

Instructor

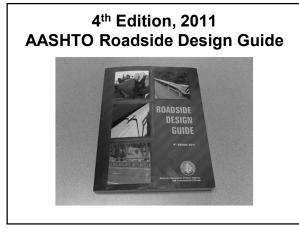
Carlos Torres, P.E.

- MDOT Crash Barrier Engineer (2004)
- Chairman Barrier Advisory Committee (2004)
- Statewide specialist in all aspects of roadside design and safety

2

Objectives

- Provide an overview of guardrail design
 - Clear Zone Concept
 - Roadside Topography and Its Effects on Guardrail Design
 - Overview of Guardrail Types and Related Features
 - Methodology for Calculating Minimum Length of Need
 - Recent changes pertaining to the use of MASH-compliant guardrail and guardrail terminals


Objectives

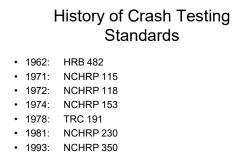
- Provide an overview of guardrail design
- Guidelines and Standards Related to Guardrail Design

 <u>Michigan Road Design Manual – Chapter 7</u> <u>http://mdotcf.state.mi.us/public/design/englishroadm</u> <u>anual/</u>

- <u>MDOT Standard Plans and Special Details</u> <u>http://mdotcf.state.mi.us/public/design/englishstanda</u> <u>rdplans/</u>
- <u>2011 AASHTO Roadside Design Guide</u>
 Available for purchase through AASHTO website

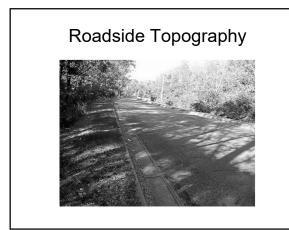
4

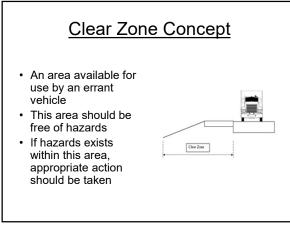
5


Objectives

- Solve example problems
 - Type 2M Guardrail Approach Terminals
 - Type MGS-8 Guardrail
 - M Series Guardrail Bridge Anchorages
 - MDOT Guardrail Worksheet

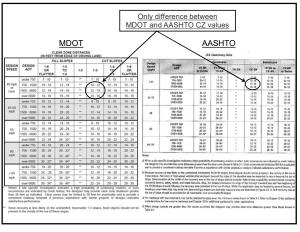
What is MASH?


- MASH stands for <u>Manual for Assessing</u> <u>Safety Hardware</u> AASHTO Publication
- MASH is the current standard for establishing the crash worthiness of roadside safety features

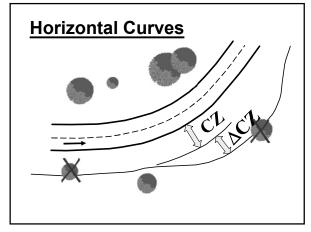

7

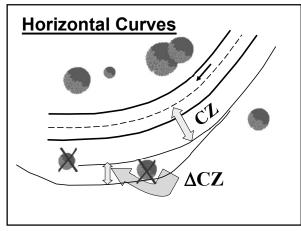
- 1993: NCHRP 350
- 2009: MASH 2009 (MASH-09)2016: MASH 2016 (MASH-16)

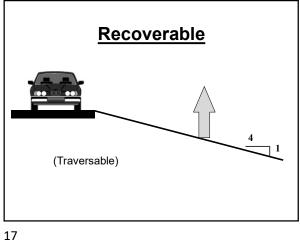
8

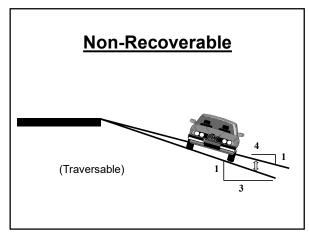


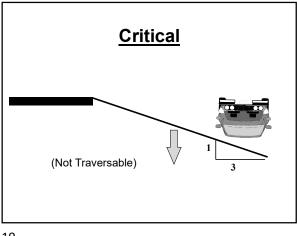
Clear Zone Concept In the early 1970s, most state agencies used <u>30 feet</u> as the clear zone distance However, a 30-foot clear zone is not adequate for certain applications In the late 1970s, AASHTO developed a clear zone table, taking into consideration: Design Speed

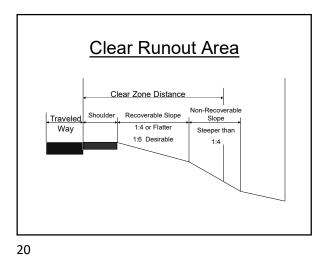

- Traffic Volume (ADT)
- Roadside Geometry

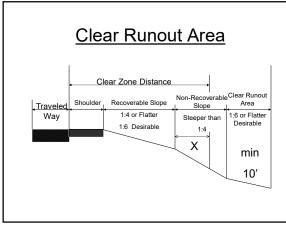

		•	morn	yai	n Roa		031			
	CLEAR ZONE DISTANCES (IN FEET FROM EDGE OF DRIVING LANE)									
		FI	LL SLOPES		(CUT SLOPES				
SPEED A	DESIGN	1:6 OR FLATTER	1:5 TO 1:4	1:3	1:3	1:4 TO 1:5	1:6 OR FLATTE			
	under 750	7 - 10	7 - 10		7 - 10	7 - 10	7 - 10			
40 mph or Less 45-50 mph	750 - 1500	10 - 12	12 - 14		10 - 12	12 - 14	12 - 14			
	1500 - 6000	12 - 14	14 - 16		12 - 14	14 - 16	14 - 16			
	over 6000	14 - 16	16 - 18		14 - 16	16 - 18	16 - 18			
	under 750	10 - 12	12 - 14		8 - 10	8 - 10	10 - 12			
	750 - 1500	14 - 16	16 - 20		10 - 12	12 - 14	14 - 16			
	1500 - 6000	16 - 18	20 - 26		12 - 14	14 - 16	16 - 18			
	over 6000	20 - 22	24-28		14 - 16	18 - 20	20 - 22			
	under 750	12 - 14	14 - 18		8 - 10	10 - 12	10 - 12			
	750 - 1500	16 - 18	20 - 24		10 - 12	14 - 16	16 - 18			
mph	1500 - 6000	20 - 22	24 - 30		14 - 16	16 - 18	20 - 22			
	over 6000	22 - 24	26.32*		16 - 18	20-22	22 - 24			
	under 750	16 - 18	20-24		10 - 12	12 - 14	14 - 16			
60	750 - 1500	20-24	26 - 32*		12 - 14	16 - 18	20 - 22			
mph	1500 - 6000	26.30	32 - 40*		14 - 18	18 - 22	24 - 26			
	over 6000	30 - 32*	36 - 44*		20-22	24-26	26-28			
	under 750	18 - 20	20-26		10 - 12	14 - 16	14 - 16			
2.65	750 - 1500	24 - 26	28 - 36*		12 - 16	18 - 20	20 - 22			
mph	1500 - 6000	28 - 32*	34 - 42*		16-20	22-24	26-28			
	over 6000	30 - 34*	38 - 46*		22-24	26-30	28 - 30			

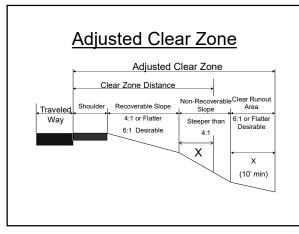


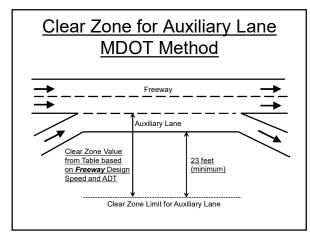











Clear Zone for Auxiliary Lanes

MDOT Method

Section 7.01.11 of the Michigan Road Design Manual

- Obtain clear zone value from the clear zone table based on design speed and traffic volume (ADT) of adjacent through lanes
- Resulting clear zone distance:
 - Should be measured from the outer edge of the <u>through lane</u>, and;
 - 2) Should not be less than 23 feet from the outer edge of the auxiliary lane.

23

Clear Zone for Freeway Ramps

MDOT Method

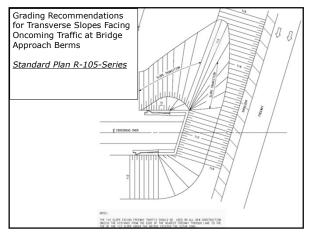
Preferred:

Clear Zone Based on Speed, Volume, and Horizontal Curvature of Ramp at Selected Point

· Engineering Judgment must be used

Acceptable Alternative:

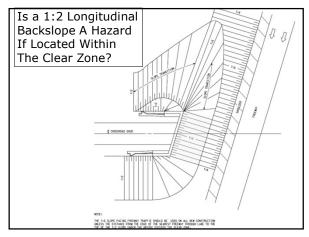
May also use Clear Zone of 30 feet if:

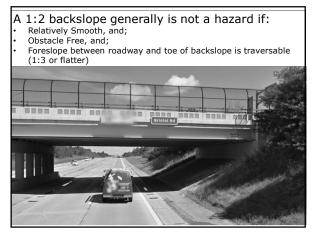

- Traffic Volume and/or Speed at Selected Point are unknown or not well established, or
- Previous satisfactory experience with similar designs

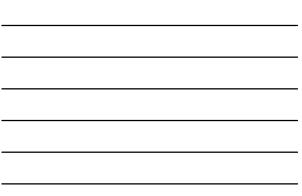
25

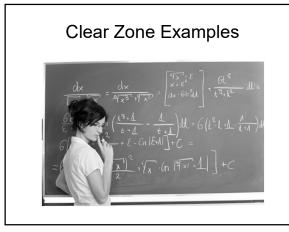
Transverse Slopes

- 1:10 or flatter desirable
- 1:6 or flatter for high-speed roadways, especially within clear zone
- May be considered a hazard under certain conditions
 - steep transverse slopes

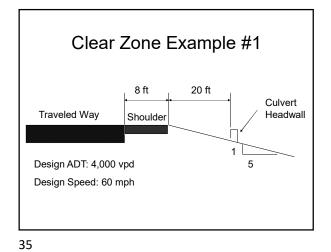






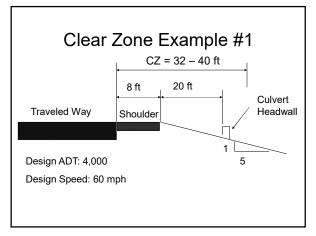

Shielding Bodies of Water RDM - 7.01.31

- Permanent water > 2' in depth usually require shielding if within the CZ
- May be necessary to shield for bodies of water outside the CZ if there is potential for entry

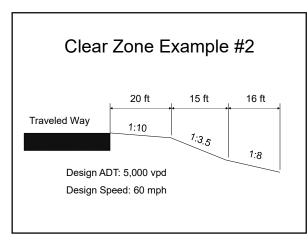

32

Bridge Columns and Foundations in 70' Medians

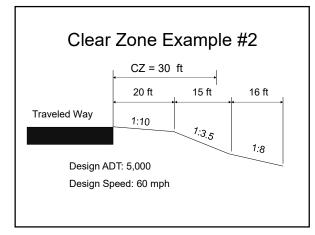
- At one time these were considered outside the CZ
- Shielding columns and foundation new construction/ reconstruction should be according to Standard Plan R-56 Series
- Standard Plan R-56 also covers medians 36' 70'

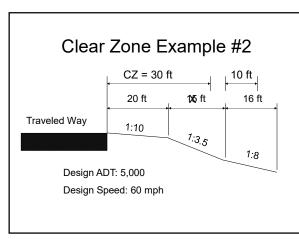


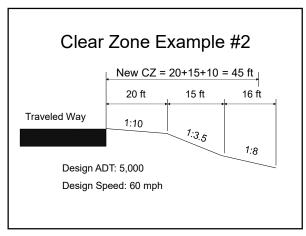
	DESIGN ADT	FI	LL SLOPES		CUT SLOPES			
SPEED		1:6 OR FLATTER	1:5 TO 1:4	1:3	1:3	1:4 TO 1:5	1:6 OR FLATTE	
-	under 750	7 - 10	7 - 10		7 - 10	7 - 10	7 - 10	
40 mph	750 - 1500	10 - 12	12 - 14		10 - 12	12 - 14	12 - 14	
or Less	1500 - 6000	12 - 14	14 - 16		12 - 14	14 - 16	14 - 16	
	over 6000	14 - 16	16 - 18		14 - 16	16 - 18	16 - 18	
45-50 mph	under 750	10 - 12	12 - 14		8 - 10	8 - 10	10 - 12	
	750 - 1500	14 - 16	16 - 20		10 - 12	12 - 14	14 - 16	
	1500 - 6000	16 - 18	20 - 26		12 - 14	14 - 16	16 - 18	
	over 6000	20 - 22	24 - 28		14 - 16	18 - 20	20 - 22	
55 mph	under 750	12 - 14	14 - 18		8 - 10	10 - 12	10 - 12	
	750 - 1500	16 - 18	20 - 24		10 - 12	14 - 16	16 - 18	
	1500 - 6000	20 - 22	24 - 30		14 - 16	16 - 18	20 - 22	
	over 6000	22 - 24	26 - 32*		16 - 18	20 - 22	22 - 24	
60	under 750	16 - 18	20 - 24		10 - 12	12 - 14	14 - 16	
	750 - 1500	20 - 24	26 - 32*		12 - 14	16 - 18	20 - 22	
mph	1500 - 6000	26 - 30	32 - 40*		14 - 18	18 - 22	24 - 26	
	over 6000	30 - 32*	36 - 44*		20 - 22	24 - 26	26 - 28	
≥65 mph	under 750	18 - 20	20 - 26		10 - 12	14 - 16	14 - 16	
	750 - 1500	24 - 26	28 - 36*		12 - 16	18 - 20	20 - 22	
	1500 - 6000	28 - 32*	34 - 42*		16 - 20	22 - 24	26 - 28	
	over 6000	30 - 34*	38 - 46*		22 - 24	26-30	28 - 30	

