Guardrail Design

MDOT/ACEC Design Basic Training
 Guardrail Design
 November 1, 2023
 9:00 a.m. to 4:30 p.m.
 Virtual Training, via Teams

AGENDA

Our presenter today is Carlos Torres. Carlos is the Roadside Safety Engineer Specialist and the Chairperson of the
Barrier Advisory Committee for MDOT. He has held that role since 2004.
9:00 a.m.-12:00 p.m. Guardrail Design
Topics to be covered in this training include:

- Provide an overview of guardrail design
- Clear zone concept
- Roadside topography and its effects on guardrail design
- Overview of different guardrail types and related features
- Guardrail types
- Approach terminals
- Departing terminals
- Anchorages
- Curved guardrail
- Long span details
- Other guardrail features
- Guardrail design terminology and applications
- Methodology for calculating minimum length of need
- Knowing which guardrail features to use for different applications
- Solve a guardrail design example problem
- Provide a brief overview of MDOT standards and guidelines related to guardrail

12:00 p.m.-1:00 p.m. - Lunch Break -
1:00 p.m.- 4:30 p.m. Guardrail Design - continuation of above topics
Total CEHs offered for A.M. and P.M. sessions: 6.50

Thank you for attending today's training. The following are helpful links:
Event Links: A.M. Session: Guardrail A.M. Session P.M. Session: Guardrail P.M. Session
Design Basic Training Wiki Page: DBT Wiki Page
Survey: Guardrail Survey

Presenter

Carlos Torres, P.E.

- MDOT Roadside Safety Engineer (2004)
- Chairman - Barrier Advisory Committee (2004)
- Statewide specialist in all aspects of roadside design and safety

Objectives

- Provide an overview of guardrail design
- Clear Zone Concept
- Roadside Topography and Its Effects on Guardrail Design
- Overview of Guardrail Types and Related Features
- Methodology for Calculating Minimum Length of Need
- MASH-Compliant Guardrail and Related Features

Objectives

- Provide an overview of guardrail design
- Guidelines and Standards Related to Guardrail Design
- Michigan Road Design Manual - Chapter 7 https://mdotiboss.state.mi.us/stdplan/englishroadma nual.htm
- MDOT Standard Plans and Special Details https://mdotiboss.state.mi.us/stdplan/standardPlans Home.htm
- 2011 AASHTO Roadside Design Guide
- Available for purchase through AASHTO website
- MDOT employees can access electronically through ASTM/AASHTO Web Portal (in MDOT-CFS Sharepoint page)

$4^{\text {th }}$ Edition, 2011 AASHTO Roadside Design Guide

Other Reference Documents

- MDOT 2020 Standard Specifications for Construction https://michigan.gov/mdot/business/construction/standard-specifications-and-publications
- MDOT Previously Approved Special Provisions (PASPs)
https://mdotjboss.state.mi.us/SpecProv/specProvHome.htm
- MDOT Frequently Used Special Provisions (FUSPs)
- SOM employees only: Available through MDOT Supplemental Specs and Special Provisions (SS/SP) app using MILogin
»Must request access to use this app

Objectives

- Solve example problems
> Type 2M Guardrail Approach Terminals
> Type MGS-8 Guardrail
> M-Series Guardrail Bridge Anchorages
> MDOT Guardrail Worksheet

*** Disclaimers ***

- The contents of this class represent current Michigan DOT (MDOT) guardrail design practices and principles
- Many of the terms and some of the design principles/practices presented in this class are specific to MDOT and may not reflect the terms and design principles/practices utilized by other agencies
- The concepts presented in this class are intended to serve as general guidelines
- There are exceptions to the norms!
- Guardrail design can be subjective and usually requires detailed knowledge of the conditions and constraints at each proposed installation site
- Engineering judgment may need to be utilized
- What works at one location may not be suitable at a different location

What is MASH?

