (deg F)	✓ 70	
	Asphalt binder	Level 1 - SuperPave:	=
	Indirect tensile strength at 14 deg F (psi)	✓ 479	
	Creep compliance (1/psi)	✓ Input level:1	
4	Thermal		
	Thermal conductivity (BTU/hr-ft-deg F)	✓ 0.67	
	Heat capacity (BTU/Ib-deg F)	✓ 0.23	
\triangleright	Thermal contraction	1.265E-05 (calculated)	

	Layer 1 PCC: JPCP	
	2 2	
 ✓ 1.5 ✓ 146 ✓ 11.9 ✓ 7 0.35 ✓ Input level:3 HMA Top Course ✓ 70 ✓ SuperPave:64-28 ✓ 400.47 ✓ Input level:3 	Image: Solution of the system Image: Solution of the system<	 ✓ 10 ✓ 145 ✓ 0.2 0^{ ✓ 4.5 ✓ 1.25 ✓ 0.28 Type I (1) ✓ 500 ✓ 0.42 Limestone (1) Calculated 530.8 (calculated) ✓ 50
 ✓ 0.67 ✓ 0.23 1.32E-05 (calculated) 	Time to develop 50% of ultimate shrinkage (days) Curing method Strength PCC strength and modulus Identifiers Display name/identifier	35 Curing Compound Level:3 Compressive(5600) .JPCP
	 ✓ 1.5 ✓ 146 ✓ 11.9 ✓ 7 0.35 ✓ Input level:3 HMA Top Course ✓ 70 ✓ SuperPave:64-28 ✓ 400.47 ✓ Input level:3 ✓ 0.67 ✓ 0.23 1.32E-05 (calculated) HMA Top Course 	Layer 1 PCC:JPCP ✓ 1.5 ✓ 146 ✓ 11.9 ✓ 7 Ø.35 ✓ Input level:3 HMA Top Course ✓ 70 ✓ SuperPave:64-28 ✓ 400.47 ✓ 10.23 ✓ 0.67 Ø.23 I.32E-05 (calculated) Layer 1 PCC:JPCP

HMA vs JPCP inputs

- Traffic:
 - No more ESAL's
 - Axle Load Spectra
 - Inputs include:
 - Average axle spacing,
 - Typical tire pressures,
 - Average distance from shoulder to closest tire,
 - Monthly and hourly distributions,
 - Vehicle class distribution,
 - o etc.

