^TKINS

Member of the SNC-Lavalin Group

Performance Based Practical Design/Data Driven Safety Analysis

Module 1 - What is DDSA

Session Starts at 10 am

Welcome

Instructors

Mark Bott, PE
Engineer of Traffic and Safety
Michigan Department of Transportation
517-335-2625
BottM@michigan.gov

^TKINS

Agenda

- Welcome
- Intro from MDOT to set the stage
- Intro to DDSA - What is DDSA; HSM vs traditional safety analysis vs systemic
- Intro to DDSA - examples
- Break
- The HSM - What is the HSM and how it works, HSM performance measures, and examples
- HSM examples
- Wrap-up

^TKINS
 Member of the SNC-Lavalin Group

Intro from MDOT

^TKINS

Introduction to DDSA

What is DDSA?

Data Driven

Safety Analysis
^TKINS
Member of the SNC-Lavalin Group

What is DDSA?

Using tools to analyze crash and roadway data to predict the safety impacts of highway projects allows agencies to target investments with more confidence and reduce severe crashes on the roadways.

^TKINS

Safety Data Analysis

Crash Data
Collection

Spot vs. Systemic

Predictive/HSM

^TKINS

Crash Data Collection

Crash Data Collection

Crash Data Collection

Crash Data Collection

^TKINS

Member of the SNC-Lavalin Group

Spot vs. Systemic

Clusters of Traffic Crashes

Distributed Traffic Crashes

Distributed Traffic Crashes

Spot vs. Systemic

Clusters of Crashes \rightarrow Spot

Distributed Crashes \rightarrow Systemic

^TKINS

Member of the SNC-Lavalin Group

Spot Analysis

Similar Intersections

Study Intersection

^TKINS

Member of the SNC-Lavalin Group

Spot Analysis

Intersection Details		Traffic Volumes		Traffic Crashes			Crash Type Distribution					
Minor	Configuration	Major	Minor	FI	PDO	TOT	Single	Head On	Angle	Rear End	$\begin{aligned} & \text { S.S. } \\ & \text { Same } \end{aligned}$	$\begin{aligned} & \text { S.S. } \\ & \text { Opp. } \end{aligned}$
Minor 1	Three Leg Stop	17,600	2,500	3	6	9	56\%	0\%	33\%	11\%	0\%	0\%
Minor 2	Three Leg Stop	17,600	2,500	3	7	10	10\%	20\%	40\%	20\%	10\%	0\%
Minor 3	Three Leg Stop	17,600	2,500	6	7	13	8\%	0\%	77\%	15\%	0\%	0\%
Minor 4	Four Leg Signal	20,250	5,650	27	58	85	4\%	2\%	31\%	56\%	4\%	4\%
Minor 5	Three Leg Stop	19,900	1,250	1	5	6	0\%	33\%	33\%	17\%	0\%	17\%
Minor 6	Four Leg Signal	19,050	7,640	13	75	88	3\%	2\%	35\%	50\%	9\%	0\%
Minor 7	Four Leg Stop	18,200	800	2	17	19	5\%	0\%	68\%	11\%	11\%	5\%
Minor 8	Four Leg Stop	18,200	1,250	11	26	37	3\%	3\%	78\%	11\%	5\%	0\%
All Corrid	tersections	18,550	3,011	66	201	267	6\%	3\%	44\%	39\%	6\%	2\%

^TKINS

Member of the SNC-Lavalin Group

Spot Analysis - Collision Diagram

$$
\begin{array}{ll}
\longrightarrow & \text { - Rear-end } \\
\longrightarrow & \text { - Head-on } \\
\longrightarrow & \text { - Left/Right Rear-end } \\
\longrightarrow & \text { - Sideswipe Same Direction } \\
\longrightarrow & \text { - Angle } \\
\longrightarrow & \text { - Left-turn Head-on } \\
\longrightarrow & \text { - Left/Right Turn } \\
\longrightarrow & \text { - Single Vixed Object }
\end{array}
$$

