MDOT Hydrology 101

Erik Carlson, PE Environmental Section – Hydraulics Unit

Objectives

- Define Hydrologic Cycle and Terms
- Delineate a watershed
- Develop understanding of MDOT Hydrology policy and procedures
- Define Hydrologic design methods
- Delineate and calculate the time of concentration
- Calculate curve number through soil/landuse delineations

Hydrologic Cycle

Hydrologic Cycle

Most design applications:

- Precipitation
- Infiltration
- Storage

10 11-

Surface runoff

What is a 100 year storm?

Answer: <u>Rainfall</u> totals that have a 1% probability of occurring at a location in any given year.

What is a 100 year flood?

Answer: Flood that has a 1% probability of occurring at a location in any given year.

• Probability:

111

Whereas: $P_T = probability$ T = year rainfall or flood

 $P_{T} = 1/T$

What is the probability of a 10 year storm in any given year?

Answer: 10% chance

Probability of Exceedence:

$P_T = 1 - (1 - (1 / T))^n$

Whereas: P_T = probability of exceedence T = year rainfall or flood n = number of years

30.

Additional notes:

- Modeling assumes uniform rainfall across entire watershed
- Often see high rainfall amounts over small portions of the watershed, leading to flooding of small structures but not major structures.
- Rainfall and discharge values are determined based on limited statistical data, and are constantly evolving

- Spread calculations
 - 10 year (10% chance) flood
 - 50 year (2% chance) flood at sag points and depressed freeways
- Storm Sewer Pipe
 - 10 year (10% chance) flood
 - 50 year (2% chance) flood for depressed freeways
- Culverts (drainage areas less than 2 sq. miles)
 - 50 year (2% chance) flood
 - Check for harmful interference in the 100 year (1% chance) flood
- Ditches
 - 50 year (2% chance) flood
 - Check for harmful interference in the 100 year (1% chance) flood

Watershed delineation

- Typically done on USGS topographic maps
- Do not assume political or property boundaries for watershed divides
- Things to watch for
 - Cutting valleys
 - Not choosing closest contour
 - Assuming roads as divides rather than contours
 - Boundary not perpendicular to contours

• Watershed delineation (cont.)

- Assumptions
 - If not absolutely clear that a watercourse crosses a road through a <u>filled</u> area, assume the road is the divide.
 - Assume drainage <u>can</u> cross roads unless clearly shown otherwise by contours.
 - Depressions of <u>one</u> contour can either be assumed to contribute or not depending on size/circumstance.
 - Depressions of <u>two</u> contours are considered non-contributing as well as their individual contributing drainage areas.
 - To determine contributing/non-contributing
 - » Define storage potential (compute using average end areas of contours)
 - » Define runoff potential (SRO * DA)
 - » Compare the two

1011-

Peak discharge vs. Volume?

in the second

Figure 3-1 Representation of Hydrograph, Hyetograph, and Rainfall Excess

- Rational Method (drainage areas under 20 acres)
 - Not typically used for volume computations
- MDEQ-SCS (drainage areas over 20 acres but less than 2 sq. miles)
 - TR-55 used with MDEQ unit hydrograph when T_c < 1 hr
 - Typically used for volume computations
- For drainage areas greater than 2 square miles, contact Hydraulic Unit.

• Rational Method (drainage areas less than 20 acres):

Q = C I A (MDOT Drainage Manual 3.1)

Whereas:

- Q = peak discharge
- C = Runoff coefficient
- I = Rainfall Intensity, in./hr.
- A = drainage area, acres

• Rational Method:

- Limited to drainage areas less than 20 acres
- C factors based on Table 3-1 in MDOT Drainage Manual
- Rainfall intensities are defined by the time of concentration (IDF tables, Appendix 3-B, MDOT Drainage Manual)
- The time of concentration (t_c) is often assumed, unless the flow path is well defined:
 - 15 minutes for most applications
 - 10 minutes for depressed freeways and pump station designs
- When choosing a C factor, the designer should consider 20 years of future development
- Use should be limited to computing peak discharge

10.11-

MDOT DRAINAGE MANUAL RAINFALL INTENSITY – DURATION TABLE

TIME INTERVAL ON THIS SHEET = 0.1 MINUTES Rainfall Intensity given in inches per hour.