AASHIO

- MASH stands for Manual for Assessing Safety Hardware
- AASHTO Publication
- MASH is the current standard for establishing the crash worthiness of roadside safety features

Manual for Assessing Safety Hardware

Second Edition

History of Crash Testing Standards

- 1962: HRB 482
- 1971: NCHRP 115
- 1972: NCHRP 118
- 1974: NCHRP 153
- 1978: TRC 191
- 1981: NCHRP 230
- 1993: NCHRP 350
- 2009: MASH 2009 (MASH-09)
- 2016: MASH 2016 (MASH-16)

Roadside Topography

Clear Zone Concept

- An area available for use by an errant vehicle
- This area should be free of hazards
- If hazards exists within this area, appropriate action should be taken

Clear Zone Concept

- In the early 1970s, most state agencies used 30 feet as the clear zone distance
- However, a 30 -foot clear zone is not adequate for certain applications
- In the late 1970s, AASHTO developed a clear zone table, taking into consideration:
- Design Speed
- Traffic Volume (ADT)
- Roadside Geometry

MDOT Clear Zone Table

Section 7.01.11.C - Michigan Road Design Manual

CLEAR ZONE DISTANCES
(IN FEET FROM EDGE OF DRIVING LANE)

$\begin{aligned} & \text { DESIGN } \\ & \text { SPEED } \end{aligned}$	$\begin{gathered} \text { DESIGN } \\ \text { ADT } \end{gathered}$	FILL SLOPES			CUT SLOPES		
		1:6 OR FLATTER	$\begin{aligned} & 1: 5 \\ & \text { TO } \\ & 1: 4 \end{aligned}$	1:3	$1: 3$	$\begin{aligned} & 1: 4 \\ & \text { TO } \\ & 1: 5 \end{aligned}$	$\begin{gathered} \text { 1:6 } \\ \text { OR } \\ \text { FLATTER } \end{gathered}$
40 mph or Less	under 750	7-10	7-10	**	7-10	7-10	7-10
	750-1500	10-12	12-14	**	10-12	12-14	12-14
	1500-6000	12-14	14-16	**	12-14	14-16	14-16
	over 6000	14-16	16-18	**	14-16	16-18	16-18
$\begin{gathered} 45-50 \\ \mathrm{mph} \end{gathered}$	under 750	10-12	12-14	**	8-10	8-10	10-12
	750-1500	14-16	16-20	**	10-12	12-14	14-16
	1500-6000	16-18	20-26	**	12-14	14-16	16-18
	over 6000	20-22	24-28	**	14-16	18-20	20-22
$\begin{gathered} 55 \\ \mathrm{mph} \end{gathered}$	under 750	12-14	14-18	**	8-10	10-12	10-12
	750-1500	16-18	20-24	**	10-12	14-16	16-18
	1500-6000	20-22	24-30	**	14-16	16-18	20-22
	over 6000	22-24	26-32*	**	16-18	20-22	22-24
$\begin{gathered} 60 \\ \mathrm{mph} \end{gathered}$	under 750	16-18	20-24	**	10-12	12-14	14-16
	750-1500	20-24	26-32*	**	12-14	16-18	20-22
	1500-6000	26-30	$32-40^{*}$	**	14-18	18-22	24-26
	over 6000	30-32*	36-44*	**	20-22	24-26	26-28
$\begin{aligned} & \geq 65 \\ & \mathrm{mph} \end{aligned}$	under 750	18-20	20-26	**	10-12	14-16	14-16
	750-1500	24-26	28-36*	**	12-16	18-20	20-22
	1500-6000	28-32*	34-42*	**	16-20	22-24	26-28
	over 6000	30-34*	38-46*	**	22-24	26-30	28-30

Where a site specific investigation indicates a high probability of continuing crashes, or such occurrences are indicated by crash history, the designer may provide clear zone distances greater than 30 feet as indicated. Clear zones may be limited to 30 feet for practicality and to provide a consistent roadway template if previous experience with similar projects or designs indicates satisfactory performance.
** Since recovery is less likely on the unshielded, traversable 1:3 slopes, fixed objects should not be present in the vicinity of the toe of these slopes.