Spot Analysis

^TKINS

Spot Analysis

^TKINS
Member of the SNC-Lavalin Group

Example Spot Improvement

Example Spot Improvement

Systemic Analysis

Table 4: Percentage Distribution of Lane Departure Crashes by County, 2010-2014

Location	Crashes	Fatalities	A-injuries	K\&A
Alger	34%	100%	63%	69%
Baraga	24%	100%	54%	61%
Chippewa	27%	67%	58%	59%
Delta	16%	40%	50%	49%
Dickinson	14%	75%	41%	45%
Gogebic	32%	50%	58%	57%
Houghton	25%	82%	47%	51%
Iron	23%	60%	54%	55%
Keweenaw	40%	100%	57%	64%
Luce	26%	71%	71%	71%
Mackinac	30%	70%	60%	61%
Marquette	24%	33%	41%	40%
Menominee	18%	58%	53%	54%
Ontonagon	20%	50%	52%	52%
Schoolcraft	23%	100%	63%	68%
Upper Peninsula	23%	$\mathbf{6 2 \%}$	53%	54%

^TKINS

Member of the SNC-Lavalin Group

Systemic Analysis - Comparisons

| Fatal and Severe Injury Crashes (2007-2011) | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Percent by Jurisdiction | | | | | | |

^TKINS

Member of the SNC-Lavalin Group

Systemic Analysis - Crash Tree
 BONNER COUNTY, IDAHO

2014 to 2018 Crash Data Overview for All Emphasis Areas
Local System - Major Collector Roadways and Local Roads

Level 1: K, A, B, C, PDO Crashes
Level 2 Severities: K, A Crashes Emphasis Area: All Emphasis Areas Highlighted Text: Largest proportion in category level

CRASH TYPE

 ABBREVIATIONSRE: Rear End
FO+OVT: Fixed Object and
OV: Fixed
Overturned
HO: Head-On SOD+SSD: Sideswipe Opposite Direction and Sideswipe
Same Direction
ANM:Animal
PED: Pedestrian
PDC: Pedalcyclist Other: Other Non-Collision/Other ObjectParked Car/Train/ Unknown
^TKINS

Grash Type Breakdown				
ANG	13	10%	0	0%
RE	3	2%	0	0%
FO+OVT	10	8%	0	0%
HO	3	2%	0	0%
SOD+SSD	11	9%	0	0%
ANM	1	1%	0	0%
PED	2	1%	0	0%
PDC	5	4%	1	50%
Other	80	63%	1	50%

Crash Type Breakdown					Crash Type Breakdown				
ANG	42	65\%	0	0\%	ANG	5	2\%	0	0\%
RE	2	3\%	0	0\%	RE	9	4\%	2	13\%
FO+OVT	3	5\%	0	0\%	FO+OVT	131	62\%	10	67\%
H0	5	7\%	0	0\%	H0	12	6\%	0	0\%
SOD+SSD	5	7\%	0	0\%	SOD+SSD	19	9\%	0	0\%
ANM	0	0\%	0	0\%	ANM	18	9\%	0	0\%
PED	3	5\%	0	0\%	PED	2	1\%	2	13\%
PDC	3	5\%	0	0\%	PDC	0	0\%	0	0\%
Other	2	3\%	0	0\%	Other	14	7\%	1	7\%

Grash Type Breakdown				
ANG	14	27%	0	0%
RE	4	8%	0	0%
FO+OVT	20	38%	0	0%
H0	1	2%	0	0%
SOD+SSD	7	13%	0	0%
ANM	2	4%	0	0%
PED	1	2%	1	100%
PDC	0	0%	0	0%
Other	3	6%	0	0%

Systemic Improvements -Rumble Strips

^TKINS

Systemic Improvements - Delineation

^TKINS

Systemic Strategies

Lane Departure

1. Re-grading side slopes to $1: 4$, or flatter, to eliminate the need for guardrail
2. Guardrail improvements (SWA Funding eligible only)
3. Fixed object removal including clear zone widening, tree removal
4. Extending or modifying culvert ends to eliminate a fixed-objects in the clear zone
5. High-friction surface treatment (multi-location throughout Region)
6. Installing impact attenuators where one does not currently exist
7. Installing delineators as laid out in Standard Plan R-127
8. Installing channelization: quick curb, access management (right in/right out, etc.)
9. Installing curve warning signs: chevrons, target arrows with reflective sign post strips
10. Eliminate edge drop-offs/rutting using Safety Edge installation
11. Construct centerline or shoulder rumble or mumble strips including widening shoulders to accommodate installation
12. Widen shoulders to decrease lane departure crashes