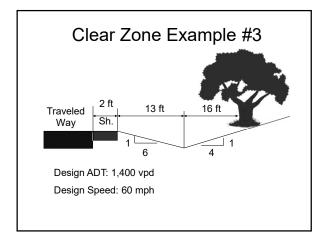


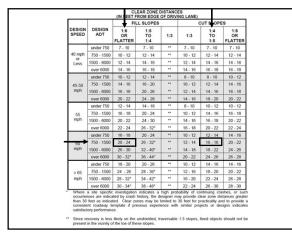
DESIGN SPEED	DESIGN ADT	FIL	L SLOPES		CUT SLOPES			
		1:6 OR FLATTER	1:5 TO 1:4	1:3	1:3	1:4 TO 1:5	1:6 OR FLATTER	
	under 750	7 - 10	7 - 10		7 - 10	7 - 10	7 - 10	
40 mph or Less	750 - 1500	10 - 12	12 - 14		10 - 12	12 - 14	12 - 14	
	1500 - 6000	12 - 14	14 - 16		12 - 14	14 - 16	14 - 16	
	over 6000	14 - 16	16 - 18		14 - 16	16 - 18	16 - 18	
45-50 mph	under 750	10 - 12	12 - 14		8 - 10	8 - 10	10 - 12	
	750 - 1500	14 - 16	16 - 20		10 - 12	12 - 14	14 - 16	
	1500 - 6000	16 - 18	20 - 26		12 - 14	14 - 16	16 - 18	
	over 6000	20 - 22	24 - 28		14 - 16	18 - 20	20 - 22	
55 mph	under 750	12 - 14	14 - 18		8 - 10	10 - 12	10 - 12	
	750 - 1500	16 - 18	20-24		10 - 12	14 - 16	16 - 18	
	1500 - 6000	20-22	24 - 30		14 - 16	16 - 18	20-22	
	over 6000	22 - 24	26 - 32*		16 - 18	20 - 22	22 - 24	
	under 750	16 - 18	20 - 24		10 - 12	12 - 14	14 - 16	
60	750 - 1500	20 - 24	26 - 32*		12 - 14	16 - 18	20 - 22	
	1500 - 6000	26 - 30	32 - 40*		14 - 18	18 - 22	24 - 26	
	over 6000	30 - 32*	36 - 44*		20-22	24 - 26	26-28	
≥65 mph	under 750	18 - 20	20 - 26		10 - 12	14 - 16	14 - 16	
	750 - 1500	24 - 26	28 - 36*		12 - 16	18 - 20	20 - 22	
	1500 - 6000	28 - 32*	34 - 42*		16 - 20	22 - 24	26-28	
	over 6000	30 - 34*	38 - 46*		22 - 24	26-30	28 - 30	

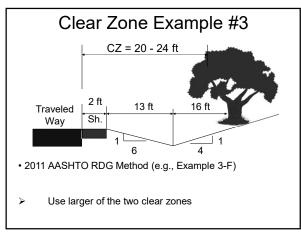


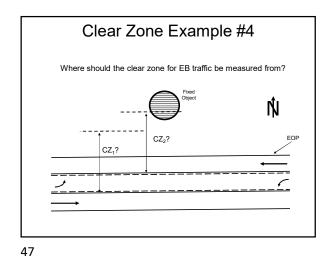

DESIGN	DESIGN ADT	FILL SLOPES			CUT SLOPES			
SPEED		1:6 OR FLATTER	1:5 TO 1:4	1:3	1:3	1:4 TO 1:5	1:6 OR FLATTE	
	under 750	7 - 10	7 - 10		7 - 10	7 - 10	7 - 10	
40 mph	750 - 1500	10 - 12	12 - 14		10 - 12	12 - 14	12 - 14	
Less	1500 - 6000	12 - 14	14 - 16		12 - 14	14 - 16	14 - 16	
	over 6000	14 - 16	16 - 18		14 - 16	16 - 18	16 - 18	
45-50 mph	under 750	10 - 12	12 - 14		8 - 10	8 - 10	10 - 12	
	750 - 1500	14 - 16	16 - 20		10 - 12	12 - 14	14 - 16	
	1500 - 6000	16 - 18	20 - 26		12 - 14	14 - 16	16 - 18	
	over 6000	20 - 22	24 - 28		14 - 16	18 - 20	20 - 22	
55 mph	under 750	12 - 14	14 - 18		8 - 10	10 - 12	10 - 12	
	750 - 1500	16 - 18	20 - 24		10 - 12	14 - 16	16 - 18	
	1500 - 6000	20 - 22	24 - 30		14 - 16	16 - 18	20 - 22	
	over 6000	22 - 24	26 - 32*		16 - 18	20 - 22	22 - 24	
	under 750	16 - 18	20 - 24		10 - 12	12 - 14	14 - 16	
60	750 - 1500	20 - 24	26 - 32*		12 - 14	16 - 18	20 - 22	
mph	1500 - 6000	26 - 30	32 - 40*		14 - 18	18 - 22	24 - 26	
	over 6000	30 - 32*	36 - 44*		20 - 22	24 - 26	26 - 28	
≥65 mph	under 750	18 - 20	20 - 26		10 - 12	14 - 16	14 - 16	
	750 - 1500	24 - 26	28 - 36*		12 - 16	18 - 20	20 - 22	
	1500 - 6000	28 - 32*	34 - 42*		16 - 20	22 - 24	26 - 28	
	over 6000	30 - 34*	38 - 46*		22 - 24	26 - 30	28 - 30	

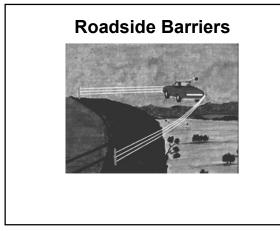


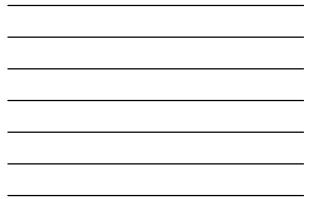


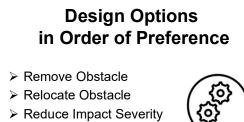


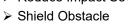


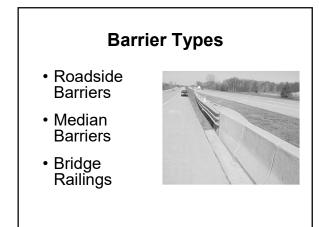


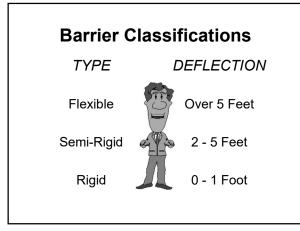


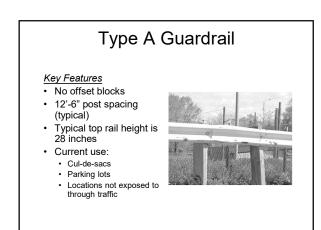


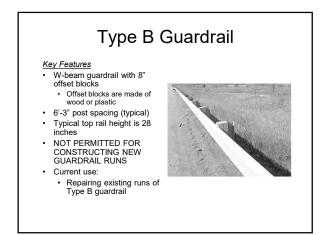



Clear Zone Example #4 Where should the clear zone for EB traffic be measured from? Normal Practice

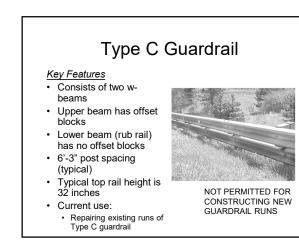





- ➢ Delineate Obstacle



Type MGS-8D (Standard Plan R-60 Series)

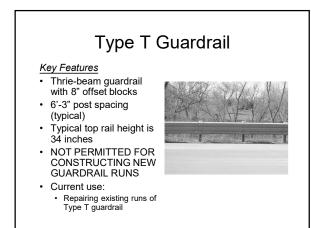


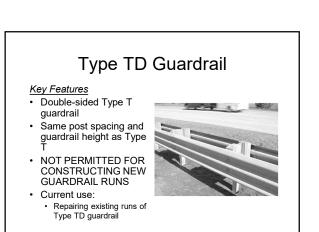
Type BD Guardrail

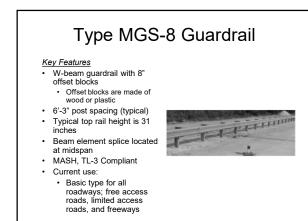
- Key Features
- Double-sided Type B guardrail
- W-beam guardrail and offset blocks on both sides
- Same post spacing and guardrail height as Type B

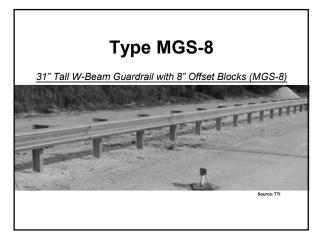
- NOT PERMITTED FOR CONSTRUCTING NEW GUARDRAIL RUNS
- Current use:
 Repairing existing runs of Type BD guardrail

Type CD Guardrail

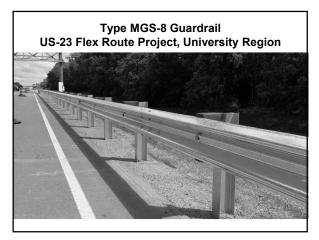

Key Features

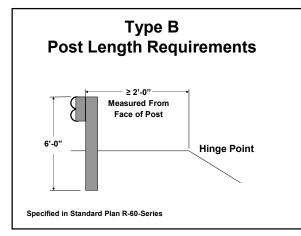

- Double-sided Type C guardrail
- Same post spacing and guardrail height as Type C
- Current use:
 Repairing existing runs of Type CD guardrail

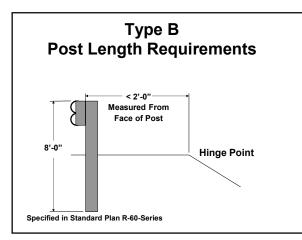


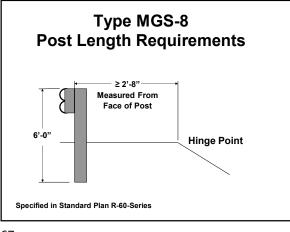

NOT PERMITTED FOR CONSTRUCTING NEW GUARDRAIL RUNS

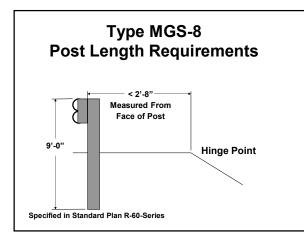
58











68

General Plan Note Commonly Used by Designers

GUARDRAIL POST LENGTH When the plans specify guardrail to be placed at the shoulder hinge point, rather than as specified on Standard Plan R-60 series, 8' (type B or T) or 9' (type MGS-8) posts shall be provided, with the additional length embedded for added stability. The additional post length will not be paid for separately but shall be included in the appropriate guardrail pay item.

Type MGS-8D Guardrail

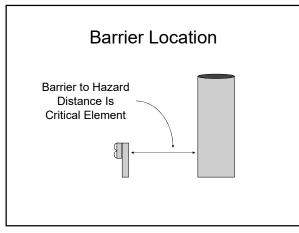
Key Features

- Double-sided Type MGS-8
 guardrail
- Same post spacing and guardrail height as Type MGS-8
- Beam element splice located at midspan
- MASH, TL-3 CompliantCurrent use:
 - Basic median guardrail type for all roadways; free access roads, limited access roads, and freeways

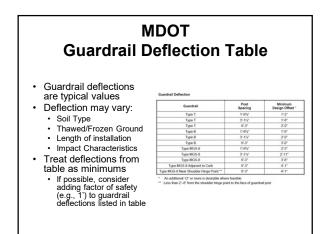
70

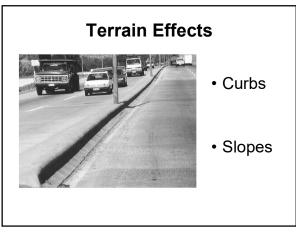

Type MGS-8 Guardrail Details & Revisions

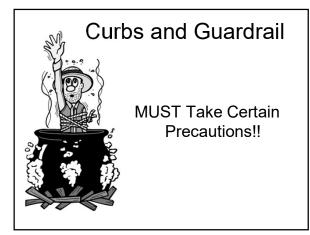
- MDOT Standard Plan (Special Detail) R-60-J
 - Type MGS-8 & MGS-8D Details
 - Transition Details from Type MGS-8 to Other Guardrail Types
 - Type MGS-8/8D to Type B/BD
 Type MGS-8/8D to Type T/TD
 - Transition Details from Type MGS-8 to Guardrail Anchorages
 - Transition Details from Type MGS-8 to Type 1B and Type 2B Guardrail Approach Terminals

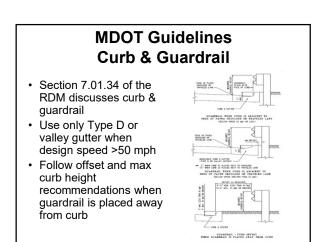

Chapter 7 – Road Design Manual

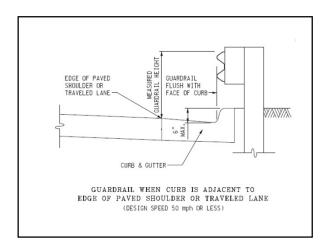
- Revisions Pertaining to Type MGS-8 Guardrail
- Revised Guardrail Worksheet