Only difference between MDOT and AASHTO CZ values

MDOT

LEAR ZONE DISTANCES

$\begin{aligned} & \text { DESIGN } \\ & \text { SPEED } \end{aligned}$	$\begin{gathered} \text { DESIGN } \\ \text { ADT } \end{gathered}$	FILL SLOPES			CUT SLOPES		
		$1: 6$ OR FLATTER	$\begin{aligned} & 1: 5 \\ & \text { T0 } \\ & 1: 4 \end{aligned}$	1:3	1:3	$\begin{aligned} & 1: 4 \\ & \text { TO } \\ & 7: 5 \end{aligned}$	1:6 OR FLATTER
$\begin{gathered} 40 \mathrm{mph} \\ \text { or } \\ \text { Less } \end{gathered}$	under 750	7-10	7-10	**	7-10	7-10	7-10
	750-1500	10-12	12-14	**	10-12	12-14	12-14
	1500-6000	12-14	14-16	**	12-14	14-16	14-16
	over 6000	14-16	16-18	**	14-16	16-18	16-18
$\begin{aligned} & \text { 45-50 } \\ & \mathrm{mph} \end{aligned}$	under 750	10-12	12-14	**	8-10	8-10	10-12
	750-1500	14-16	16-20	**	10-12	12-14	14-16
	1500-6000	16-18	20-26	**	12-14	14-16	16-18
	over 6000	20-22	24-28	**	14-16	18-20	20-22
$\begin{gathered} 55 \\ \mathrm{mph} \end{gathered}$	under 750	12-14	14-18	**	8-10	10-12	10-12
	750-1500	16-18	20-24	**	10-12	14-16	16-18
	1500-6000	20-22	24-30	**	14-16	16-18	20-22
	over 6000	22-24	26-32*	**	16-18	20-22	22-24
$\begin{gathered} 60 \\ \mathrm{mph} \end{gathered}$	under 750	16-18	20-24	**	10-12	12-14	14-16
	750-1500	20-24	26-32*	**	12-14	16-18	20-22
	1500-6000	26-30	32-40*	**	14-18	18-22	24-26
	over 6000	30-32*	36-44*	**	20-22	24-26	26-28
$\begin{aligned} & \geq 65 \\ & \mathrm{mph} \end{aligned}$	under 750	18-20	20-26	**	10-12	14-16	14-16
	750-1500	24-26	28-36*	**	12-16	18-20	20-22
	1500-6000	28-32*	34-42*	**	16-20	22-24	26-28
	over 6000	30-34*	38-46*	**	22-24	26-30	28-30

Where a site specific investigation indicates a high probability of continuing crashes, or such occurrences are indicated by crash history, the designer may provide clear zone distances greater than 30 feet as indicated. Clear zones may be limited to 30 feet for practicality and to provide a consistent roadway template if previous experience with similar projects or designs indicates satisfactory performance.

Since recovery is less likely on the unshielded, traversable 1:3 slopes, fixed objects should not be present in the vicinity of the toe of these slopes.

AASHTO

Notes:
a) When a site-specific investigation indicates a high probability of continaing crashes or when such occurrences are indicated by crash history, the designer may provide clear-zone distances greater than the clear zone shown in Table 3-1. Clear zones may be limited to 30 ft for practicality and to provide a consistent roadway template if previous experience with similar projects or designs indicates satisfactory performance.
b) Because recovery is less likely on the unshielded, traversable 1 V :3H fill slopes, fixed objects should not be present in the vicinity of the toe of these slopes. Recovery of high-speed vehicles that encroach beyond the edge of the shoulder may be expected to occur beyond the toe of slope. Determination of the width of the recovery area at the toe of slope should consider right-of-way availability, environmental concerns, economic factors, safety needs, and crash histories. Also, the distance between the edge of the through traveled lane and the beginning of the 1 V : 3 H slope should influence the recovery area provided at the toe of slope. While the application may be limited by several factors, the foreslope parameters that may enter into determining a maximum desirable recovery area are illustrated in Figure 3-2. A 10 ft recovery area at the toe of slope should be provided for all traversable, non recoverable fill slopes.
) For roadways with low volumes it may not be practical to apply even the minimum values found in Table 3-1. Refer to Chapter 12 for additional considerations for low-volume roadways and Chapter 10 for additional guidance for urban applications.

When design speeds are greater than the values provided, the designer may provide clear-zone distances greater than those shown in Table 3-1,

Horizontal Curves

Horizontal Curves

Horizontal Curve Adjustments

CURVE CORRECTION FACTORS (Kcz)