Example of – Traffic Inputs

	24 🖾		Vehicle Cla	ass Distributi	on and Grow	đh						Load Defa	ult Distribution		Hourly Adjustment	
E	AADTT		Vehicle C	885	Distribu	Distribution (%) Growth Rate (%)		0	Growth Eurotian			-		Time of Day	Percentage	
	Two-way AADTT	✓ 16300	Tormolo of			anders (5-4)	-					prov			12:00 am	2.58
	Number of lanes	✓ 3	Class 4		1.6		2			Compound	~	-60-	0		1:00 pm	242
	Percent trucks in design direc	✓ 50	Class 5		6.14		2			Compound	*	L	E,		Lou am	2,42
	Percent trucks in design lane	✓ 85	Class 6		5.16		2		1	Compound	*		B		2:00 am	2,16
	Operational speed (mph)	✓ 60	Class 7		0.00		2			Company		-00	6		3:00 am	2.22
Ξ	Traffic Capacity		Class /		0.30		2			Compound	~	-sinitz			4:00 am	24
	Traffic Capacity Cap	Vot enforced	Class 8		2		2			Compound	*	0		=	5.00	
	Axle Configuration		Class 9		68.99		2			Compound	*		B		5:00 am	2,/8
	Average axie width (ft)	¥ 8.5	Class 10		8 21		2			Compound	~	00 1	b.		6:00 am	3.23
	Tire proprure (ppi)	12	0000 10		0.21		-			Compound		000	no h		7:00 am	3.61
	Tandem avle spacing (in)	516	Class 11		0.78		2			Compound	~	0.00	-		9.00 mm	4.32
	Tridem axle spacing (in.)	¥ 49.2	Class 12		0.2		2			Compound	*		B		0.00 am	4,00
	Quad axle spacing (in.)	¥ 49.2	Class 13		6.56		2			Compound	*		B	_	9:00 am	5.34
Ξ	Lateral Wander				1							0 0-00	- better	Y .	10:00 am	6.15
	Mean wheel location (in.)	✓ 18	Monthly Ad	justment								Import Me	nthly Adjustme	ิก	11:00 am	6.53
	Traffic wander standard devia	✓ 10										Lunport Mc	and rejustice	5	10.00	C 40
	Design lane width (ft)	✓ 12	Month	Class 4	Class 5	Class 6	Class 7	Class 8	Class 9	Class 10	Class 11	Class 12	Class 13	^	12:00 pm	6.42
E	Wheelbase		January	0.899	0.899	0.899	0.899	0.966	0.966	0.966	0.77	0.77	0.77		1:00 pm	6.29
	Average spacing of short axle	✓ 12	Eshaven	0.04	0.04	0.04	0.04	1.041	1.041	1.041	0.740	0.740	0.740		2:00 pm	5.89
	Average spacing of medium a:	✓ 15	February	0.34	0.34	0.94	0.34	1.041	1.041	1.041	0.743	0.749	0.749		2.00	5.2
	Average spacing of long axles	✓ 18	March	0.979	0.979	0.979	0.979	1.057	1.057	1.057	0.847	0.847	0.847		3.00 pm	0.0
	Percent trucks with short axle	33	April	0.972	0.972	0.972	0.972	0.917	0.917	0.917	0.889	0.889	0.889		4:00 pm	5.01
	Percent trucks with medium a:	33	May	0.992	0.992	0.992	0.992	0.897	0.897	0.897	0.98	0.98	0.98	Ξ	5:00 pm	4,58
	Hercent trucks with long axies	✓ 34	inay	4.007	4.002	4.002	4.002	0.007	0.007	0.007	0.00	4.407	4.407		6:00 pm	4.48
	Display pame/identifier	Default Traffic	June	1.087	1.087	1.087	1.087	1.119	1,119	1,119	1.187	1.18/	1.187		3.00 pm	1.10
	Description of object	Default Traffic File	July	1.019	1.019	1.019	1.019	0.941	0.941	0.941	1.21	1.21	1.21		7:00 pm	4,3/
	Approver		August	1.016	1.016	1.016	1.016	1.019	1.019	1.019	1.034	1.034	1.034		8:00 pm	3,99
	Date approved	1/1/2011	Contombo	0.002	0.002	0.902	0.002	0.927	0.927	0.927	1.071	1.071	1.071		9:00 pm	3.63
	Author	AASHTOWare	September	0.000	0.000	0.303	0.000	0.527	0.327	0.527	1.071	1.071	1.071		10:00 pm	3 31
	Date created	1/1/2011	October	1.053	1.053	1.053	1.053	1.05	1.05	1.05	1.268	1.268	1.268	Y	10.00 pm	3,51
	County							-		1			1 13	-	11:00 pm	3
	State		Axles Per 1	ruck										_	Total	100.0
	District		Vehicle Cla	355	Single		T	andem		Tridem		Quad				
	Direction of travel		Class 4		1.65		0	36		0		0				
	From station (miles)		Cines 5		2		0	05		0		0				
	Lo station (miles)		Cidos U		2		U.	60				U		-		
	Revision Number	0	Class 6		1		1			0		0				
	User defined field 1	0	Class 7		1.06		0	06		0.59		0.35				
	User defined field 2		Class 8		2.28		0	74		0		0				
	User defined field 3		0 0		1.00			nc.		0		-				
	Item Locked?	False	Class 9		1.29		1.	60		U		U				
			Class 10		1.54		1			0.31		0.56				
			Class 11		4.99		0			0		0				
Т	affic Capacity Cap		Class 12		3.85		0	96		0		0				
			000012		0.00					0.00		0.01				
			Class 13	_	2.03	_	1.	4		0,36		0.61				

