

Erik Carlson, P.E. MDOT Hydraulics Unit July 2022

Culvert Example

Existing Culvert

- Determine headwater and outlet velocity for the existing culvert
- $\mathrm{Q}_{50}=40 \mathrm{cfs}$
- $Q_{100}=50 \mathrm{cfs}$
- $\mathrm{TW}_{50}=853.56$,
- $\mathrm{TW}_{100}=853.84^{\prime}$

Existing Culvert

- Determine inlet control headwater (Chart 1B):
- Q_{50}
- HW / D = 4
- HW = 4 * D = 4 * $2^{\prime}=8.0^{\prime}$
- $H W_{i c}=U / S_{\text {invert }}+\mathrm{HW}=$ $850.95^{\prime}+8.0^{\prime}=858.95^{\prime}$
- Q_{100}
- HW / D = 5.8
- $\mathrm{HW}=5.8$ * D $=5.8$ * $2^{\prime}=$ 11.6'
- $\mathrm{HW}_{\text {ic }}=\mathrm{U} / \mathrm{S}_{\text {invert }}+\mathrm{HW}=$ $850.95^{\prime}+11.6^{\prime}=862.55^{\prime}$

CHART 1B

Existing Culvert

- Determine outlet control headwater:
- $\mathrm{TW}_{50}=853.56$
- $\mathrm{TW}_{100}=853.84^{\prime}$
- $\mathrm{k}_{\mathrm{e}}=0.5$ (squared edge with headwall)
- $\mathrm{n}=0.012$ (concrete)
- Determine headloss:

$$
H_{L}=\left(1+K_{e}+29 n^{2} L / R^{1.33}\right) * V^{2} / 2 g
$$

Full barrel area $=A_{\text {full }}=\pi D^{2} / 4$

$$
=\pi(2 \mathrm{ft} .)^{2} / 4=\underline{3.14 \mathrm{sft}}
$$

Full barrel hydraulic radius $=R=A_{\text {full }} / P_{\text {full }}=\left(\pi D^{2} / 4\right) /(\pi D)$

$$
=\mathrm{D} / 4=2 \mathrm{ft} . / 4=\underline{0.5 \mathrm{ft}} .
$$

Existing Culvert

- Determine outlet control headwater (cont.):
- Determine headloss (cont.):
- Is the downstream crown submerged?
- Q_{50} :

$$
\begin{aligned}
& V_{\text {full }}=Q / A_{\text {full }} \\
& \quad=40 \mathrm{cfs} / 3.14 \mathrm{sft} .=12.74 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

$$
H_{L}=\left(1+K_{e}+29 n^{2} L / R^{1.33}\right) * V^{2} / 2 g
$$

$$
=\left(1+0.5+29 *(0.012)^{2} * 48^{\prime}\right) /\left(0.5^{1.33}\right) *(12.74 \mathrm{ft} / \mathrm{s})^{2} /\left(2^{*} 32.2\right.
$$

$=5.05 \mathrm{ft}$.

Existing Culvert

- Determine outlet control headwater (cont.):
- Determine headloss (cont.):
- Is the downstream crown submerged?
- Q_{100} :

$$
\begin{aligned}
& V_{\text {full }}=Q / A_{\text {full }} \\
& \quad=50 \mathrm{cfs} / 3.14 \mathrm{sft} .=15.92 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

$$
H_{L}=\left(1+K_{e}+29 n^{2} L / R^{1.33}\right) * V^{2} / 2 g
$$

$$
=\left(1+0.5+29 *(0.012)^{2} * 48^{\prime} /\left(0.5^{1.33}\right)\right){ }^{*}(15.92 \mathrm{ft} / \mathrm{s})^{2} /(2 * 32.2
$$

$=7.89 \mathrm{ft}$.