Radius (ft)	DESIGN SPEED (mph)							
	$\mathbf{4 0}$	$\mathbf{4 5}$	$\mathbf{5 0}$	$\mathbf{5 5}$	$\mathbf{6 0}$	$\mathbf{6 5}$	$\mathbf{7 0}$	
2950	1.1	1.1	1.1	1.2	1.2	1.2	1.2	
2300	1.1	1.1	1.2	1.2	1.2	1.2	1.3	
1970	1.1	1.2	1.2	1.2	1.3	1.3	1.4	
1640	1.1	1.2	1.2	1.3	1.3	1.3	1.4	
1475	1.2	1.2	1.3	1.3	1.4	1.4	1.5	
1315	1.2	1.2	1.3	1.3	1.4	1.4		
1150	1.2	1.2	1.3	1.4	1.5	1.5		
985	1.2	1.3	1.4	1.5	1.5	1.5		
820	1.3	1.3	1.4	1.5				
660	1.3	1.4	1.5					
495	1.4	1.5						
330	1.5							

$$
C Z_{\text {corr }}=C Z+\Delta C Z=K_{c z} \times C Z
$$

Recoverable (1:4 or Flatter)

Non-Recoverable (Steeper than 1:4, Up to 1:3)

(Traversable)

Critical (Steeper than 1:3)

(Non-Traversable, Non-Recoverable)

Clear Runout Area

Clear Runout Area

Adjusted Clear Zone

Adjusted Clear Zone

Clear Zone for Auxiliary Lanes

MDOT Method

Section 7.01.11 of the Michigan Road
Design Manual

- Obtain clear zone value from the clear zone table based on design speed and traffic volume (ADT) of adjacent through lanes
- Resulting clear zone distance:

1) Should be measured from the outer edge of the through lane, and;
2) Should not be less than 23 feet from the outer edge of the auxiliary lane.

Clear Zone for Auxiliary Lane MDOT Method

Clear Zone for Freeway Ramps

MDOT Method

Preferred:
Clear Zone Based on Speed, Volume, and Horizontal Curvature of Ramp at Selected Point

- Engineering Judgment must be used

Acceptable Alternative:
May also use Clear Zone of 30 feet if:

- Traffic Volume and/or Speed at Selected Point are unknown or not well established, or
- Previous satisfactory experience with similar designs

Transverse Slopes

- 1:10 or flatter desirable
- 1:6 or flatter for high-speed roadways, especially within clear zone
- May be considered a hazard under certain conditions
- steep transverse slopes

Grading Recommendations for Transverse Slopes Facing Oncoming Traffic at Bridge Approach Berms

Standard Plan R-105-Series

NOTE:
THE 1:6 SLDPE FACING FREEWAY TRAFF IC SHOULD BE USED ON ALL NEW CONSTRUCTION UNLESS THE DISTANCE FROM THE EDGE DF THE NEAREST FREEWAY THROUGH LANE TO THE
TOE OF THE $1: 2$ SLOPE UNDER THE BRIDGE EXCEEDS THE CLEAR ZONE.

Is a $1: 2$ Longitudinal Backslope A Hazard If Located Within The Clear Zone?

NOTE:
THE $1: 6$ SLDPE FACING FREEWAY TRAFFIC SHOULD BE USED ON ALL NEW CONSTRUCTION UNLESS THE DISTANCE FROM THE EDGE DF THE NEAREST FREEWAY THROUGH LANE TD THE TOE OF THE 1:2 SLDPE UNDER THE BRIDGE EXCEEDS THE CLEAR ZONE.

A $1: 2$ backslope generally is not a hazard if:

- Relatively Smooth, and;
- Obstacle Free, and;
- Foreslope between roadway and toe of backslope is traversable (1:3 or flatter)

Shielding Bodies of Water RDM - 7.01.31

- Permanent water > 2' in depth usually require shielding if within the CZ
- May be necessary to shield for bodies of water outside the CZ if there is potential for entry

Bridge Columns and Foundations in 70' Medians

- At one time these were considered outside the CZ
- Shielding columns and foundation new construction/ reconstruction should be according to Standard Plan R-56 Series
- Standard Plan R-56 also covers medians 36^{\prime} - 70'
- Note, bridge piers may have additional shielding requirements
- Concrete barriers or struts may be required in certain cases
- Bridge Design Manual: 7.01.04.K (Vehicle Collision Force) and 12.08.08 (Protection of Existing Piers in the Clear Zone)

Clear Zone Examples

Clear Zone Example \#1

Design Speed: 60 mph

CLEAR ZONE DISTANCES

(IN FEET FROM EDGE OF DRIVING LANE)