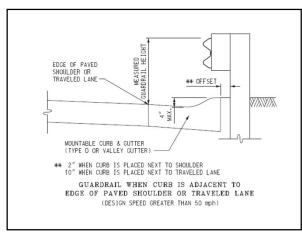

71

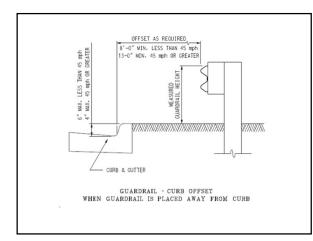


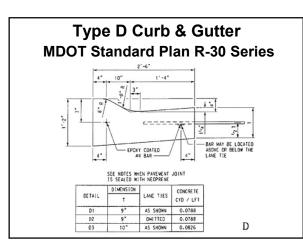

As Possible

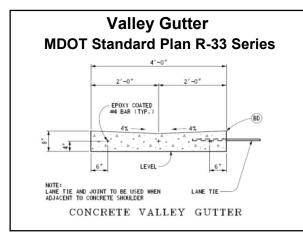




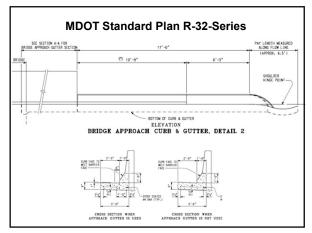


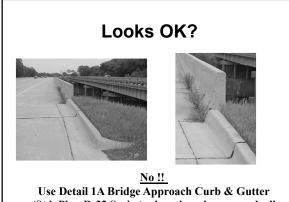


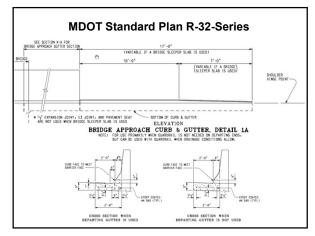


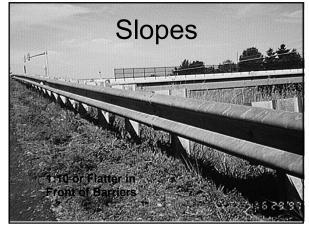


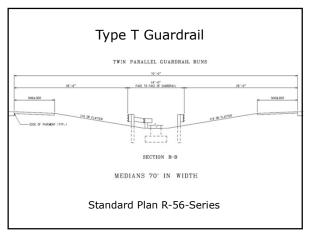




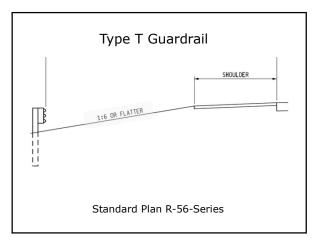


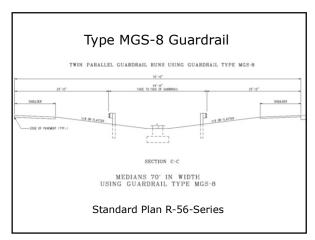


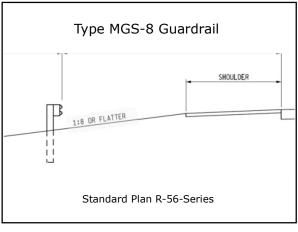


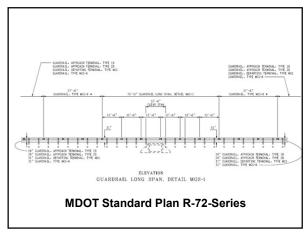

Guardrail on Slopes

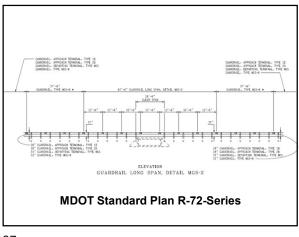
- Optimum performance on 1:10 slopes or flatter
- May be installed on slopes as steep as 1:6 under certain (site-specific) conditions:
 - Consult with the Geometric Design Unit (MDOT - Design Division)

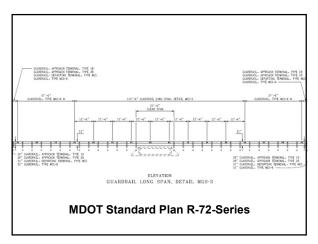

88

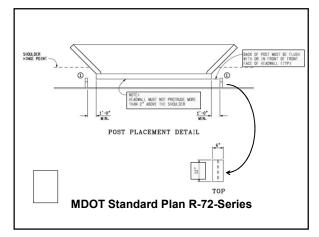


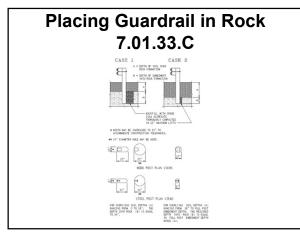


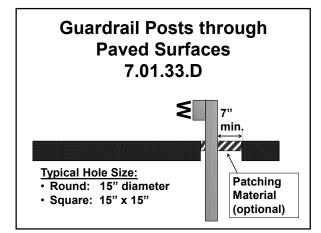


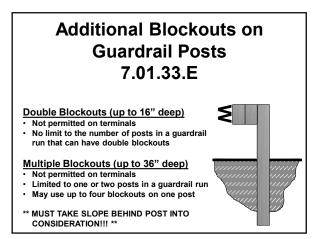


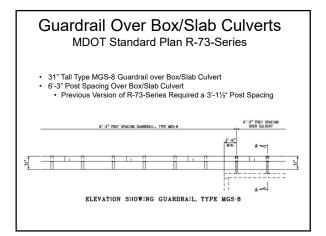


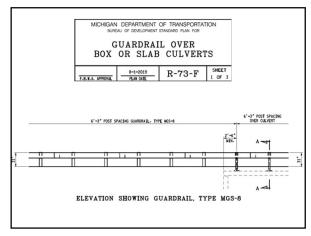


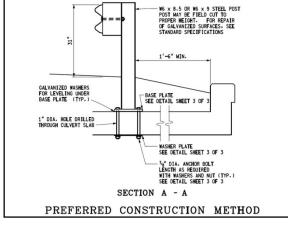


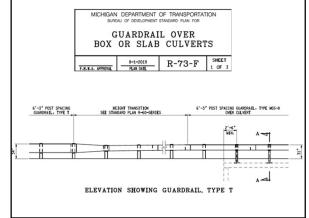


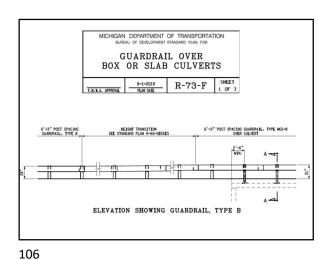


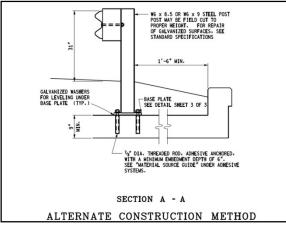


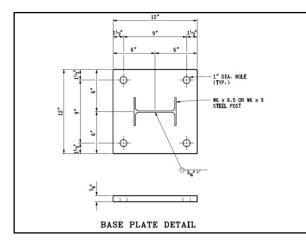


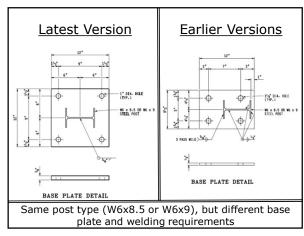


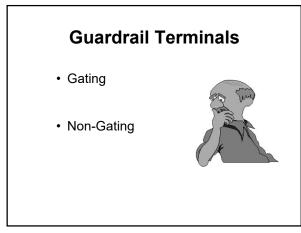


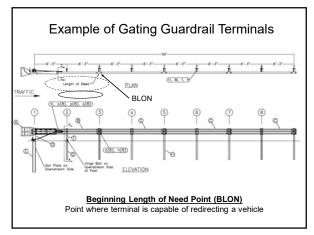


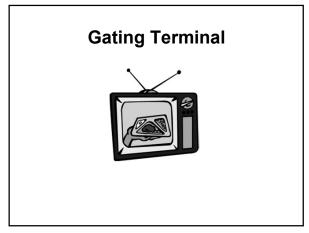


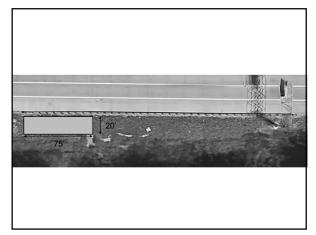


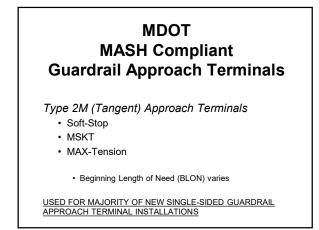






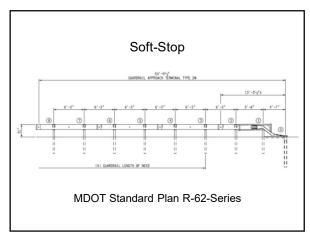


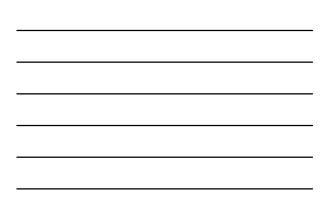


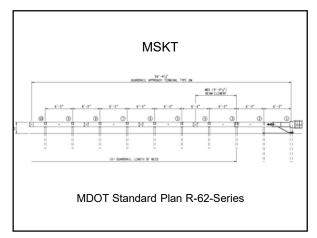


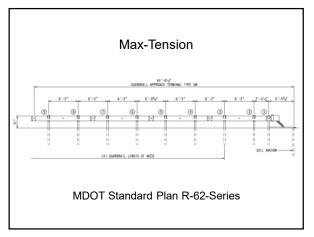
Gating Terminals

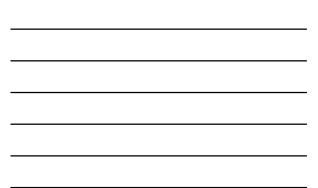
Section 7.01.25.E of RDM


- The area behind and beyond the terminal <u>should</u> be traversable and free of fixed objects
- A 20' x 75' (minimum) runout area beyond and parallel to the terminal <u>should</u> be provided







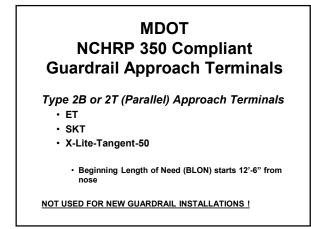


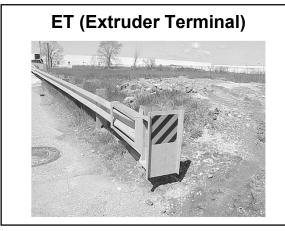
MDOT NCHRP 350 Compliant Guardrail Approach Terminals

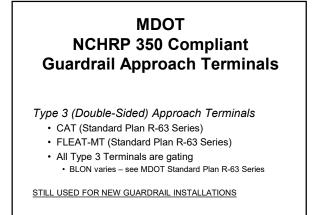
Type 1B or 1T (Flared) Approach Terminals

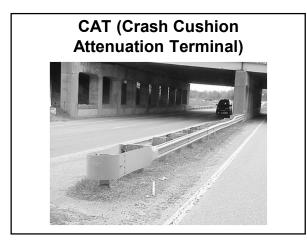
• SRT

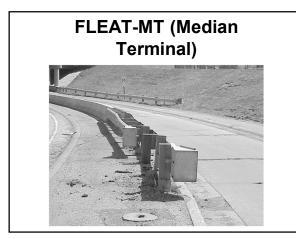
• FLEAT

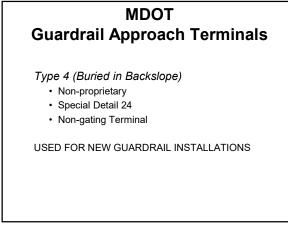

Beginning Length of Need (BLON) starts 12'-6" from nose

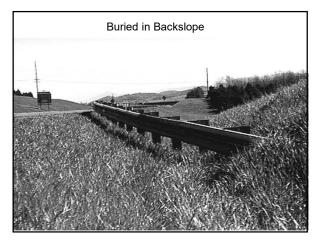

USED VERY RARELY IN NEW GUARDRAIL INSTALLATIONS ! CONSULT WITH GEOMETRIC DESIGN UNIT BEFORE USING.