Existing Culvert

- Determine outlet control headwater (cont.):
- Determine outlet control headwater:
- $H W_{o c}=T W+h_{L} \quad$ (Assume $V_{u} \approx V_{d}$)
- Q_{50} :

$$
H W_{o c}=853.56^{\prime}+5.05^{\prime}=858.61^{\prime}
$$

- Q_{100} :

$$
H W_{o c}=853.84^{\prime}+7.89^{\prime}=861.73^{\prime}
$$

- Determine controlling headwater $\left(\mathrm{HW}_{\mathrm{c}}\right)$ for existing culvert:
- Q_{50} :

$$
\begin{aligned}
& \mathrm{HW}_{\text {ic }}>\mathrm{HW}_{\text {oc ?? }} \\
& \mathrm{HW}_{\mathrm{c}}=858.95^{\prime}
\end{aligned}
$$

- Q_{100} :

$$
\begin{aligned}
& \mathrm{HW}_{\text {ic }}>\mathrm{HW} \text { oc ?? } \\
& \mathrm{HW}_{\mathrm{c}}=862.55^{\prime}
\end{aligned}
$$

Proposed Culvert

$$
\text { Try D = } 42 \text { inches (3.5’) }
$$

- Because we cannot pick material, assume CMP as worst case ($\mathrm{n}=0.024$)
- Lower inverts 6 ", per Drainage Manual 5.3.4

Proposed Culvert

DETERMINE PROPOSED SIZE

Proposed Culvert

- Determine inlet control headwater (Chart 2B):
- Q_{50}
- HW / D = 0.84
- $\mathrm{HW}=0.84$ * $\mathrm{D}=0.84$ * $3.5^{\prime}=$ 2.94'
- $\mathrm{HW}_{\mathrm{ic}}=\mathrm{U} / \mathrm{S}_{\text {invert }}+\mathrm{HW}=$ $850.45^{\prime}+2.94^{\prime}=853.39^{\prime}$
- Q_{100}
- HW / D = 0.97
- HW = 0.97 * D = 0.97 * 3.5' = 3.40'
- $\mathrm{HW}_{\text {ic }}=\mathrm{U} / \mathrm{S}_{\text {invert }}+\mathrm{HW}=$ $850.45^{\prime}+3.40^{\prime}=853.85^{\prime}$

CHART 2B

HEADWATER DEPTH FOR C. M. PIPE CULVERTS WITH INLET CONTROL

Proposed Culvert

- Determine outlet control headwater:
- $\mathrm{TW}_{50}=853.56$
- $\mathrm{TW}_{100}=853.84^{\prime}$
(same as existing)
(same as existing)
- $\mathrm{k}_{\mathrm{e}}=0.5$ (squared edge with headwall)
- $n=0.024$ (assume worst case, CMP)
- Determine headloss:

$$
H_{L}=\left(1+K_{e}+29 n^{2} L / R^{1.33}\right) * V^{2} / 2 g
$$

Full barrel area $=A_{\text {full }}=\pi D^{2} / 4$

$$
=\pi(3.5 \mathrm{ft} .)^{2} / 4=\underline{9.62 \mathrm{sft}}
$$

Full barrel hydraulic radius $=R=A_{\text {full }} / P_{\text {full }}=\left(\pi D^{2} / 4\right) /(\pi D)$

$$
=\mathrm{D} / 4=3.5 \mathrm{ft} . / 4=\underline{0.875 \mathrm{ft}} .
$$

Proposed Culvert

- Determine outlet control headwater (cont.):
- Determine headloss (cont.):
- Use partial elements to determine $\mathrm{V}_{\text {part }}$ and $\mathrm{R}_{\text {part }}$:
- Q_{50} :

$$
\mathrm{TW}_{50} / \mathrm{D}=(2.66 \mathrm{ft} .+0.5 \mathrm{ft} .) / 3.5 \mathrm{ft} .=0.9
$$

Based on partial elements

$$
\begin{aligned}
& A_{\text {part }} / A_{\text {full }}=0.95 \\
& A_{\text {part }}=0.95{ }^{*} A_{\text {full }}=0.95 * 9.62 \mathrm{sft} .=9.14 \mathrm{sft} . \\
& V_{\text {part }}=Q / A_{\text {full }}=40 \mathrm{cfs} / 9.14 \mathrm{sft}=\underline{4.38 \mathrm{ft} / \mathrm{s}} \\
& R_{\text {part }} / R_{\text {full }}=1.19 \\
& R_{\text {part }}=1.19{ }^{*} R_{\text {full }}=1.19 * 0.875 \mathrm{ft} .=1.04 \mathrm{ft} .
\end{aligned}
$$

Proposed Culvert

- Determine outlet control headwater (cont.):
- Determine headloss (cont.):
- Use partial elements to determine $\mathrm{V}_{\text {part }}$ and $\mathrm{R}_{\text {part }}$:
- Q_{100} :

$$
\mathrm{TW}_{100} / \mathrm{D}=(2.94 \mathrm{ft} .+0.5 \mathrm{ft} .) / 3.5 \mathrm{ft} .=0.98
$$