$\begin{aligned} & \text { DESIGN } \\ & \text { SPEED } \end{aligned}$	$\begin{aligned} & \text { DESIGN } \\ & \text { ADT } \end{aligned}$	FILL SLOPES			CUT SLOPES		
		$\begin{gathered} \text { 1:6 } \\ \text { OR } \\ \text { FLATTER } \end{gathered}$	$\begin{aligned} & \text { 1:5 } \\ & \text { TO } \\ & 1: 4 \end{aligned}$	1:3	1:3	$\begin{aligned} & 1: 4 \\ & \text { TO } \\ & 1: 5 \end{aligned}$	$\begin{array}{\|c} \text { 1:6 } \\ \text { OR } \\ \text { FLATTER } \end{array}$
40 mph or Less	under 750	7-10	7-10	**	7-10	7-10	7-10
	750-1500	10-12	12-14	**	10-12	12-14	12-14
	1500-6000	12-14	14-16	**	12-14	14-16	14-16
	over 6000	14-16	16-18	**	14-16	16-18	16-18
$\begin{gathered} 45-50 \\ \mathrm{mph} \end{gathered}$	under 750	10-12	12-14	**	8-10	8-10	10-12
	750-1500	14-16	16-20	**	10-12	12-14	14-16
	1500-6000	16-18	20-26	**	12-14	14-16	16-18
	over 6000	20-22	24-28	**	14-16	18-20	20-22
$\begin{gathered} 55 \\ \mathrm{mph} \end{gathered}$	under 750	12-14	14-18	**	8-10	10-12	10-12
	750-1500	16-18	20-24	**	10-12	14-16	16-18
	1500-6000	20-22	24-30	**	14-16	16-18	20-22
	over 6000	22-24	26-32*	**	16-18	20-22	22-24
$\begin{gathered} 60 \\ \mathrm{mph} \end{gathered}$	under 750	16-18	20-24	**	10-12	12-14	14-16
	750-1500	20-24	26-32*	**	12-14	16-18	20-22
	1500-6000	26-30	32-40*	**	14-18	18-22	24-26
	over 6000	30-32*	36-44*	**	20-22	24-26	26-28
$\begin{aligned} & \geq 65 \\ & \mathrm{mph} \end{aligned}$	under 750	18-20	20-26	**	10-12	14-16	14-16
	750-1500	24-26	28-36*	**	12-16	18-20	20-22
	1500-6000	28-32*	34-42*	**	16-20	22-24	26-28
	over 6000	30-34*	38-46*	**	22-24	26-30	28-30

Where a site specific investigation indicates a high probability of continuing crashes, or such occurrences are indicated by crash history, the designer may provide clear zone distances greater than 30 feet as indicated. Clear zones may be limited to 30 feet for practicality and to provide a consistent roadway template if previous experience with similar projects or designs indicates satisfactory performance.
** Since recovery is less likely on the unshielded, traversable $1: 3$ slopes, fixed objects should not be present in the vicinity of the toe of these slopes.

CLEAR ZONE DISTANCES
(IN FEET FROM EDGE OF DRIVING LANE)

DESIGN SPEED	$\begin{gathered} \text { DESIGN } \\ \text { ADT } \end{gathered}$	FILL SLPPES			CUT SLOPES		
		$\begin{aligned} & 1: 6 \\ & \text { OR } \end{aligned}$ FLATTER	$\begin{aligned} & 1: 5 \\ & \text { T0 } \\ & 1: 4 \end{aligned}$	1:3	1:3	$\begin{aligned} & 1: 4 \\ & \text { TO } \\ & 1: 5 \end{aligned}$	$\begin{gathered} 1: 6 \\ \text { OR } \\ \text { FLATTER } \end{gathered}$
$\begin{gathered} 40 \mathrm{mph} \\ \text { or } \\ \text { Less } \end{gathered}$	under 750	7-10	7-10	**	7-10	7-10	7-10
	750-1500	10-12	12-14	**	10-12	12-14	12-14
	1500-6000	12-14	14-16	**	12-14	14-16	14-16
	over 6000	14-16	16-18	**	14-16	16-18	16-18
$\begin{gathered} 45-50 \\ \mathrm{mph} \end{gathered}$	under 750	10-12	12-14	**	8-10	8-10	10-12
	750-1500	14-16	16-20	**	10-12	12-14	14-16
	1500-6000	16-18	20-26	**	12-14	14-16	16-18
	over 6000	20-22	24-28	**	14-16	18-20	20-22
$\begin{gathered} 55 \\ \mathrm{mph} \end{gathered}$	under 750	12-14	14-18	**	8-10	10-12	10-12
	750-1500	16-18	20-24	**	10-12	14-16	16-18
	1500-6000	20-22	24-30	**	14-16	16-18	20-22
	over 6000	22-24	26-32*	**	16-18	20-22	22-24
$\begin{gathered} 60 \\ \mathrm{mph} \end{gathered}$	under 750	16-18	20-24	**	10-12	12-14	14-16
	750-1500	20-24	26-32*	**	12-14	16-18	20-22
	1500-6000	26-30	32-40*	**	14-18	18-22	24-26
	over 6000	30-32*	36-44*	**	20-22	24-26	26-28
$\begin{aligned} & \geq 65 \\ & \mathrm{mph} \end{aligned}$	under 750	18-20	20-26	**	10-12	14-16	14-16
	750-1500	24-26	28-36*	**	12-16	18-20	20-22
	1500-6000	28-32*	34-42*	**	16-20	22-24	26-28
	over 6000	30-34*	38-46*	**	22-24	26-30	28-30