Month	Class	Total	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000	13000	14000	15000	16000	→ 41.000
January	4	100	0	0.02	0.1	0.71	2.7	10.18	15.06	15.67	12.43	11.52	8.92	8.03	5.42	3.18	,
January	5	100	9.98	12.48	16.19	12.7	13.67	8.34	7.8	4.69	3.97	2.24	2.04	1.59	1.07	1.1	 1.15% of the class 5 single axles in February are in the 14,000
January	6	100	0.36	0.42	0.74	1.13	4.17	7.98	15.11	13.56	16.02	9.81	8.36	5.18	3.19	3.14	
January	7	100	1.61	1.9	3.14	2.41	5.92	4.09	6.8	5.92	7.68	7.89	9.58	9.73	7.09	7.53	
January	8	100	1.44	2.6	4.15	5.88	10.51	15	20.39	9.77	8.13	5.06	4.4	3.31	2.24	2.37	
January	9	100	3.1	1.53	1.23	0.86	1.78	4.84	16.68	23.92	26.41	8.24	2.84	1.47	1.44	2.12	
January	10	100	0.02	0.06	0.14	0.42	1.25	4.04	13.07	22.18	27.67	14.45	8.97	3.72	1.45	1.15	
January	11	100	0.52	1.86	6.17	5.37	6.61	8.38	17.17	11.65	9.86	6.59	7.21	6.49	4.18	3.45	
January	12	100	0.74	2.21	5.57	7.4	10.36	10.77	18.41	11.94	10.12	6.56	5.5	3.2	1.9	1.87	
January	13	100	2.03	1.76	2.94	3.66	3.62	2.21	6.59	11.17	15.42	9.11	8.94	7.24	5.33	6.18	
February	4	100	0.02	0.02	0.19	0.82	3.12	9.95	14	15.3	12.73	11.89	9.45	7.99	5.34	3.23	
February	5	100	10.02	11.73	15.97	13.05	13.79	8.49	7.72	4.67	4.05	2.34	2.15	1.66	1.15	1.13	
February	6	100	0.28	0.55	0.84	1.18	5.26	8.38	14.32	13.72	16.18	9.44	8.61	5.15	2.88	3.14	
February	7	100	1.24	1.86	5.77	4.54	7.29	4.88	6.94	6.25	8.17	5.84	7.7	8.11	6.12	7.29	
February	8	100	1.51	2.44	4.54	6.11	10.73	15.36	19.61	9.62	8.01	4.89	4.49	3.46	2.34	2.3	
February	9	100	3.3	1.46	1.17	0.83	1.94	4.96	17.38	24.08	25.04	7.73	3.13	1.75	1.58	2.23	to 14,999
February	10	100	0.01	0.04	0.19	0.31	1.65	3.65	14.18	22.66	26.91	14	8.23	3.91	1.65	1.4	weight hip
February	11	100	0.53	1.92	6.2	5.15	6.81	8.61	17.41	11.4	9.95	6.75	7.08	6.16	4.15	3.38	weight bin
February	12	100	0.8	2.4	5.98	7.94	9.8	10.88	18.4	11.27	10.13	6.5	5.46	3.16	1.77	1.91	
February	13	100	2.16	2.1	3.2	3.52	3.28	2.09	7.33	11.74	14.32	8.64	8.85	7.03	5.39	6.03	
March	4	100	0	0	0.08	0.69	2.86	11.21	14.98	14.68	11.97	11.6	9.13	8.21	4.96	3.61	
March	5	100	10.35	11.32	15.34	13.09	13.88	8.49	7.93	4.82	4.11	2.28	2.12	1.67	1.19	1.2	
March	6	100	0.24	0.5	0.93	1.7	5.33	9.14	15.23	14.78	17.27	9.6	7.7	4.26	2.17	2.16	
March	7	100	1.29	1.83	7.52	6.43	10.67	6.97	7.02	5.64	6.53	4.6	8.01	7.91	6.23	5.89	
March	8	100	1.8	2.89	4.4	6.29	10.91	15.82	19.99	9.18	7.57	4.7	4.32	3.38	2.15	2.32	
March	9	100	3.55	1.47	1.17	0.79	1.71	4.83	17.58	24.87	25.39	6.73	2.71	1.79	1.75	2.43	