Based on partial elements

$$
\begin{aligned}
& A_{\text {part }} / A_{\text {full }}=0.98 \\
& A_{\text {part }}=0.98{ }^{*} A_{\text {full }}=0.98 * 9.62 \mathrm{sft} .=9.52 \mathrm{sft} . \\
& V_{\text {part }}=Q / A_{\text {part }}=50 \mathrm{cfs} / 9.52 \mathrm{sft}=\underline{5.25 \mathrm{ft} / \mathrm{s}} \\
& R_{\text {part }} / R_{\text {full }}=1.05 \\
& R_{\text {part }}=1.05{ }^{*} R_{\text {full }}=1.05 * 0.875 \mathrm{ft} .=0.92 \mathrm{ft} .
\end{aligned}
$$

Proposed Culvert

Proposed Culvert

- Determine outlet control headwater:
- $\mathrm{TW}_{50}=853.56$
- $\mathrm{TW}_{100}=853.84^{\prime}$
(same as existing)
(same as existing)
- $\mathrm{k}_{\mathrm{e}}=0.5$ (squared edge with headwall)
- $n=0.024$ (assume worst case, CMP)
- Determine headloss:

$$
H_{L}=\left(1+K_{e}+29 n^{2} L / R^{1.33}\right) * V^{2} / 2 g
$$

Full barrel area $=A_{\text {full }}=\pi D^{2} / 4$

$$
=\pi(3.5 \mathrm{ft} .)^{2} / 4=\underline{9.62 \mathrm{sft}}
$$

Full barrel hydraulic radius $=R=A_{\text {full }} / P_{\text {full }}=\left(\pi D^{2} / 4\right) /(\pi D)$

$$
=\mathrm{D} / 4=3.5 \mathrm{ft} . / 4=\underline{0.875 \mathrm{ft}} .
$$

Proposed Culvert

- Determine outlet control headwater (cont.):
- Determine headloss (cont.): Q_{50} :

$$
\begin{aligned}
H_{\mathrm{L}} & =\left(1+\mathrm{K}_{\mathrm{e}}+29 \mathrm{n}^{2} \mathrm{~L} / \mathrm{R}^{1.33}\right)^{*} \mathrm{~V}^{2} / 2 \mathrm{~g} \\
& =\left(1+0.5+\left(29 *(0.024)^{2} * 48 \mathrm{ft}\right) /(1.04 \mathrm{ft})^{1.33}\right) *(4.38 \mathrm{ft} / \mathrm{s})^{2} /(2 \\
& \left.* 32.2 \mathrm{ft} / \mathrm{s}^{2}\right) \\
& =\underline{\mathbf{0 . 6 8 f t}} .
\end{aligned}
$$

$Q_{100}:$

$$
\begin{aligned}
H_{L} & =\left(1+K_{e}+29 n^{2} \mathrm{~L} / \mathrm{R}^{1.33}\right) * \mathrm{~V}^{2} / 2 \mathrm{~g} \\
& =\left(1+0.5+\left(29 *(0.024)^{2} * 48 \mathrm{ft}\right) /(0.92 \mathrm{ft})^{1.33}\right) *(5.25 \mathrm{ft} / \mathrm{s})^{2} /(2 \\
& \left.* 32.2 \mathrm{ft} / \mathrm{s}^{2}\right) \\
& =\underline{1.03 \mathrm{ft} .}
\end{aligned}
$$

Proposed Culvert

- Determine outlet control headwater (cont.):
- Determine outlet control headwater:
- $\mathrm{HW}_{o c}=\mathrm{TW}+\mathrm{h}_{\mathrm{L}} \quad$ (Assume $\mathrm{V}_{\mathrm{u}} \approx \mathrm{V}_{\mathrm{d}}$)
- Q_{50} :

$$
H W_{o c}=853.56^{\prime}+0.68^{\prime}=854.24^{\prime}
$$

- Q_{100} :

$$
H W_{o c}=853.84^{\prime}+1.03^{\prime}=854.87^{\prime}
$$

- Determine controlling headwater $\left(\mathrm{HW}_{\mathrm{c}}\right)$ for proposed culvert:
- Q_{50} :

$$
\begin{aligned}
& \mathrm{HW}_{\text {ic }}<\mathrm{HW}_{\text {oc } ? ?} \\
& \left.\mathrm{HW}_{\mathrm{c}}=\underline{854.24^{\prime}} \text { (outlet control }\right)
\end{aligned}
$$