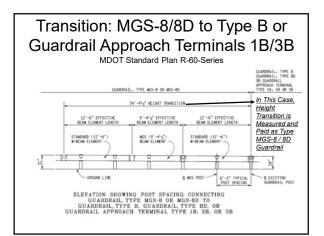


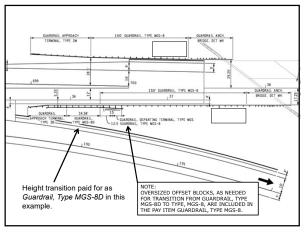


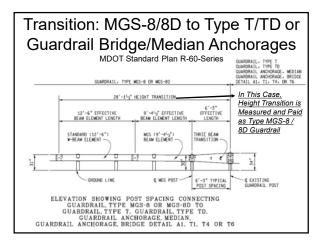


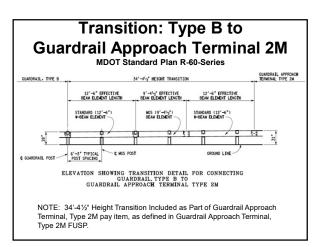


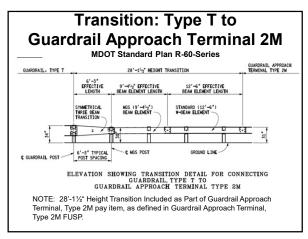




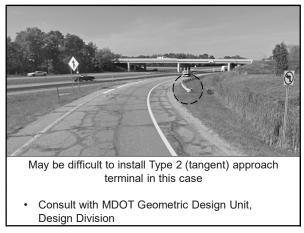








Payment for Height Transitions When Connecting Guardrail Approach Terminal, Type 2M to Guardrail Types B or T MDOT FUSPs 12SP-807K-01 and 20SP-807F-01


Payment for Guardrail Approach Terminal, Type 2M includes all materials, labor, and equipment within the length of each terminal, as defined in subsections d.1, d.2, and d.3 of this special provision, and also includes payment for all materials, labor, and equipment required to construct a transition section, per Standard Plan R-60-Series, for connecting Guardrail Approach Terminal, Type 2M to guardrail Type B or Type T.

* Transition Included as Part of Guardrail Approach Terminal, Type 2M Pay Item

146

Guardrail Terminal Action Plan

- Use Type 2M guardrail approach terminals for all new installations and upgrades on MDOT trunkline projects, unless deemed unfeasible due to site-specific conditions
 - Use of NCHRP 350 compliant flared terminals will be permitted on a case-by-case basis
 Consult with the MDOT Geometric Design Unit, Design Division for
 - assistance

148

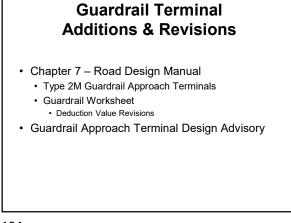
Guardrail Terminal Action Plan

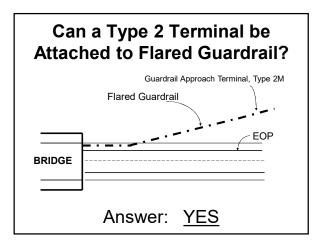
• It will be necessary to obtain project-specific special details, and possibly develop a special provision, in order to use Type 1B or 1T guardrail approach terminals on a project.

Guardrail Terminal Action Plan

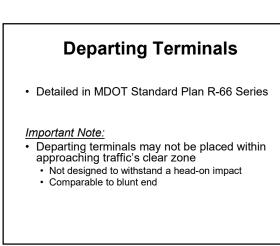
- Use the Type 2M guardrail terminal <u>frequently</u> <u>used special provision (FUSP)</u> and <u>Standard</u> <u>Plan R-62-Series</u> when specifying Type 2M guardrail approach terminals
 - Per the FUSP, manufacturers will be required to provide an electronic copy of detailed drawings, installation manuals, and maintenance manuals for each type of terminal being provided.

151

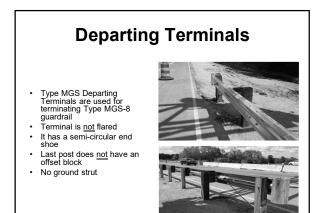

Guardrail Terminal Action Plan

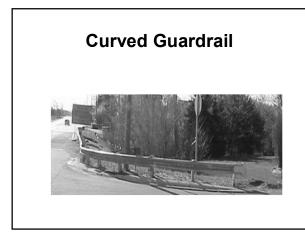

 Continue using NCHRP 350 compliant, currently-approved, double sided Type 3 terminals (Standard Plan R-63-Series) until suitable MASH-compliant alternatives become available, and are approved for use by MDOT.

152

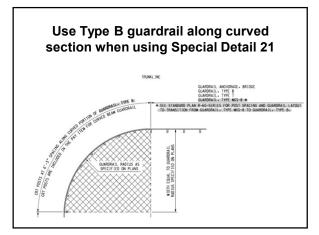

Guardrail Terminal Action Plan

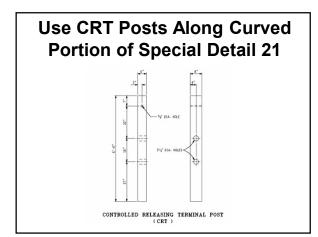
• Continue using Buried-in Backslope or Type 4 terminals (Special Detail 24-Series).


Departing Terminals


- Type B Departing Terminals are used for terminating Type B guardrail (i.e., W-Beam Guardrail) Type T Departing Terminals are used for terminating Type T guardrail (i.e., Thrie-Beam Guardrail) •
- Terminal is <u>not</u> flared •
- Id that a semi-circular end shoe
 Last post does <u>not</u> have an offset block
 No ground strut

157

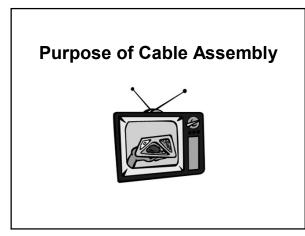

Curved Guardrail

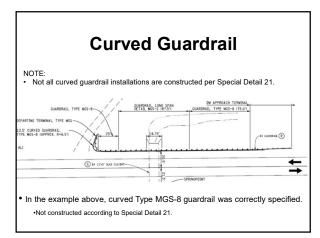

Key Features:

- Used primarily when there is guardrail at intersections (e.g., driveways, freeway ramps, side streets, etc.).
- Guardrail can be terminated at the end of the curve with either an approach terminal or departing terminal.
- Guardrail may continue to run parallel to intersecting roadway beyond curved portion.

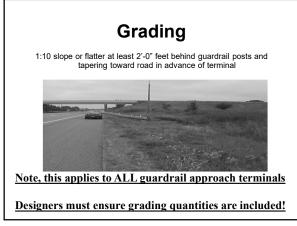
• MDOT Special Detail 21

160

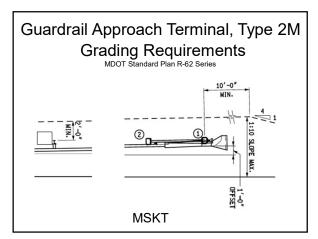


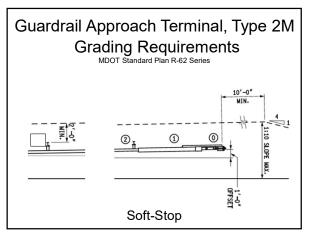

Curved Guardrail

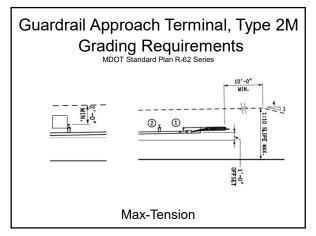
NOTE: FOR DRIVEWAYS, IF R.O.W. ALLOWS, USE DEPARTING END TERMINAL. (SEE STANDARD PLAN R-66-SERIES) IF R.O.W. IS LIMITED SUCH THAT A TYPICAL DEPARTING END TERMINAL CANNOT BE FIT IN, DRILL 8 HOLES IN THE CURVED BEAM GUARDRAIL TO ACCOMDOATE AN ANCHOR PLATE AND INSTALL A CABLE ANCHOR SIMILAR TO THAT OF THE DEPARTING END TERMINAL ON STANDARD PLAN R-66-SERIES. THIS WILL BE PAID FOR AS GUARDRAIL, DEPARTING TERMINAL.

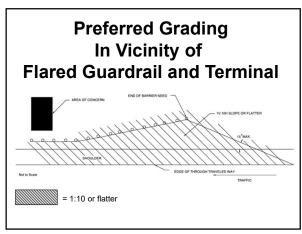

- Always use an approach terminal or departing terminal, as appropriate, to terminate curved guardrail
- · Never use a terminal end shoe by itself
 - <u>Common mistake</u>

163



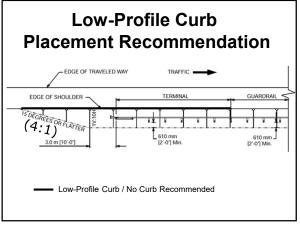


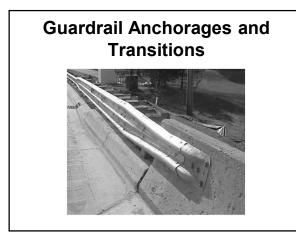


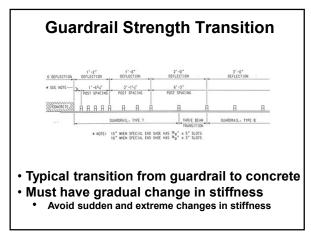


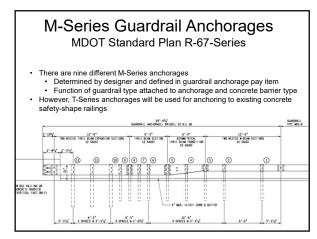
High-Profile Curb in Advance of Guardrail Approach Terminal

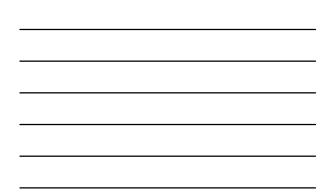
- Transition from high profile curb to Type D or valley gutter in advance of approach terminal
- Transition should occur prior to 1:4 grading transition

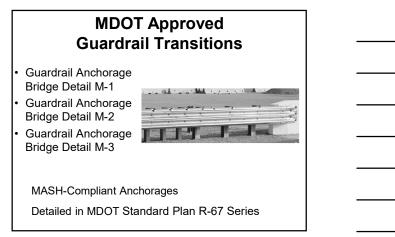


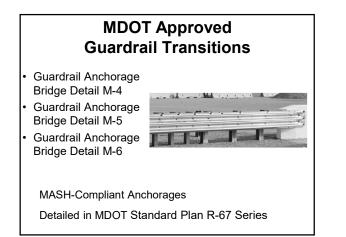





- Adequate Connection
- Block Outs as Specified
- Adequate Length
- Gradually Increase Stiffness







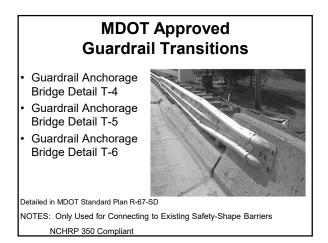
182

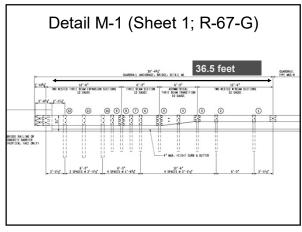
MDOT Approved Guardrail Transitions

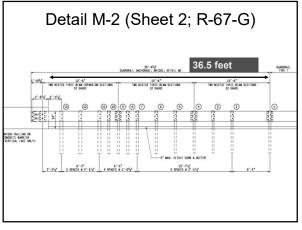
Guardrail Anchorage

- Bridge Detail M-7 • Guardrail Anchorage
- Bridge Detail M-8 • Guardrail Anchorage
- Guardrall Anchorag Bridge Detail M-9

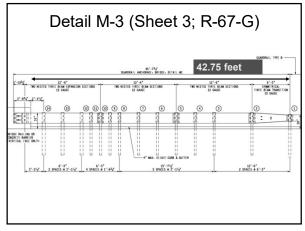
MASH-Compliant Anchorages Detailed in MDOT Standard Plan R-67 Series

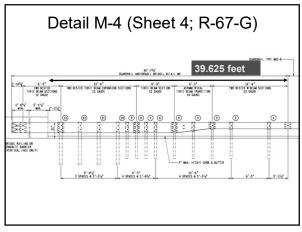

- Guardrail Anchorage
 Bridge Detail T-1
- Guardrail Anchorage Bridge Detail T-2
- Guardrail Anchorage Bridge Detail T-3

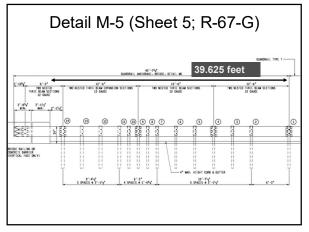


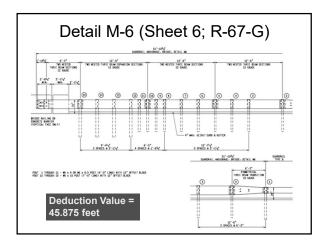

Detailed in MDOT Standard Plan R-67-SD

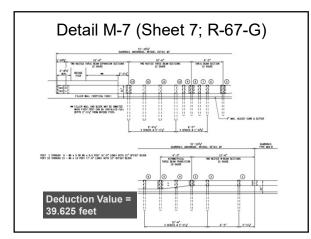
NOTES: Only Used for Connecting to Existing Safety-Shape Barriers NCHRP 350 Compliant