 \mathbf{t}_{c}

Time in	Zone 1 Zo			Zone 2	2 Zone 3				Zone 4			Zone 5			
Minutes	10 year	50 year	100 year	10 year	50 year	100 year	10 year	50 year	100 year	10 year	50 year	100 year	10 year	50 year	100 year
13.0	3.35	4.26	4.64	3.19	4.06	4.42	3.44	4.37	4.76	3.36	4.27	4.64	3.69	4.68	5.11
13.1	3.34	4.25	4.62	3.18	4.04	4.41	3.43	4.36	4.74	3.35	4.25	4.62	3.67	4.67	5.09
13.2	3.33	4.23	4.60	3.17	4.03	4.39	3.41	4.34	4.72	3.33	4.24	4.60	3.66	4.65	5.07
13.3	3.31	4.21	4.58	3.16	4.01	4.37	3.40	4.32	4.71	3.32	4.22	4.58	3.64	4.63	5.05
13.4	3.30	4.20	4.57	3.14	4.00	4.36	3.39	4.31	4.69	3.31	4.20	4.57	3.63	4.61	5.03
13.5	3.29	4.18	4.55	3.13	3.98	4.34	3.37	4.29	4.67	3.29	4.19	4.55	3.61	4.60	5.02
13.6	3.27	4.17	4.53	3.12	3.97	4.33	3.36	4.28	4.66	3.28	4.17	4.53	3.60	4.58	5.00
13.7	3.26	4.15	4.52	3.11	3.95	4.31	3.35	4.26	4.64	3.27	4.16	4.52	3.58	4.56	4.98
13.8	3.25	4.14	4.50	3.10	3.94	4.29	3.33	4.24	4.62	3.25	4.14	4.50	3.57	4.55	4.96
13.9	3.24	4.12	4.49	3.08	3.93	4.28	3.32	4.23	4.61	3.24	4.13	4.49	3.56	4.53	4.94
14.0	3.22	4.11	4.47	3.07	3.91	4.26	3.31	4.21	4.59	3.23	4.11	4.47	3.54	4.51	4.93
14.1	3.21	4.09	4.45	3.06	3.90	4.25	3.30	4.20	4.57	3.22	4.10	4.45	3.53	4.50	4.91
14.2	3.20	4.08	4.44	3.05	3.88	4.23	3.28	4.18	4.56	3.21	4.08	4.44	3.52	4.48	4.89
14.3	3.19	4.06	4.42	3.04	3.87	4.22	3.27	4.17	4.54	3.19	4.07	4.42	3.50	4.46	4.87
14.4	3.18	4.05	4.41	3.03	3.86	4.20	3.26	4.15	4.53	3.18	4.06	4.41	3.49	4.45	4.86
14.5	3.16	4.03	4.39	3.01	3.84	4.19	3.25	4.14	4.51	3.17	4.04	4.39	3.48	4.43	4.84
14.6	3.15	4.02	4.38	3.00	3.83	4.18	3.24	4.13	4.50	3.16	4.03	4.38	3.46	4.42	4.82
14.7	3.14	4.01	4.36	2.99	3.82	4.16	3.22	4.11	4.48	3.15	4.01	4.36	3.45	4.40	4.81
14.8	3.13	3.99	4.35	2.98	3.80	4.15	3.21	4.10	4.47	3.14	4.00	4.35	3.44	4.39	4.79
14.9	3.12	3.98	4.33	2.97	3.79	4.13	3.20	4.08	4.45	3.12	3.99	4.33	3.43	4.37	4.78
15.0	3.11	3.97	4.32	2.96	3.78	4.12	3.19	4.07	4.44	3.11	3.97	4.32	3.42	4.36	4.76
15.1	3.10	3.95	4.31	2.95	3.77	4.11	3.18	4.06	4.43	3.10	3.96	4.31	3.40	4.34	4.74
15.2	3.09	3.94	4.29	2.94	3.75	4.09	3.17	4.04	4.41	3.09	3.95	4.29	3.39	4.33	4.73
15.3	3.08	3.93	4.28	2.93	3.74	4.08	3.16	4.03	4.40	3.08	3.93	4.28	3.38	4.32	4.71
15.4	3.07	3.91	4.26	2.92	3.73	4.07	3.15	4.02	4.38	3.07	3.92	4.26	3.37	4.30	4.70
15.5	3.05	3.90	4.25	2.91	3.72	4.05	3.13	4.00	4.37	3.06	3.91	4.25	3.36	4.29	4.68
15.6	3.04	3.89	4.24	2.90	3.71	4.04	3.12	3.99	4.36	3.05	3.90	4.24	3.35	4.27	4.67
15.7	3.03	3.88	4.22	2.89	3.69	4.03	3.11	3.98	4.34	3.04	3.88	4.22	3.33	4.26	4.65
15.8	3.02	3.87	4.21	2.88	3.68	4.02	3.10	3.97	4.33	3.03	3.87	4.21	3.32	4.25	4.64
15.9	3.01	3.85	4.20	2.87	3.67	4.00	3.09	3.95	4.31	3.02	3.86	4.20	3.31	4.23	4.62

