Table C.2. Entrance Loss Coefficients.

Outlet Control, Full or Partly Full Entrance Head Loss

 $H_e = K_e \left[\frac{V^2}{2g} \right]$

Type of Structure and Design of Entrance	Coefficient K _e
• Pipe, Concrete	
Projecting from fill, socket end (groove-end) Projecting from fill, sq. cut end Headwall or headwall and wingwalls	0.2 0.5
Socket end of pipe (groove-end Square-edge Rounded (radius = D/12 Mitered to conform to fill slope *End-Section conforming to fill slope Beveled edges, 33.7° or 45° bevels Side- or slope-tapered inlet	0.2 0.5 0.2 0.7 0.5 0.2
Pipe. or Pipe-Arch. Corrugated Metal	
Projecting from fill (no headwall) Headwall or headwall and wingwalls square-edge Mitered to conform to fill slope, paved or unpaved slope *End-Section conforming to fill slope Beveled edges, 33.7° or 45° bevels Side- or slope-tapered inlet	0.9 0.5 0.7 0.5 0.2 0.2
Box, Reinforced Concrete	
Headwall parallel to embankment (no wingwalls) Square-edged on 3 edges Rounded on 3 edges to radius of D/12 or B/12	0.5
or beveled edges on 3 sides Wingwalls at 30° to 75° to barrel	0.2
Square-edged at crown Crown edge rounded to radius of D/12 or beveled top edge Wingwall at 10 ⁰ to 25 ⁰ to barrel	0.4 0.2
Square-edged at crown Wingwalls parallel (extension of sides)	0.5
Square-edged at crown Side- or slope-tapered inlet	0.7 0.2

^{*}Note: "End Sections conforming to fill slope," made of either metal or concrete, are the sections commonly available from manufacturers. From limited hydraulic tests they are equivalent in operation to a headwall in both <u>inlet</u> and <u>outlet</u> control. Some end sections, incorporating a <u>closed</u> taper in their design have a superior hydraulic performance. These latter sections can be designed using the information given for the beveled inlet.