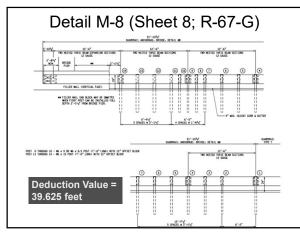

184

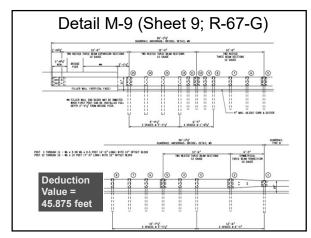


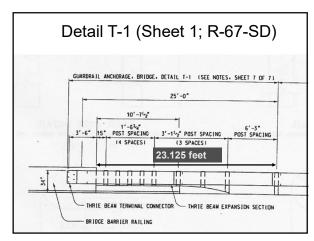


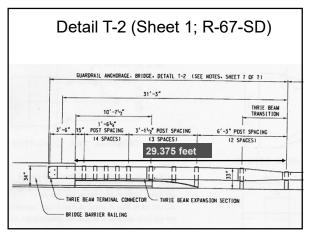


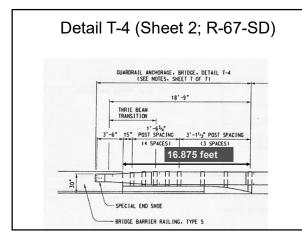


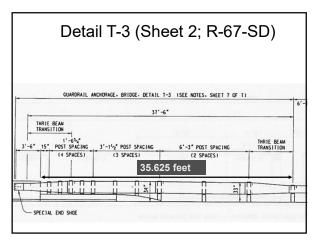


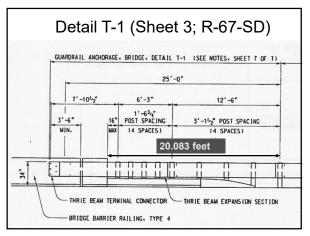


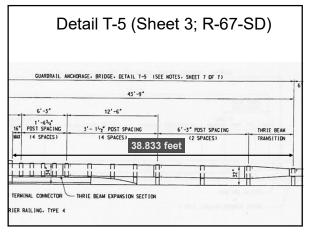


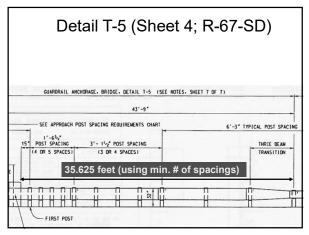


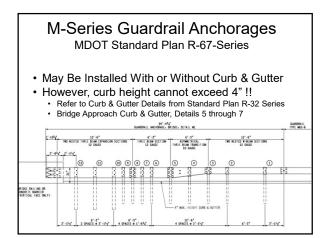


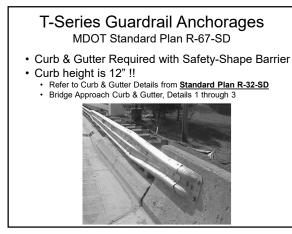


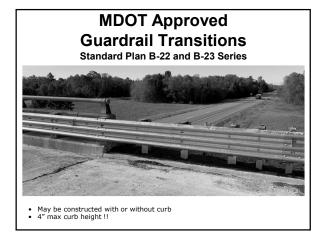


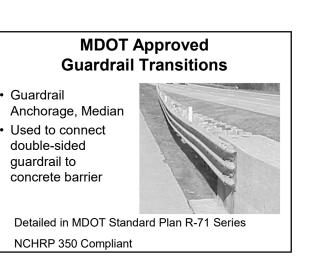


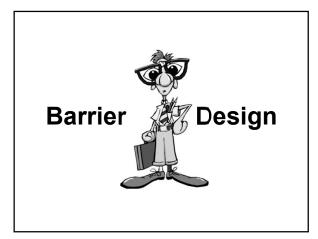


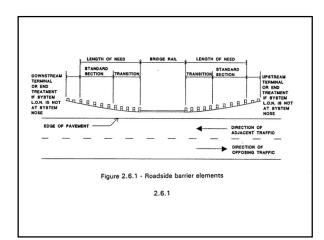


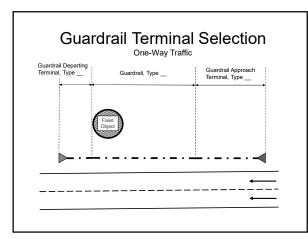


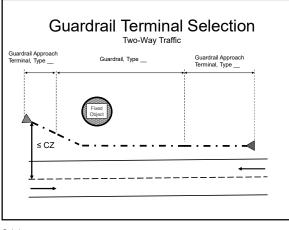


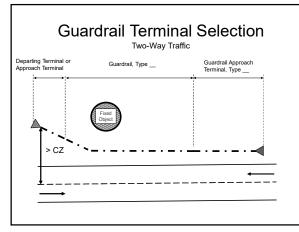


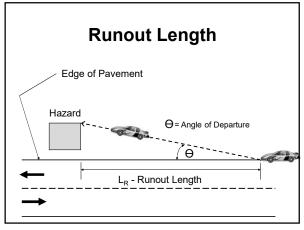


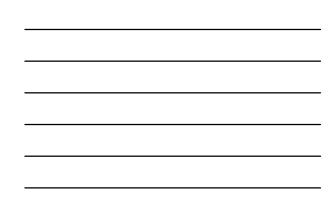


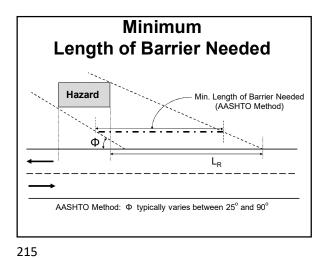








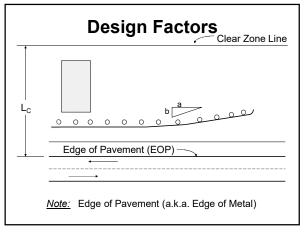


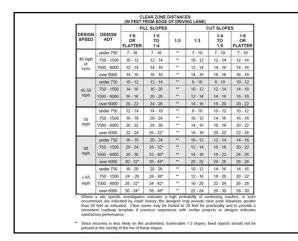


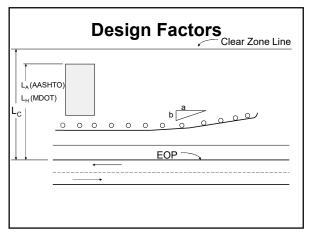
Runout	Length
--------	--------

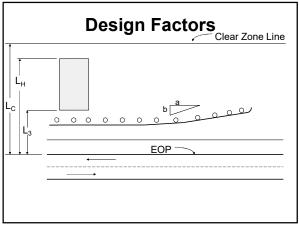
	Traffic Volume (ADT) veh/day				
	Over 10,000	Over 5,000-10,000	1000-5000	Under 1000	
Design Speed (mph)	Runout Length L _R (ft)				
80	470	430	380	330	
70	360	330	290	250	
60	300	250	210	200	
50	230	190	160	150	
40	160	130	110	100	
30	110	90	80	70	

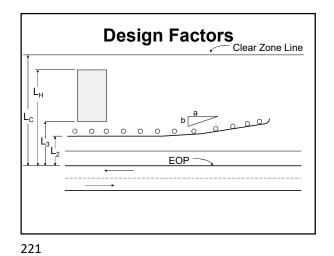
Runout length is a function of *design speed* and *traffic volume* Interpolation is recommended for intermediate design speeds • Example: DS = 75 mph & ADT = 12,000: $L_r = 415$ ' • •

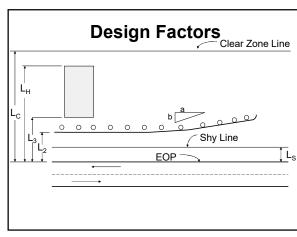

214



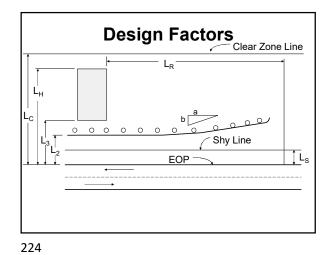


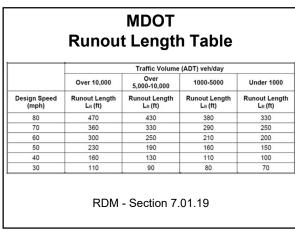




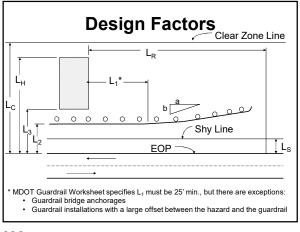


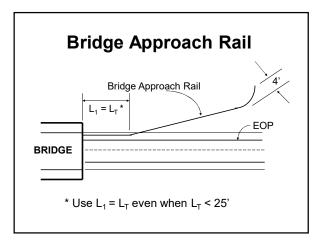


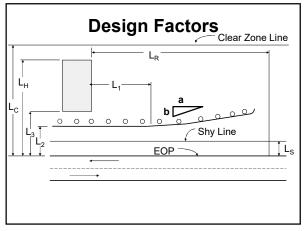


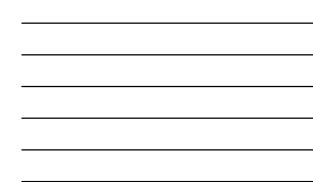


Design Speed (mph)	Shy Line Offset (Ls) (ft
80	12
75	10
70	9
60	8
55	7
50	6.5
45	6
40	5
30	4

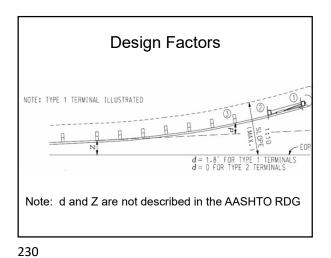




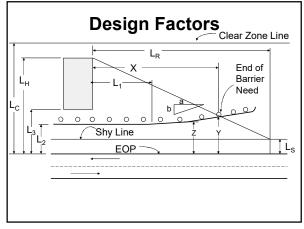




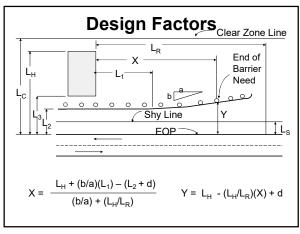
AASHTO RDG Table 5-9
Recommended Flare Rates

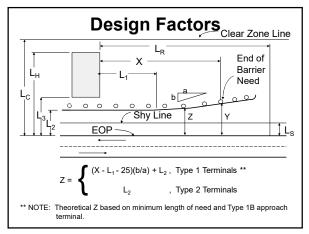

Table 5-9. Suggested Flare Rates for Barrier Design

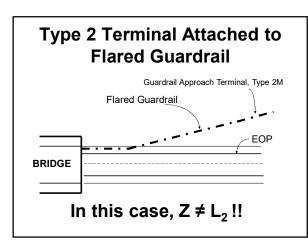
Design Speed	Flare Rate for Barrier Inside	Flare Rate for Barrier at or Beyond Shy Line		
km/h	[mph]	Shy Line	Α	в
110	[70]	30:1	20:1	15:1
100	[60]	26:1	18:1	14:1
90	[55]	24:1	16:1	12:1
80	[50]	21:1	14:1	11:1
70	[45]	18:1	12:1	10:1
60	[40]	16:1	10:1	8:1
50	[30]	13:1	8:1	7:1
es: Suggested max	imum flare rate for r		0.1	7.1

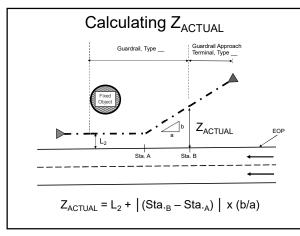

In most cases, use flare rate at or beyond shy line column even when guardrail is within the shy line.

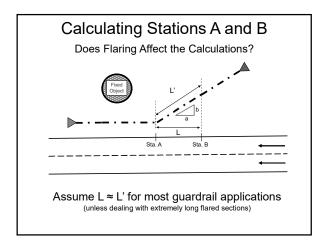


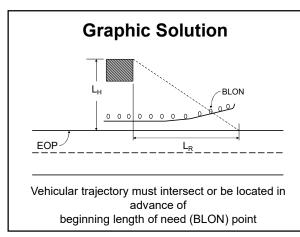

229

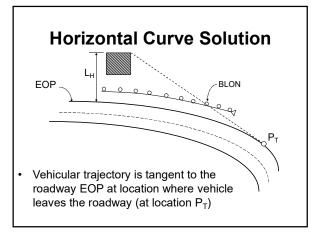


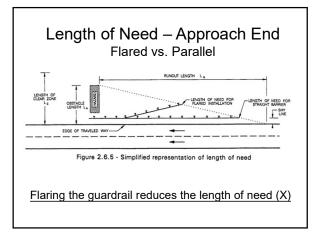


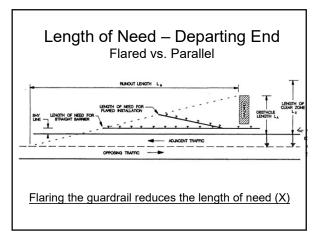


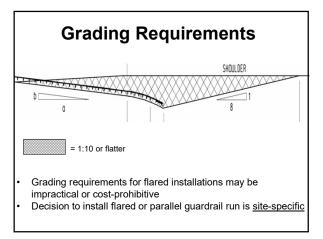


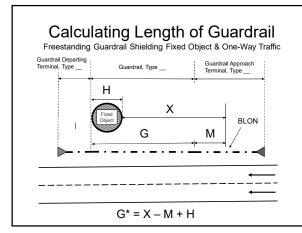


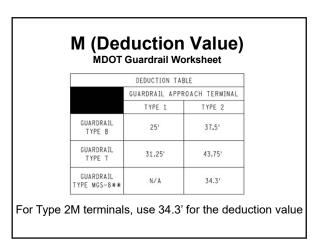


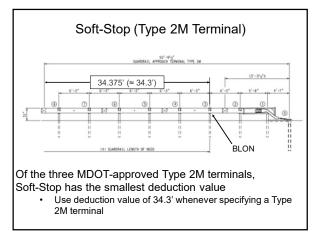


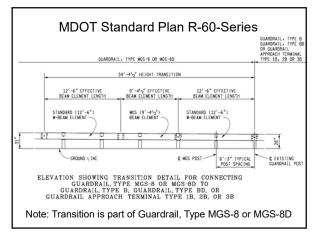




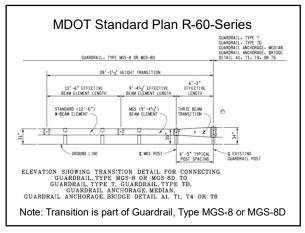




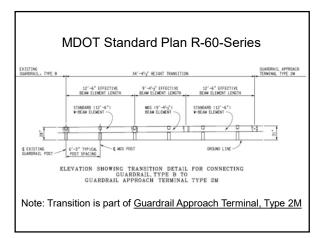


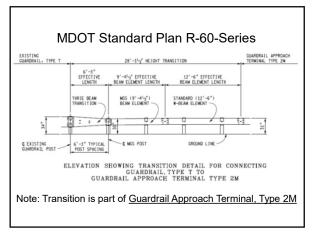

- H = fixed object width •
- M = portion of approach terminal located within length of need Deduction values from guardrail worksheet
- G = guardrail quantity