3-B-4

Rational Method (cont):

Use a weighted C for different land uses within a watershed

$$\bar{C} = \frac{\sum CA}{A}$$

 For storm sewer computations, the CA values for each catch basin/manhole are added, and then multiplied by the rainfall intensity:

$$Q_n = \Sigma(CA) * I$$

or
 $Q_n = ((C_1A_1) + (C_2A_2) + ... (C_nA_n))^{3}$

Sample Problem

Determine a weighted "C" for a 0.5 acre watershed with 0.4 acres of grassy area and 0.1 acres of pavement.

Table 3-1 Runoff Coefficients for Rational Formula

Type of Drainage Area	Runoff Coefficient, C*				
Concrete or Asphalt Pavement	0.8 – 0.9				
Commercial and Industrial	0.7 - 0.9				
Gravel Roadways and Shoulders	0.5 - 0.7				
Residential – Urban	0.5 - 0.7				
Residential – Suburban	0.3 – 0.5				
Undeveloped	0.1 – 0.3				
Berms	0.1 – 0.3				
Agricultural – Cultivated Fields	0.15 - 0.4				
Agricultural – Pastures	0.1 - 0.4				
Agricultural – Forested Areas	0.1 – 0.4				

For flat slopes or permeable soil, lower values shall be used. For steep slopes or impermeable soil, higher values shall be used. Steep slopes are 2:1 or steeper.

From Michigan State Administrative Rules R 280.9.

Pavement Grass

- \underline{C} \underline{A} 0.9 * 0.1 acres =
- $0.2 * 0.4 \text{ acres} = \Sigma = 0.5 \text{ acres}$
- 0.09 acres
 <u>0.08</u> acres
- 0.17 acres

Sample Problem

CA

$$\bar{C} = \frac{0.17 \text{ acres}}{0.5 \text{ acres}} = 0.34$$

MDEQ-SCS Method:

- Drainage areas greater than 20 acres but less than 2 square miles
- "Computing Flood Discharges for Small Ungaged Watersheds," Sorrell, 2010
- Rainfall to runoff model
 - RCN determined from soil/landuse delineations
 - Consider 20 years of future development
- SCS Method with modified unit hydrograph
 - 28.5 percent of volume under the rising limb
 - Type II rainfall distribution
- 24 hour design rainfall