^TKINS

Systemic Strategies

Intersections

1. Improvements to sight vision corners: tree/shrub removal, minimal site grading
2. Reflective sign post strips for horizontal alignment signs and /or stop, stop ahead, yield, or yield ahead signs.
3. Signing treatments for All Way Stop and Cross Traffic Does Not Stop Conditions as per SIGN-145-A

Pedestrians

1. Road Diets- Restriping only with no pavement overlays or reconstruction. (Form 1629 still needs to be followed)
2. Pedestrian Refuge Islands
3. Special Emphasis Pedestrian

Crosswalk Markings as per PAVE-945
4. Rectangular Rapid Flashing

Beacon (RRFB) - Approval per the Crosswalk Guidance Document
5. Pedestrian Hybrid Beacon (PHB) Approval per the Crosswalk Guidance Document
6. Gateway Treatment as per the R16 User Guide

^TKINS

Five Minute Break

Predictive Analysis/HSM

Issues with Traditional Crash Analysis

HSM Addresses:

- Quality \& accuracy
- Reporting thresholds
- Frequency-severity
- Differences between jurisdictions
- Randomness and change

^TKINS

Member of the SNC-Lavalin Group

Natural Variability in Crash Frequency

Years

Highway Safety Manual

- Predictive modeling (safety performance functions)
- Network screening
- Scenario analysis

^TKINS

HSM Performance Measures

^TKINS

Member of the SNC-Lavalin Group

HSM Analysis

^TKINS

Member of the SNC-Lavalin Group

Level of Service Safety

Level of Service Safety

LOSS Category	Category Description
I	Indicates a low potential for crash reduction
II	Indicates a low to moderate potential for crash reduction
III	Indicates a moderate to high potential for crash reduction
IV	Indicates a high potential for crash reduction

^TKINS

Member of the SNC-Lavalin Group

Applying DDSA on MDOT Projects

MDOT DDSA Guidance

Areas of Application

- Project development safety analysis
- Design Exceptions/Design Variances

Data Driven Safety Analysis (DDSA)
Guidance

CMDOT
 Michigan Department of Transportation

- Alternative analysis as part of National Environmental Policy Act (NEPA)
- Interstate Access Requests
- Performance Based Practical Design (PBPD)

^TKINS

Tier I - Maintenance/Safety Non-Pavement

^TKINS

Member of the SNC-Lavalin Group

Tier II - 3R Projects

^TKINS
Member of the SNC-Lavalin Group

Tier III - 3R (pavement only)

^TKINS

Member of the SNC-Lavalin Group

Tier IV - 4R or New Construction

TIER IV - 4R or New Construction

^TKINS

Member of the SNC-Lavalin Group

Design Exception Process

Design Exception Process

Develop new site-specific model using MDOT HSM spreadsheet, IHSDM or other appropriate safety crash analysis tool to quantify existing conditions Identify and evaluate potential design alternatives using MDOT HSM spreadsheet, IHSDM or other appropriate safety analysis tool to quantify potential safety performance impacts

Ensure potential design alternatives have limited safety and connectivity impact on non-motorized road users

Review all crash reports involving nonmotorized road users and ensure potential design alternatives have limited safety and connectivity impact

^TKINS

Member of the SNC-Lavalin Group

Upgrade to Existing vs. New Construction

Figure 2-15

Preferred Alternative

Detroit River International Crossing Study

Upgrade to Existing vs. New Construction

Project Type	Type of Improvement	HSM Performance Measure
Maintenance	Upgrade to existing	Excess expected crashes
3R	Upgrade to existing	Excess expected crashes
3R (Pavement)	Upgrade to existing	Excess expected crashes
4R	New construction	Predicted crashes
Design exception	Upgrade to existing	Excess expected crashes
Design exception	New construction	Predicted crashes

^TKINS

Member of the SNC-Lavalin Group

Case Studies

Case Study - US-31 in Grand Traverse County

^TKINS

Member of the SNC-Lavalin Group

Case Study - US-31 in Grand Traverse County

HSM Analysis for Intersections

Intersection		Predicted Crashes			Expected Crashes			Excess Crashes per Year		
Major	Minor	FI	PDO	Total	FI	PDO	Total	FI	PDO	Tot
US-31	Five Mile Road	0.54	2.22	2.75	0.12	3.54	3.66	-0.42	1.32	0.91
US-31	Holiday Road	0.10	1.27	1.37	0.47	6.99	7.46	0.37	5.72	6.09
Overall		0.64	3.49	4.12	0.59	10.53	11.12	-0.05	7.04	7.00