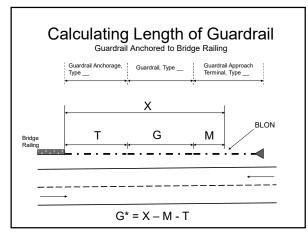
$$G^* = X - M + H$$


5

- <u>Important Notes</u>
 Always round <u>up</u> guardrail quantity based on whole number of guardrail panels ≻
- panels With a freestanding run consisting of Type 2M approach terminals, Type MGS-8 guardrail, and/or Type MGS departing terminals, guardrail quantity will be divisible by 12.5 When interconnecting NCHRP 350 and MASH-compliant guardrail features, guardrail quantity might <u>not</u> be divisible by 12.5 * Examples: Type MGS-8 guardrail to Type B or Type T guardrail, or Type MGS-8 guardrail to NCHRP 350-compliant anchorages ۶


 - Must take MGS (9'-4.5") beam elements and thrie-beam transition panels into consideration when determining guardrail quantities





Calculating Length of Guardrail Guardrail Anchored to Bridge Railing

- T = transition length measured from edge of bridge railing/barrier (if applicable) Do not deduct overall transition length •
- Deduction lengths for M-series and T-series anchorages provided in earlier slides M = portion of approach terminal located within length of need
 Deduction values from guardrail worksheet
 G = guardrail quantity

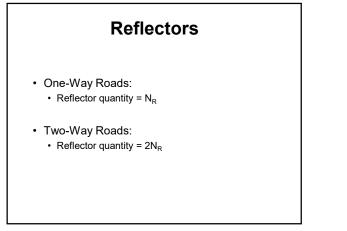
* Important Notes

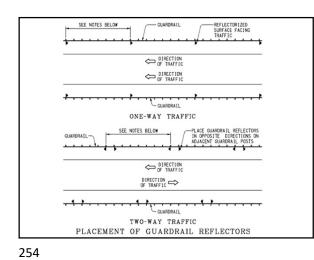
- Always round up guardrail quantity to the nearest whole number of guardrail panels ۶
- ۶
- Must take MGS (9'-4.5") beam elements and thrie-beam transition panels into consideration when determining guardrail

quantities Guardrail quantity may not be divisible by 12.5' in certain cases

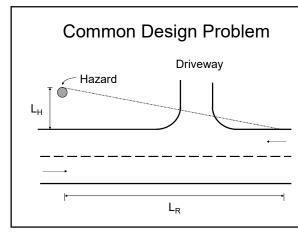
251

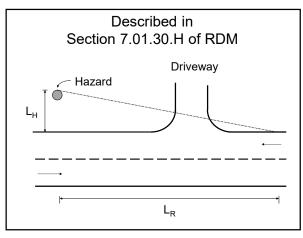
Reflectors

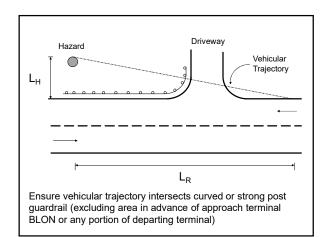

- MDOT Standard Plan R-60 Series describes recommended reflector spacing
- Do not install reflectors on approach terminals

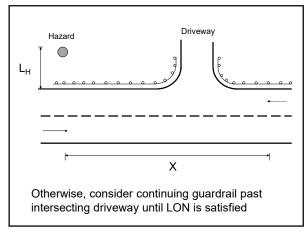

$$N_R = \left(\frac{\text{Guardrail Length}^*}{\text{Reflector Spacing}} \right) +$$

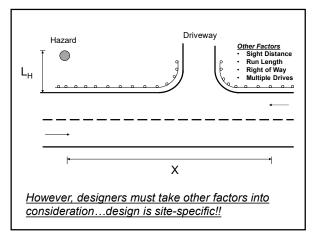
1

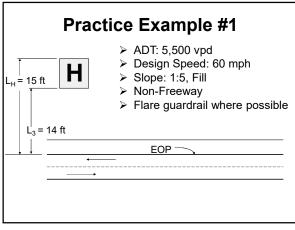

 N_{R} is always rounded up to nearest integer

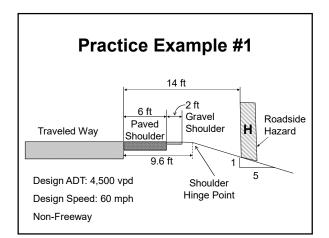

* Total Guardrail Length, including anchorages, but excluding approach terminals

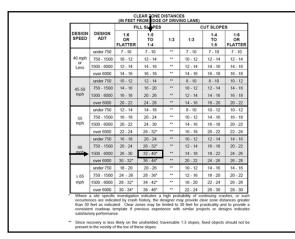


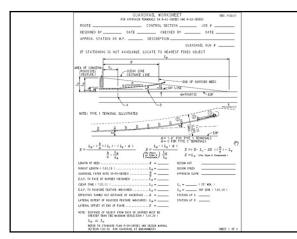


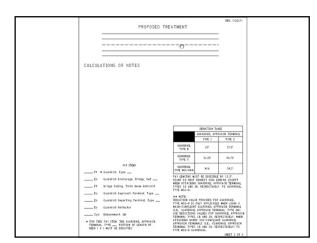








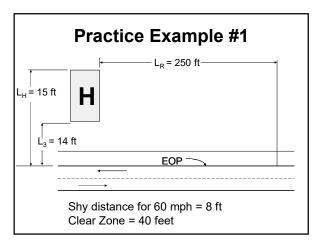




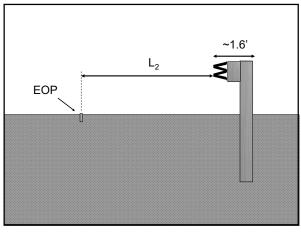
Questions

- Which guardrail type should be used?
 - ✓ Type MGS-8
- Which guardrail approach terminal type should be used?
 - ✓ Guardrail Approach Terminal, Type 2M
- Which guardrail departing terminal type should be used?
 - ✓ Guardrail Departing Terminal, Type MGS *
 - * If within CZ of opposing traffic, must use approach terminal.

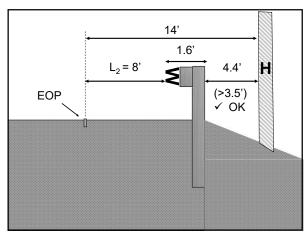
265



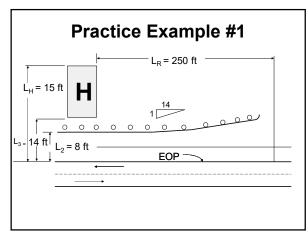
	Over 10,000	Over	(ADT) veh/day 1000-5000	Under 1000
	Over 10,000	5,000-10,000	1000-5000	Under 1000
Design Speed (mph)	Runout Length L _R (ft)			
80	470	430	380	330
70	360	330	290	250
→ 60	300	250	210	200
50	230	190	160	150
40	160	130	110	100
30	110	90	80	70

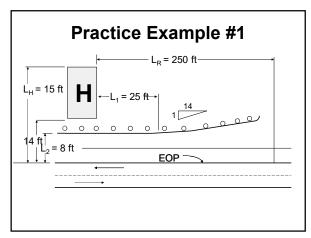


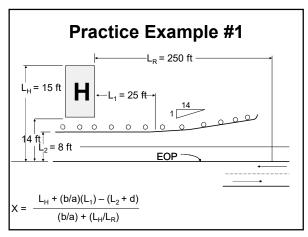
Design Speed (mph)	Shy Line Offset (Ls) (ft
80	12
75	10
70	9
→ 60	8
55	7
50	6.5
45	6
40	5
30	4

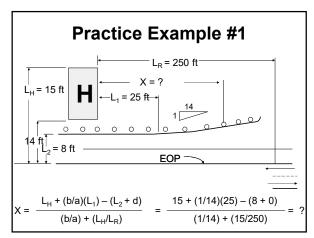


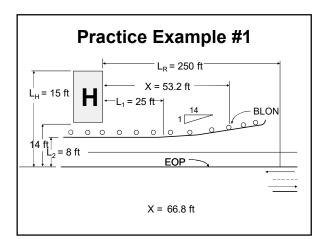
MDOT Guardrail Deflection Table			
Guardrail	Post Spacing	Minimum Design Offset *	
Туре Т	1'-6¾"	1'-2"	
Туре Т	3'-11/2"	الا (1)	
Туре Т	6'-3"	2'-0"	
Туре В	1'-6¾"	1'-6"	
Туре В	3'-1½"	2'-0"	
Туре В	6'-3"	3'-0"	
Type MGS-8	1'-6¾"	2'-5"	
Type MGS-8	3'-11/2"	2'-11"	
Type MGS-8	6'-3"	3'-6"	
Type MGS-8 Adjacent to Curb	6'-3"	4'-1"	
Type MGS-8 Near Shoulder Hinge Point **	6'-3"	4'-1"	

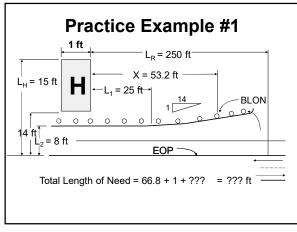


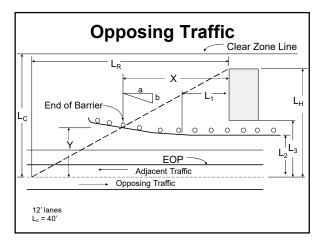

ne 5-5. Sugg	ested Flare Ra	tes for Barrier Desig	gn	
Design Speed	Flare Rate for Barrier Inside	Flare Rate for Barrier a or Beyond Shy Line		
km/h	[mph]	Shy Line	А	в
110	[70]	30:1	20:1	15:1
100	[60]	26:1	18:1	14:1
90	[55]	24:1	16:1	12:1
80	[50]	21:1	14:1	11:1
70	[45]	18:1	12:1	10:1
60	[40]	16:1	10:1	8:1
50	[30]	13:1	8:1	7:1

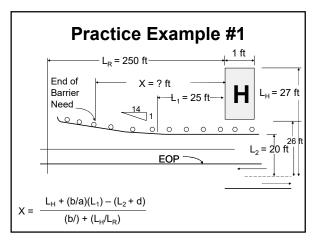

Г

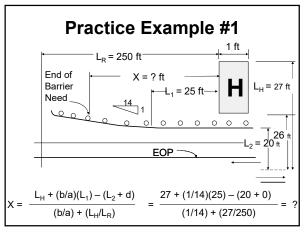


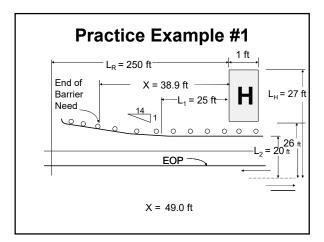


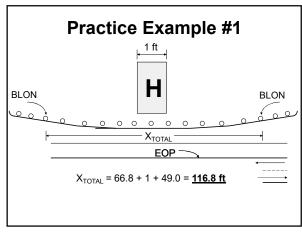


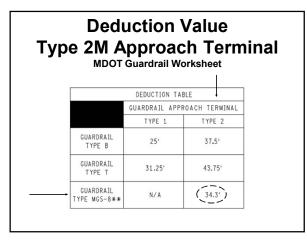


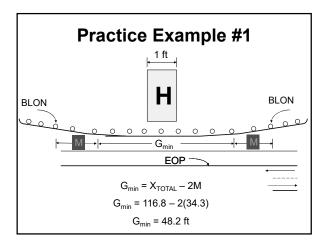


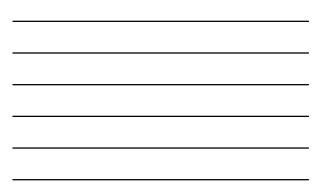


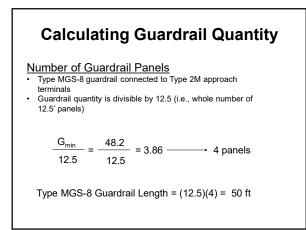


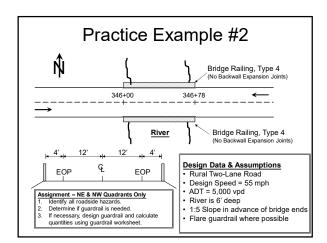


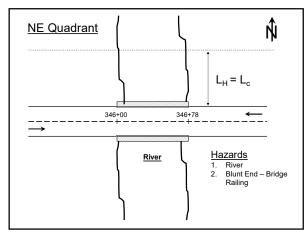


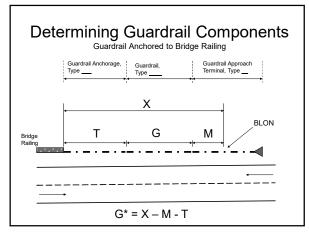


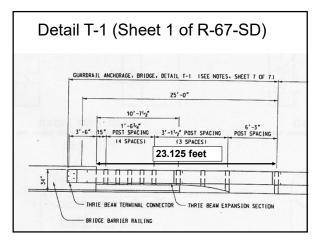


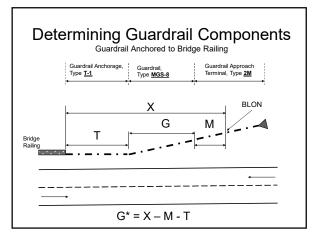


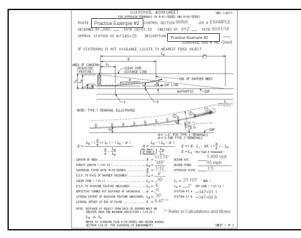


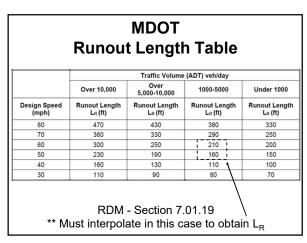


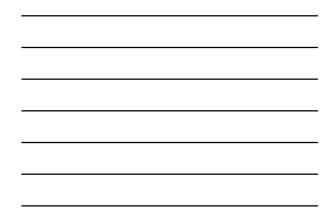

ReflectorsO not install reflectors on approach
terminals
$$N_R = \left(\frac{50}{50}\right) + 1 = 2 \longrightarrow 2$$
Since this is a two-way road, number of reflectors is $2N_R$:
Number of Reflectors = $2(2) = 4$