Computing Flood Discharges For Small Ungaged Watersheds

Peak Discharge Calculations:

Adjusted Flow (cfs)

148

247

Watercourse	Clear Creek						
Drainage Area	18.23						
Cont Drainage Area	16.80						
Basin Number	12						
Basin Name	Clinton						
Quad	P23SW						
Section	14		Insert inform	nation in			
Town/Range	T03NR03E						
Latitude	42.222222		Place your cur	rsor over			
Longitude	-84.111111		the red triang	les for			
County	Macomb		additional tip	os.			
Township	Ray						
Location	First Street						
Job Number	29990999						
By	Smith						
Date	Jun-04-2010						
Frequency	50%	20%	10%	4%	2%	1%	0.50%
Discharge (cfs)	192	317	415	553	665	786	914
Volume (Acre-ft)	389	644	842	1122	1350	1595	1854
Ponding							
% throughout/mid	2.1	2.1	2.1	2.1	2.1	2.1	2.1
% upper reaches	0	0	0	0	0	0	0
% design point	0	0	0	0	0	0	C
Ponding Adjustment	0.77	0.78	0.80	0.82	0.84	0.86	0.88

0.20% 1100 2232 2.1

0.90

985

800

Richard C. Sorrell, P.E. Michigan Department of Natural Resources and Environment Land and Water Management Division June 22, 2010 www.michigan.gov/hydrology

332

453

560

679

MDEQ-SCS Method (cont.):

$$q_p'=238.6 * T_c^{0.82}$$

 $SRO = \frac{(P - Ia)^2}{P - Ia + S}$
 $S = \frac{1000}{RCN} - 10$
 $I_a = 0.2 * S$

$$Q = q_{p}' * SRO * DA * pond$$

DA = drainage area (sq. miles)
RCN = Runoff curve number
Pond = watershed ponding reduction factor
P = 24 hr. rainfall (in.) found in "Computing Flood Discharges for Small Ungaged Watersheds"

 $(1 hr < T_c < 40 hr)$

- MDEQ-SCS Method (cont.):
 - DEQ Excel spreadsheet:

http://www.michigan.gov/deq/0,4561,7-135-3313 3684 3724-9324--,00.html

If tc < 1 hr, use TR-55 with the following ordinates for unit hydrograph: 0.0, 0.5, 1.0, 0.8, 0.6, 0.4, 0.2, 0.0

- Runoff Curve Number (RCN)
 - Combination of soil type and landuse
 - Soil types
 - A (well-drained)
 - B
 - C
 - D (poorly drained)
 - Landuse values developed for agricultural purposes
 - Beware of drained/undrained soil types (A/D, B/D, etc.)!
 - Beware of complex soils!

Table 6.1 – Runoff curve numbers for hydrologic soil-cover complexes (AMC-II conditions)

- Runoff Curve Number (RCN)
 - Miller Grid Method
 - Divide watershed into individual squares, and assign numeric values correlating to a soil/landuse combination
 - Sample grid size (may have to adjust for site conditions)
 - Drainage areas less than 0.5 sq. mi. 200' x 200'
 - Drainage areas less than 1.0 sq. mi. 400' x 400'
 - Drainage areas less than 2.0 sq. mi. 500' x 500'
 - Digital soil maps can be electronically printed and imported into Microstation

– http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm

🕼 👻 😟 100% 👻

Class	A
Commercial	1
Res ¹ /2	2
Paved	3
Res1	21
Class	8
Open Good	4
Res ¹ /2	5
Commercial	6
Forest	24
Paved	26
Class	с
Open Good	7
Res ¹ /2	8
Commercial	9
Paved	20
Forest	22
Class	D
Swamp	10
Forest	11
Water	12
Paved	18
Res ¹ /2	25

Complex	1
Forest	13
Commercial	14
Res ¹ /2	15
Open Good	23
Complex	2
Forest	16

Res¹/2 17

27

Commercial

- Time of Concentration (t_c)
 - Travel time from the hydraulically most distant point within a watershed.
 - $V = K * S^{1/2}$

(MDOT Drainage Manual, Eq. 3.2)

- K
- Small tributary defined watercourses (blue lines on topographical maps) = 2.1
- Waterway = 1.2
- Sheet flow (limited to 300') = 0.48
- S is slope in %
- $T_c = L / (3600 * V)$

(in hrs.)