^TKINS

Member of the SNC-Lavalin Group

Case Study - US-31 in Grand Traverse County

HSM Analysis for Segments

Section		Predicted Crashes		Expected Crashes			Excess Crashes per			
Road	Cross-Section	FI	PDO	Total	FI	PDO	Total	FI	PDO	Tot
US-31	Four-Lane Multi-Vehicle	5.58	33.48	39.06	2.59	7.38	9.97	-2.99	-26.1	-29.09
US-31	Five-Lane Multi- Vehicle	5.46	21.6	27.06	1.46	6.17	7.63	-4	-15.43	-19.43
US-31	Four-Lane Single Vehicle	0.72	7.41	8.13	0.88	8.90	9.78	0.16	1.49	1.65
US-31	Five-Lane Single-Vehicle	0.57	3.58	4.25	0.78	7.23	8.01	0.21	3.55	3.76
	Overall	$\mathbf{1 2 . 3 3}$	$\mathbf{6 6 . 1 7}$	$\mathbf{7 8 . 5}$	$\mathbf{5 . 7 1}$	$\mathbf{2 9 . 6 8}$	$\mathbf{3 5 . 3 9}$	$\mathbf{- 6 . 6 2}$	$\mathbf{- 3 6 . 4 9}$	$\mathbf{- 4 3 . 1 1}$

^TKINS

Case Study - M-129 in Chippewa County

Case Study - M-129 in Chippewa County

^TKINS

Member of the SNC-Lavalin Grou

Case Study - M-129 in Chippewa County

^TKINS

Member of the SNC-Lavalin Group

Case Study - I-94 in Jackson

^TKINS

Case Study - I-94 in Jackson

^TKINS

Member of the SNC-Lavalin Group

Case Study - I-94 in Jackson

Location		Predicted crashes without treatment			Predicted crashes with treatment			Change in predicted crashes		
		FI	PDO	TOT	FI	PDO	TOT	FI	PDO	TOT
I-94	Segment	49.22	91.89	141.11	37.80	62.30	100.10	11.42	29.59	41.01
US-127	Segment	7.12	12.21	19.33	10.59	17.29	27.88	-3.47	-5.08	-8.55
US-127/US-127BR/M-50 to EB I-94	Ramp	0.84	1.27	2.11	0.49	0.97	1.46	0.35	0.30	0.65
WB I-94 to US-127	Ramp	0.57	1.01	1.58	0.66	1.04	1.70	-0.09	-0.03	-0.12
US-127/US-127BR/M-50 to EB I-94	Ramp	0.43	0.60	1.03	0.22	0.35	0.57	0.21	0.25	0.46
EB I-94 to US-127BR/M-50	Ramp	0.30	0.40	0.70	0.14	0.20	0.34	0.16	0.20	0.36
EB I-94 to Elm Ave	Ramp	0.05	0.05	0.10	0.09	0.12	0.21	-0.04	-0.07	-0.11
Elm Ave to EBI-94	Ramp	0.09	0.10	0.19	0.10	0.15	0.25	-0.01	-0.05	-0.06
WB I-94 to Elm Ave	Ramp	0.06	0.09	0.15	0.11	0.14	0.25	-0.05	-0.05	-0.10
Elm Ave to WB I-94	Ramp	0.02	0.04	0.06	0.05	0.06	0.11	-0.03	-0.02	-0.05
Elm Ave \& Carmen Dr	Intersection	0.65	1.97	2.62	0.18	0.47	0.65	0.47	1.50	1.97
Elm Ave \& Rosehill Rd/Seymour Rd	Intersection	1.41	4.07	5.48	0.56	1.55	2.11	0.85	2.52	3.37
Elm Ave \& Barrett Ln/Blake Rd	Intersection	0.18	0.47	0.65	0.65	1.97	2.62	-0.47	-1.50	-1.97
TOTAL		60.94	114.17	175.11	51.64	86.61	138.25	9.30	27.56	36.86

^TKINS