- Q_{100} :

$$
\begin{aligned}
& \mathrm{HW}_{\text {ic }}<\mathrm{HW}_{\text {oc } ? ?} \\
& \left.\mathrm{HW}_{\mathrm{c}}=\underline{854.87} \text { (outlet control }\right)
\end{aligned}
$$

HY-8 Analysis - existing

HY-8 Analysis - existing

- Enter hydrologic information (Discharge Data)
- Example problem uses "User-Defined" for Q_{50}, Q_{100}
- Use "Minimum, Design, and Maximum" when using rating curve spreadsheet

HY-8 Analysis - existing

- Enter tailwater information (Tailwater Data)
- Example problem uses "Irregular Channel" for surveyed cross section
- Use "Enter Rating curve" when using rating curve spreadsheet

HY-8 Analysis - existing

- Enter roadway information (Roadway Data)
- Example problem uses "Constant Roadway Elevation" but could enter road profile ("Irregular").

HY-8 Analysis - existing

- Enter culvert information (Culvert and Site Data)

Parameter	Value	Units
(6) CULVERT DATA		
Name	Culvert 1	
Shape	Circular	
(Q) Material	Concrete	
Diameter	2.000	ft
(C) Embedment Depth	0.000	in
Manning's n	0.012	
(6) Culvert Type	Straight	
(8) Inlet Configuration	Square Edge with Headwall	
(0) Inlet Depression?	No	
(Q) SITE DATA		
Site Data Input Option	Culvert Invert Data	
Inlet Station	0.000	ft
Inlet Elevation	850.950	ft
Outlet Station	48.000	ft
Outlet Elevation	850.900	ft
Number of Barrels	1	

HY-8 Analysis - existing

- Analyze crossing

HY-8 Analysis - existing

- Analyze crossing

HY-8 Analysis - existing

Crossing - Existing, Design Discharge - 50.0 cfs
Culvert - Culvert 1 , Culvert Discharge - 50.0 cfs

HY-8 Analysis - proposed

HY-8 Analysis - proposed

(1.) Culvert Summary Table - Culvert 1												$-\quad \square \times$	
Discharge Names	Tota Discharge (cfs)	$\begin{gathered} \text { Culvert } \\ \text { Discharge } \end{gathered}$ (cfs)	Headwater Elevation (f)	$\begin{gathered} \text { Inlet } \\ \text { Control } \\ \text { Depth(t) } \end{gathered}$		$\begin{aligned} & \text { Flow } \\ & \text { Type } \end{aligned}$	Normal Depth (ft)	Critical Depth (ft)	$\begin{aligned} & \text { Outet } \\ & \text { Depth } \\ & \text { (ft) } \end{aligned}$		Taliwater Depth (Dt) (t)	$\begin{aligned} & \text { Outlet } \\ & \text { velocty } \end{aligned}$ $(\mathrm{ft} / \mathrm{s})$	Talwater Veloaty (ft / s)
Base	0.00	0.00	850.90	0.00	0.45	0-NF	0.00	0.00	0.50		0.00	0.00	0.00
Q50	40.00	40.00	854.22	2.96	3.77	3-M2t	3.50	1.97	3.16		2.66	4.38	2.13
Q100	50.00	50.00	854.87	3.42	4.42	7-M2t	3.50	2.21	3.44		2.94	5.22	2.25
$<$													
Display Ocrossing © Culvert OWater S Tapered Customi	Summary T Summary Ta urface Profil Inlet Table ed Table		t 1		\checkmark	Geome Inlet E Outlet Culver Culver Inlet C Inlet T	tion: vation: ngth: pe:	.45 ft .40 ft 00 ft 10 ft ft		Plot	Crossin Culvert Pe Selecte Water Su	Rating Cur ormance Vater Pro ce Profie	
						Outet Control:		Profies					
Help	Flow Types...		Edit Input Data...	Energy Dissipation...		AOP.	Low Flow...	Export Report		Adobe PDF (*.pdf)			Close

HY-8 Analysis - proposed

Questions?