- Beware of units!
- Establish breaks at contour lines and flow type changes
- Gap out ponds and lakes when delineating flow paths
- Beware of higher discharges within subwatersheds
- Use TR-55 when $T_c < 1$ hr.

- Ponding factors
 - Used to account for storage within a watershed
 - Examples of ponding:
 - Depression contours
 - Swamps
 - Lakes or ponds
 - Factors based on location within watershed (upper reaches, throughout, at design point)
 - Use only one adjustment factor
 - Do not use ponding factor when volume or routing calculations are required

Percentage of ponded	Annual Storm Probability								
and swampy area	50%	20%	10%	4%	2%	1%			
Ponding occurs in central p	arts of the wa	atershed	or is spre	ad throu	ghout	-			
0.2	0.94	0.95	0.96	0.97	0.98	0.99			
0.5	0.88	0.89	0.90	0.91	0.92	0.94			
1.0	0.83	0.84	0.86	0.87	0.88	0.90			
2.0	0.78	0.79	0.81	0.83	0.85	0.87			
2.5	0.73	0.74	0.76	0.78	0.81	0.84			
3.3	0.69	0.70	0.71	0.74	0.77	0.81			
5.0	0.65	0.66	0.68	0.72	0.75	0.78			
6.7	0.62	0.63	0.65	0.69	0.72	0.75			
10	0.58	0.59	0.61	0.65	0.68	0.71			
20	0.53	0.54	0.56	0.60	0.63	0.68			
Ponding occurs only in upp	er reaches o	f watersh	ed						
0.2	0.96	0.97	0.98	0.98	0.99	0.99			
0.5	0.93	0.94	0.94	0.95	0.96	0.97			
1.0	0.90	0.91	0.92	0.93	0.94	0.95			
2.0	0.87	0.88	0.88	0.90	0.91	0.93			
2.5	0.85	0.85	0.86	0.88	0.89	0.91			
3.3	0.82	0.83	0.84	0.86	0.88	0.89			
5.0	0.80	0.81	0.82	0.84	0.86	0.88			
6.7	0.78	0.79	0.80	0.82	0.84	0.86			
10	0.77	0.77	0.78	0.80	0.82	0.84			
20	0.74	0.75	0.76	0.78	0.80	0.82			
Ponding occurs only in low	er reaches of	watersh	ed						
0.2	0.92	0.94	0.95	0.96	0.97	0.98			
0.5	0.86	0.87	0.88	0.90	0.92	0.93			
1.0	0.80	0.81	0.83	0.85	0.87	0.89			
2.0	0.74	0.75	0.76	0.79	0.82	0.86			
2.5	0.69	0.70	0.72	0.75	0.78	0.82			
3.3	0.64	0.65	0.67	0.71	0.75	0.78			
5.0	0.59	0.61	0.63	0.67	0.71	0.75			
6.7	0.57	0.58	0.60	0.64	0.67	0.71			
10	0.53	0.54	0.56	0.60	0.63	0.68			
20	0.48	0.49	0.51	0.55	0.59	0.64			

Table 10.1 - Adjustment factors for ponding

WATERSHED & TIME OF CONCENTRATION DELINEATION BREAK-OUT

10 11-

10.11-

SOUS Crop 1 OII S Res-1 14 <u>C</u><u>S</u>OILS Crop 5 Res-1 7 D_SOILS Crop 9 Res-1 11 Forest 12 Meadow 13