Г

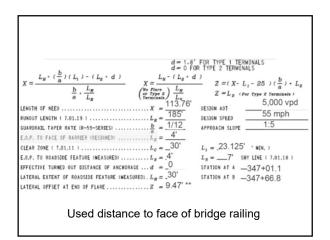




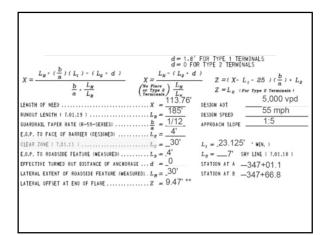




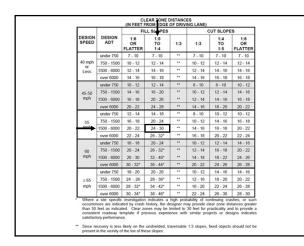
d = 1.8' FOR TYPE 1 TERM]NALS
d = 0 FOR TYPE 2 TERM[NALS $L_{H} + (\frac{b}{a})(L_{1}) - (L_{2} + d)$ $L_{\scriptscriptstyle N}$ - ($L_{\scriptscriptstyle R}$ + d) $Z = (X - L_1 - 25)(\frac{b}{a}) + L_2$ X = $\begin{array}{c} X = \\ \begin{pmatrix} No \ Flare \\ or \ Type \ 2 \\ Terminals \end{pmatrix} \\ \hline L_{v} \\ 113.76 \\ \end{array}$ $\frac{b}{a} + \frac{L_{H}}{L_{R}}$ $Z = L_{2} \quad (For Type 2 Terminals) \\ 5,000 \text{ vpd}$ DESIGN ADT 55 mph DESIGN SPEED 1:5 APPROACH SLOPE CLEAR ZONE (7.01.11) $L_c = -30'$ $L_1 = .23.125' \cdot M(N,)$ LLEAK UNDE (r.01.11), ..., $L_g = _00$ E.O.P. TO ROADSIDE FEATURE (MEASURED), $L_g = _4^4$; EFFCIPTU TURBE OUT DISTANCE oF ANCHORAGE, $d = _0$ LATERAL EXTENT OF ROADSIDE FEATURE (MEASURED), $L_M = _30^7$ LATERAL OFFSET AT END OF FLARE, ..., $Z = 9.47^7$ *** $L_g = -7'$ SHY LINE (7.01.18) STATION AT A -347+01.1 STATION AT 8 -347+66.8

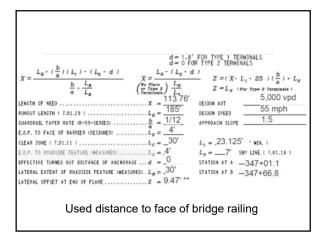


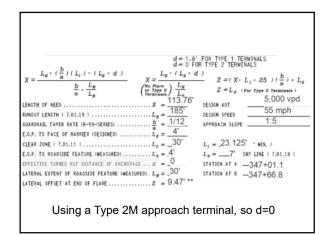
$X = \frac{L_{H} + \left(\frac{b}{a}\right) \left(L_{1}\right) - \left(L_{g} + d\right)}{\frac{b}{a} + \frac{L_{H}}{L_{g}}} \qquad \begin{array}{c} \begin{array}{c} d = 1.8\\ d = 0 \text{ FI}\\ d = 0 \text{ FI}\\ d = 0 \text{ FI}\\ \end{array}$ LENGTH OF NEED	$\begin{array}{c} f \text{ for type 1 terminals} \\ \text{or type 2 terminals} \\ \text{d} \\ \hline \\ Z = (X - L_1 - 25) (\frac{b}{a}) + L_2 \\ Z = L_2 (Per type 2 terminals) \\ \hline \\ \text{Design add} \\ \text{Design add} \\ \hline \\ \text{Design speed} \\ \text{Approach slope} \\ \hline \\ L_1 = .23.125' + \text{Win}, \\ L_2 =7' \text{Sift Line (7.01.18)} \\ \text{Station at } A347 + 01.1 \\ \text{Station at } B347 + 66.8 \\ \hline \end{array}$
---	--

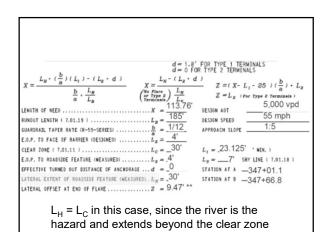


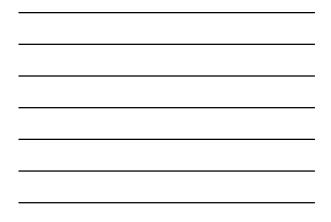
AASHTO RDG Table 5-9 Recommended Flare Rates ble 5-9. Suggested Flare Rates for Barrier Design				
Design Speed	Flare Rate for Barrier Inside	Flare Rate for Barrier at or Beyond Shy Line		
km/h	[mph]	Shy Line	Α	в
110	[70]	30:1	20:1	15:1
100	[60]	26:1	18:1	14:1
90	→ [55]	24:1	16:1	12:1
80	[50]	21:1	14:1	11:1
70	[45]	18:1	12:1	10:1
60	[40]	16:1	10:1	8:1
50	[30]	13:1	8:1	7:1

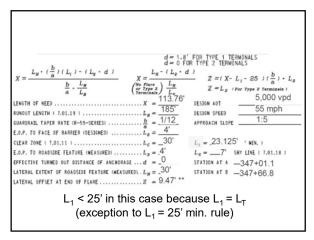

In most cases, use flare rate at or beyond shy line column even when guardrail is within the shy line.

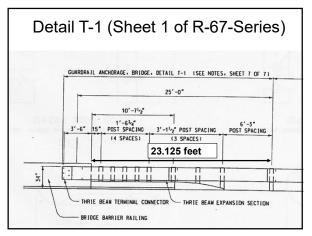


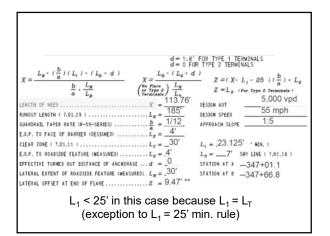




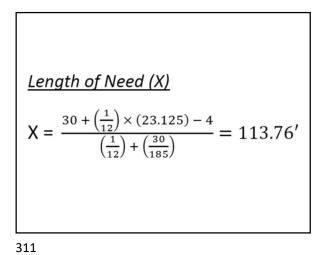


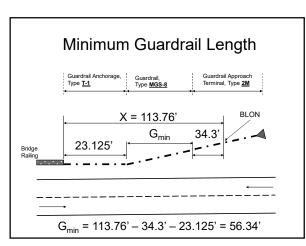


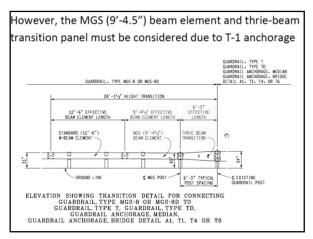


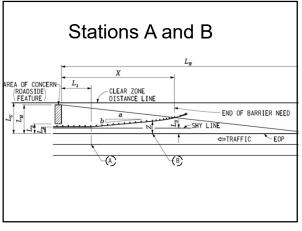


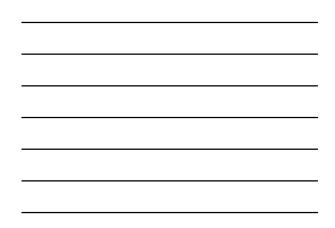
d = 1.8' FOR TYPE 1 TERM]NALS d = 0 FOR TYPE 2 TERM[NALS $L_H + \left(\frac{b}{a}\right) \left(L_1\right) - \left(L_2 + d\right)$ $L_N - (L_2 + d)$ $Z = (X - L_1 - 25)(\frac{b}{a}) + L_2$ X = $\frac{b}{a} + \frac{L_{H}}{L_{R}}$ LN $Z = L_{z} \quad (For Type Z Terminals) \\ 5,000 \text{ vpd}$ 113.76 DESIGN ADT LENGTH OF NEED 55 mph DESIGN SPEED _ 1:5 APPROACH SLOPE E.O.P. TO FACE OF BARRIER (DESIGNED) CLEAR ZONE (7.01.11) Lc = _30' L, = 23.125' ' M(N.) $L_g = -7'$ SHY LINE (7.01.18) STATION AT A -347+01.1 STATION AT B -347+66.8 $L_2 < L_S$ in this case (i.e., guardrail within shy distance) This is acceptable

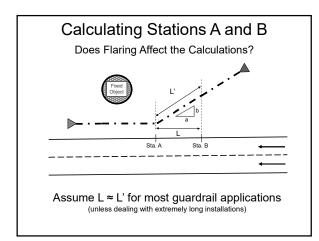



	I
Design Speed (mph)	Shy Line Offset (Ls) (ft
80	12
75	10
70	9
60	8
▶ 55	7
50	6.5
45	6
40	5
30	4



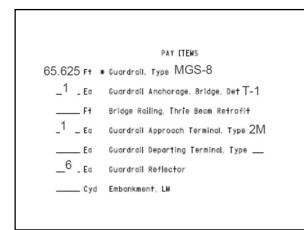


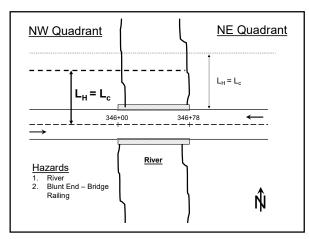



∴ # of 12.5' panels = $(\frac{56.34 - 9.375 - 6.25}{12.5})$ = 3.26 → 4 panels Type MGS-8 guardrail length = (12.5)(4) + 9.375 + 6.25 = <u>65.625 feet</u>

314

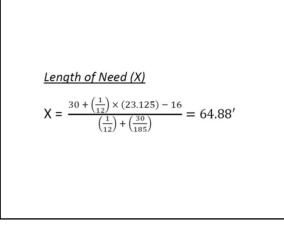
 $\frac{Reflectors}{\# \text{ of reflectors}} + 1 = 2.78 \rightarrow \text{ round up to 3}$ *** But two-way roads require reflectors facing both sides *** ∴ # of reflectors = 3 x 2 = <u>6 reflectors</u>



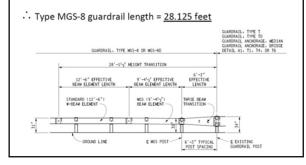


<u>Stations</u> Station A = $(346+78) + 23.125' \approx 347+01.1$ Station B = $(346+78) + 23.125 + 65.625' \approx 347+66.8$

$$\frac{Calculating Z}{Z_{formula}} = (113.76 - 23.125 - 34.3) \times (\frac{1}{12}) + 4 = 8.69'$$
$$Z_{actual} = L_2 + (Distance_{B-A}) \times (\frac{b}{a})$$
$$= 4 + (65.625) \times (\frac{1}{12}) = 9.47'$$