December

Single Axle Load Spectra (axle load bin counts)

Design Comparison

	<u>AASHTO 1993</u>	Mechanistic-Empirical
Basis	Empirical observation from the 1958-59 AASHTO Road Test	Theories of mechanics
Original Calibration	AASHO Road Test – Ottawa, IL	SHRP test sections from around the country
Traffic Characterization	Equivalent Single Axle Load	Axle load spectra
Materials Inputs	Very few	Many
Climatic Effects	Limited – can change inputs based on season	Integral – weather data from 600+ US weather stations included
Performance Parameter	Present Serviceability Index	Various distresses, IRI
Output	Thickness	Performance prediction (distress prediction)

1073170006

- 1st calibration completed fall of 2014 (Michigan State University project)
- 2nd calibration completed end of 2017 (MSU)
- ❑ 3rd calibration to be completed in 2022 (MSU)
- Began phase 1 of transition process March 2015
 - <u>Phase 1</u>: Life-cycled reconstruction projects
 - Phase 2: All reconstruct projects (currently in this phase)
 - Phase 3: Life-Cycled rehab projects
 - Phase 4: All rehab projects

Rail

Ferries

Maps

MDOT ME

User Guide

- MDOT ME Website:
 - http://www. michigan.gov /mdot/0,461 6,7-151-9623 26663 7303 27336 63969----,00.html

MI.gov MDOT Home Contact MDOT FAQ Sitemap Search 1-275 project updates: www.revive275.com and www.mi.gov/drive Roads and Travel **Quick Links** MDOT / ABOUT MDOT / FIELD SERVICES / CONSTRUCTION FIELD SERVICES Title VI Public Transit Nondiscrimination Mechanistic-Empirical (ME) Pavement Design Tribal Governments The Michigan Department of Transportation (MDOT) is currently working towards Twitter Facebook Bridges, Borders and implementing the new AASHTOWare ME Pavement Design software. This site will provide YouTube progress reports as well as links to other ME-related resources. · Mi Drive News and Information ME Pavement Design is the latest generation of pavement design methodologies. It utilizes State Map the theories of mechanics of materials to predict the pavement's response (stresses and Projects and QUICKLINKS strains) to load. The pavement's response is then correlated into damage, which is Programs AASHTOWare accumulated over the design life and results in predicted distresses over time. Climatic Pavement ME Design conditions (temperatures, moisture levels, etc.) are taken into account through the material properties of the constituent pavement layers. Finally, the models used to predict distresses AASHTOWare are calibrated using observed distress amounts (the empirical portion of the name). Pavement ME Design Reports, Publications Webinars and Specs Contact NCHRP 1-37A Final Mike Eacker About MDOT Report Phone: 517-322-3474 FHWA Pavements email: eackerm@michigan.gov Commissions FHWA DGIT Councils & Justin Schenkel Workshops Committees Phone: 517-636-6006 Pavement Interactive email: schenkelj@michigan.gov Executive · State DOT Search Receive E-mail Updates Engine Finance & Sign up to receive e-mail updates for ME Pavement Design through MDOT's GovDelivery Administration TRB Research In e-mail system. Progress **Field Services** Transportation Implementation Newsletters Y GO Research Database - Select Newsletter from List: Construction Field Services ME - Related Research **Operations Field** Reports - Select From Research Reports: ✓ GO Services Research Presentations Manuals & Software Resources Administration Operations Executive Staff Oct. 18, 2012 Mechanistic Empirical Pavement Design User Guide 📆 14 Development Oversight Committee Kickoff June 18, 2012 📆 Transportation

QUESTIONS?

Contact Info:

- Justin P. Schenkel, P.E.
 - P: 517-636-6006
 - E: <u>schenkelj@michigan.gov</u>

Construction Field Services

Michigan Department of Transportation