ST. Frime

SCS-92 Method Discharge Calculations:

10.11-

Description				Time of Co	oncentrati	on					Curve	Nu	nber		
Watercourse	Unnamed Trib.	to Hazen Cr	eek	Flow Type	Length	U/S Elev	D/S Elev	Slope	Velocity	Tc	Soils		Land Use		
Drainage Area	0.71	sq. mile			feet	feet	feet	%	ft/s	bours	Group	%	Type	%	CN
Cont Drainage Area	0.71	sq. mile		Sm Trib	876	890.00	889.00	0.114	0.710	0.34	A	0.8	Crop	100	65
Basin Number	0			Sm Trib	794	900.00	890.00	1.259	2.357	0.09					
Basin Name				Waterway	1834	910.00	900.00	0.545	0.886	0.57					
Quad	0			Waterway	4042	919.58	910.00	0.237	0.584	1.92					
Section	22/23			Sheet Flow	178	920.00	919.58	0.236	0.233	0.21	В	1.6	Res 1	100	68
Town/Range	T6S, R2E			Sheet Flow	122	920.29	920.00	0.238	0.234	0.14					
Latitude	0														
Longitude	0														
County	Lenawee										С	21	Crop	88	84
Township	Rome												Res 1	12	79
Location	0														
Job Number	110627														
By	J. Logsdon										D	77	Crop	79	88
Date	Jul-31-2019			Total	7846			0.399	0.835	3.29			Res 1	5	84
				* Portions of the	Time of Con	centration that s	vere cut off to eval	luate alternate i	travel routes.				Forest	5	79
					- 1								Meadow	11	78
Discharge															
Frequency	10%	4%	2%	1%	0.50%	0.20%			1% F	requency	Hydrogra	ph			
Adj Rainfall (inch)	3.13		3.98	4.36			20	°							
Avg Runoff (inch)	1.71		2.46	2.80			¥15	o -							
Comp Curve Number	85.2		85.2	85.2			84.0								
Discharge (cfs)	109	136	157	179	200	231	har	°1	/						
Volume (Acre-ft)	65	81	93	106	119	137	je 5	∘- /	·			-			
Ponding: throughout	2	2	2	2	2	2	н								
Ponding: upper reaches	0	0	0	0	0	0		0.0	2.8	5.6 8.	5 11.3	з ′	14.1	16.9	
Ponding: design point	0	0	0	0	0	0				Time	(hours)				
Ponding Adjustment	0.81	0.83	0.85	0.87	0.88	0.90									
Adjusted Flow (cfs)	88	113	133	155	176	208		Unit Hydı	ograph Pe	ak (cfs/sq.	mile-in)		89.80	5	
flow (cfs) with incr. SRO:	90		134	156											

By: Justin Logsdon Date: October 13, 2016 Chk: Date:

Job Location Information:

 Control Section:
 46061

 Job Number:
 110627

 Trunkline:
 US-223

 Location:
 Sec. 22/23, T6S, R2E

 Waterourse:
 Unnamed trib.

 Tributary to:
 Hazen Creek

 MDEQ Hydro Basin:
 29 (Lenawe)

*Hydrograph Synthesis:

Drainage Area:	0.71 sqmi.
**Tc:	3.29 hr.
Composite CN:	85.19
Percent Ponding:	2%

[†]Peak Flows:

10 year (10%):	90 cfs
50 year (2%):	135 cfs
100 year (1%):	155 cfs

[†] Discharge Estimates rounded up to the nearest 5 cfs or down if <1 over.

^{*} MDEQ SCS, "Computing Flood Discharges for Small Ungaged Watersheds", Sorrell, June 2010. Soil into from "Soil Survey of Lenawee County, Michigan.". Landuse corroborated w/ Google Earth aerial photos (10/2016).

Questions?