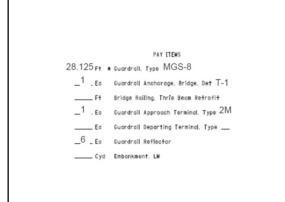
$\begin{split} \chi &= \frac{L_{H} + (\frac{b}{a})(L_{1}) - (L_{2} + d)}{\frac{b}{a} + \frac{L_{H}}{L_{H}}} & \chi = \frac{L_{H} - (L_{2})}{\frac{b}{a} + \frac{L_{H}}{L_{H}}} \\ \\ \begin{array}{c} \chi &= \frac{L_{H} + (\frac{b}{a})(L_{1}) - (L_{2} + d)}{\frac{b}{a} + \frac{L_{H}}{L_{H}}} \\ \\ \begin{array}{c} \chi &= \frac{L_{H} - (L_{2})}{\frac{b}{a} + \frac{L_{H}}{L_{H}}} \\ \\ \chi &= \frac{L_{H} - (L_{2})}{\frac{b}{a} + \frac{L_{H}}{L_{H}}} \\ \\ \end{array} & \chi = \frac{L_{H} - (L_{2})}{\frac{b}{a} + \frac{L_{H}}{L_{H}}} \\ \\ \begin{array}{c} \chi &= \frac{L_{H} - (L_{2})}{\frac{b}{a} + \frac{L_{H}}{L_{H}}} \\ \\ \chi &= \frac{L_{H} - (L_{2})}{\frac{L_{H}}{2} + \frac{L_{H}}{L_{H}}} \\ \\ \chi &= \frac{L_{H} - (L_{2})}{\frac{L_{H}}{2} + \frac{L_{H}}{L_{H}}} \\ \\ \begin{array}{c} \chi &= \frac{L_{H} - (L_{2})}{\frac{L_{H}}{2} + \frac{L_{H}}{L_{H}}} \\ \\ \chi &= \frac{L_{H} - (L_{2})}{\frac{L_{H}}{2} + \frac{L_{H}}{L_{H}}} \\ \\ \end{array} \\ \\ \begin{array}{c} \chi &= \frac{L_{H} - (L_{2})}{\frac{L_{H}}{2} + \frac{L_{H}}{L_{H}}} \\ \\ \end{array} \\ \\ \begin{array}{c} \chi &= \frac{L_{H} - (L_{H})}{\frac{L_{H}}{2} + \frac{L_{H}}{L_{H}}} \\ \\ \end{array} \\ \\ \begin{array}{c} \chi &= \frac{L_{H} - (L_{H})}{\frac{L_{H}}{2} + \frac{L_{H}}{L_{H}}} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \chi &= \frac{L_{H} - (L_{H})}{\frac{L_{H}}{2} + \frac{L_{H}}{L_{H}}} \\ \end{array} \\ \\ \begin{array}{c} \chi &= \frac{L_{H} - (L_{H})}{\frac{L_{H}}{2} + \frac{L_{H}}{L_{H}}} \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \chi &= \frac{L_{H} - (L_{H})}{\frac{L_{H}}{2} + \frac{L_{H}}{L_{H}}} \\ \end{array} \\ \\ \begin{array}{c} \chi &= \frac{L_{H} - (L_{H})}{\frac{L_{H}}{2} + \frac{L_{H}}{L_{H}}} \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \chi &= \frac{L_{H} - (L_{H})}{\frac{L_{H}}{2} + \frac{L_{H}}{L_{H}}} \\ \end{array} \\ \\ \begin{array}{c} \chi &= \frac{L_{H} - (L_{H})}{\frac{L_{H}}{2} + \frac{L_{H}}{L_{H}}} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \chi &= \frac{L_{H} - (L_{H})}{\frac{L_{H}}{2} + \frac{L_{H}}{L_{H}}} \\ \end{array} \\ \\ \begin{array}{c} \chi &= \frac{L_{H} - (L_{H})}{\frac{L_{H}}{2} + \frac{L_{H}}{L_{H}}} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \chi &= \frac{L_{H} - (L_{H})}{\frac{L_{H}}{2} + \frac{L_{H}}{L_{H}}} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \chi &= \frac{L_{H} - (L_{H})}{\frac{L_{H}}{2} + \frac{L_{H}}{L_{H}}} \\ \end{array} \\ \begin{array}{c} \chi &= \frac{L_{H} - (L_{H})}{\frac{L_{H}}{2} + \frac{L_{H}}{L_{H}}} \\ \end{array} \\ \begin{array}{c} \chi &= \frac{L_{H} - (L_{H})}{L_{H}} \\ \end{array} \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$L_{\rm H} \preceq L_{\rm C}$ refer to standard plan R-59-series and design wannal section 7.01.30 for quardrad, at everyments	** Refer to Calculations and Notes


323

Guardrail Length

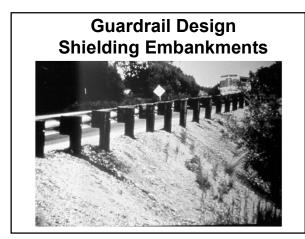
Using a Guardrail Approach Terminal, Type 2M with Guardrail, Type MGS-8 in this case

... Min. Guardrail Length = 64.88' - 23.125' - 34.3' = 7.46'

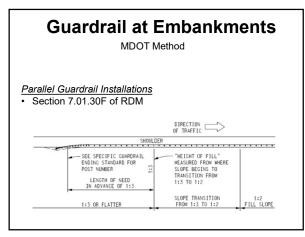

However, in this case, the minimum length of Type MGS-8 between the T-1 anchorage and Type 2M approach terminal is 28'-1.5" due to the required height transition section; see MDOT Standard Plan R-60-Series.

325

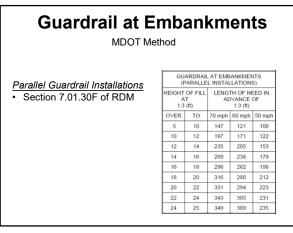
 $\frac{Reflectors}{\# \text{ of reflectors}} + 1 = 2.02 \rightarrow \text{ round up to 3} + 1 = 2.02 \rightarrow \text{ round up to 3} + 1 = 2.02 \rightarrow \text{ round up to 3}$ $\frac{28.125 + 23.125}{50} + 1 = 2.02 \rightarrow \text{ round up to 3}$

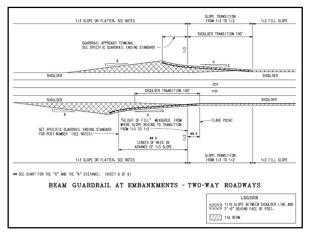

<u>Stations</u>

Station A = $(346+00) - 23.125' \approx 345+76.9$

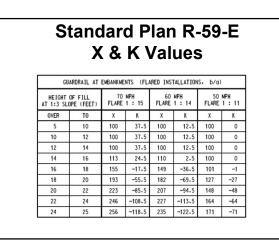

Station B = $(346+00) - 23.125 - 28.125' \approx 345+48.8$

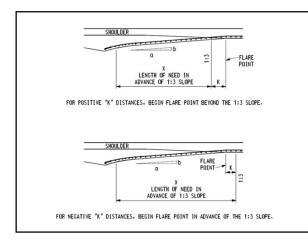
328


 $\frac{Calculating Z}{Z_{formula}} = (64.88 - 23.125 - 34.3) \times (\frac{1}{12}) + 16 = 16.62' (measured from CL)$ $Z_{actual} = L_2 + (Distance_{B-A}) \times (\frac{b}{a})$ $= 16 + (28.125) \times (\frac{1}{12}) = \underline{18.34' (measured from CL)}$ \underbrace{Or}_{a} $= 4 + (28.125) \times (\frac{1}{12}) = \underline{6.34' (measured from EOP)}$

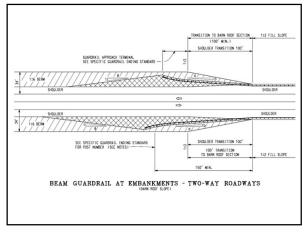

332

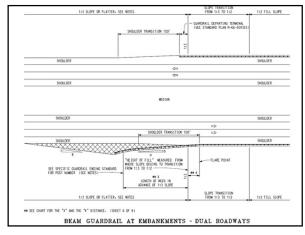
Guardrail at Embankments

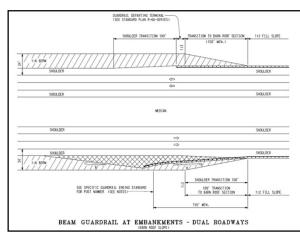

MDOT Method

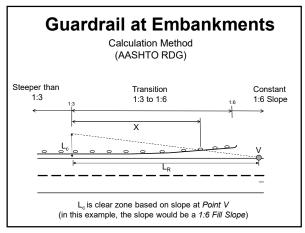

Flared Guardrail Installations

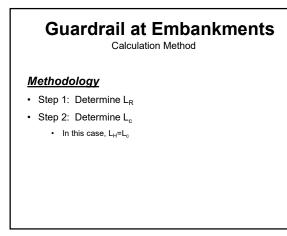
- Section 7.01.30E of RDM
- MDOT Standard Plan R-59 Series











341

Guardrail at Embankments

Calculation Method

<u>Methodology</u>

- Step 3: Determine Layout and Terminal
 - Flared or Parallel Guardrail
 - If flared:
 - Determine flare rate (b/a)
 - Determine location where flare begins
 - Terminal Type:
 - Type 1 (Flared) or Type 2 (Parallel) Terminal

Guardrail at Embankments

Calculation Method

<u>Methodology</u>

• Step 4: Determine Guardrail Location (L₂)

343

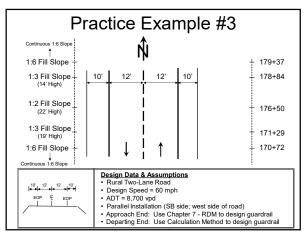
Guardrail at Embankments

Calculation Method

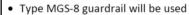
<u>Methodology</u>

 Step 5: Use appropriate formula to calculate length of need (X) in advance of 1:3 point

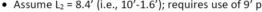
344

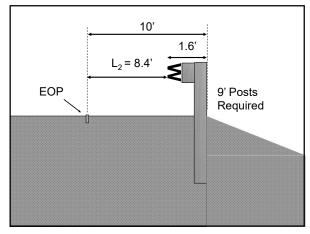

Guardrail at Embankments

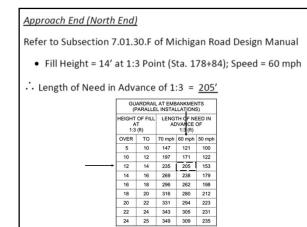
Calculation Method

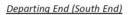

<u>Methodology</u>

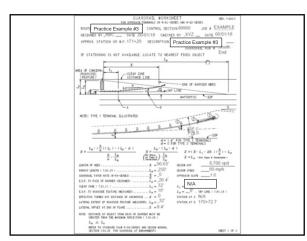
 Step 5: Use appropriate formula to calculate length of need (X) in advance of 1:3 point

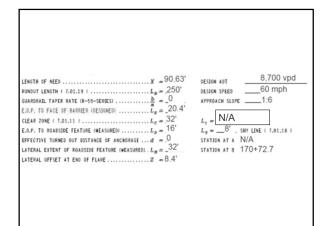

$$X = \frac{L_{H} + (b/a)(L_{1}) - (L_{2} + d)}{(b/a) + (L_{H}/L_{R})}$$

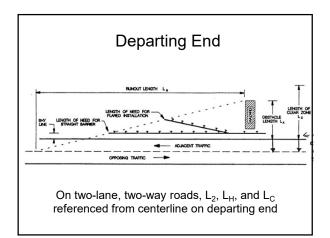



- Type 2M guardrail approach terminals will be used
- $L_c = 32'$ (1:6 slope at Sta. 168+79; 250' (L_r) south of Sta. 171+29)
- Assume L₂ = 8.4' (i.e., 10'-1.6'); requires use of 9' posts


347







- Shoulder hinge point on west side of road is within northbound (NB) traffic's clear zone
 - $\circ~$ Use guardrail worksheet to calculate length of need
- Guardrail ending on south end is within NB traffic's clear zone
 - Must use a crashworthy guardrail terminal (i.e., Type 2M guardrail approach terminal).

Г

Length of Need (X) – South End (Using Guardrail Worksheet)

$$X = \frac{32 - 20.4}{\binom{32}{250}} = 90.63' \text{ (measured from 1:3 point; Sta. 171+29)}$$

<u>Total Guardrail Length</u> Min. Length = (178+84) - (171+29) + 205 + 90.63 - 2(34.3) = 982.03' # of panels = $\frac{982.03}{12.5}$ = 78.56 → round up to 79 panels ∴ Type MGS-8 Guardrail Length = (12.5)(79) = <u>987.5 feet</u>

355

 $\frac{Reflectors}{\# \text{ of reflectors}} = \left(\frac{987.5}{50}\right) + 1 = 20.75 \rightarrow \text{round up to } 21$ **** But two-way roads require reflectors facing both sides ****
∴ # of reflectors = 21 x 2 = <u>42 reflectors</u>

356

<u>Stations</u>

- The difference between the minimum guardrail length and the actual guardrail length = $987.5 982.03 \approx 5.47'$
- The additional 5.47' of guardrail will be placed on the north (approach) end.

North (Approach) End

Station where approach terminal meets Type MGS-8 guardrail on the north (approach) end is:

Station $B_n = (178+84) + 205 + 5.47 - 34.3 = 180+60.2$

Station $A_n \, \rightarrow \, N/A$ in this case

358

South (Departing) End

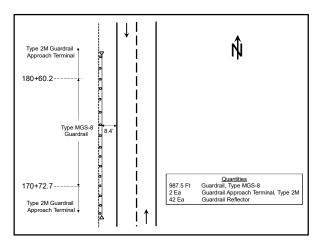
Station where approach terminal meets Type MGS-8 guardrail on the south (departing) end is:

Station $B_s = (171+29) - 90.63 + 34.3 \approx 170+72.7$

Station $A_s\, \rightarrow\, N/A$ in this case

359

<u>Check:</u> Type MGS-8 Guardrail Length = Sta. B_n – Sta. B_s


987.5 feet = (180+60.2) - (170+72.7)

987.5 feet = 987.5 feet ✓

 $Z = \underline{8.4'}$ (measured from EOP)

362

Questions?

<u>Contact Information</u> Carlos Torres *Phone:* (517) 335-2852 *E-mail:* torresc@michigan.gov