Where a site specific investigation indicates a high probability of continuing crashes, or such occurrences are indicated by crash history, the designer may provide clear zone distances greater than 30 feet as indicated. Clear zones may be limited to 30 feet for practicality and to provide a consistent roadway template if previous experience with similar projects or designs indicates satisfactory performance.
** Since recovery is less likely on the unshielded, traversable $1: 3$ slopes, fixed objects should not be present in the vicinity of the toe of these slopes.

Clear Zone Example \#1

Design Speed: 60 mph

Clear Zone Example \#2

Design Speed: 60 mph

CLEAR ZONE DISTANCES
(IN F EET FROM EDGE OF DRIVING LANE)

$\begin{aligned} & \text { DESIGN } \\ & \text { SPEED } \end{aligned}$	$\begin{aligned} & \text { DESIGN } \\ & \text { ADT } \end{aligned}$	FILL SLOPES			CUT SLOPES		
		$1: 6$ OR FLATTER	$\begin{aligned} & \text { 1:5 } \\ & \text { TO } \\ & 1: 4 \end{aligned}$	1:3	1:3	$\begin{aligned} & 1: 4 \\ & \text { TO } \\ & 1: 5 \end{aligned}$	$\begin{gathered} \text { 1:6 } \\ \text { OR } \\ \text { FLATTER } \end{gathered}$
$\begin{aligned} & 40 \mathrm{mph} \\ & \text { or } \\ & \text { Less } \end{aligned}$	under 750	7-10	7-10	**	7-10	7-10	7-10
	750-1500	10-12	12-14	**	10-12	12-14	12-14
	1500-6000	12-14	14-16	**	12-14	14-16	14-16
	over 6000	14-16	16-18	**	14-16	16-18	16-18
$\begin{gathered} \text { 45-50 } \\ \mathrm{mph} \end{gathered}$	under 750	10-12	12-14	**	8-10	8-10	10-12
	750-1500	14-16	16-20	**	10-12	12-14	14-16
	1500-6000	16-18	20-26	**	12-14	14-16	16-18
	over 6000	20-22	24-28	**	14-16	18-20	20-22
$\begin{gathered} 55 \\ \mathrm{mph} \end{gathered}$	under 750	12-14	14-18	**	8-10	10-12	10-12
	750-1500	16-18	20-24	**	10-12	14-16	16-18
	1500-6000	20-22	24-30	**	14-16	16-18	20-22
	over 6000	22-24	26-32*	**	16-18	20-22	22-24
60	under 750	16-18	20-24	**	10-12	12-14	14-16
	750-1500	20-24	26-32*	**	12-14	16-18	20-22
	1500-6000	26-30	32-40*	**	14-18	18-22	24-26
	over 6000	30-32*	36-44*	**	20-22	24-26	26-28
$\begin{aligned} & \geq 65 \\ & \mathrm{mph} \end{aligned}$	under 750	18-20	20-26	**	10-12	14-16	14-16
	750-1500	24-26	28-36*	**	12-16	18-20	20-22
	1500-6000	28-32*	34-42*	**	16-20	22-24	26-28
	over 6000	30-34*	38-46*	**	22-24	26-30	28-30

Where a site specific investigation indicates a high probability of continuing crashes, or such occurrences are indicated by crash history, the designer may provide clear zone distances greater than 30 feet as indicated. Clear zones may be limited to 30 feet for practicality and to provide a consistent roadway template if previous experience with similar projects or designs indicates satisfactory performance.
** Since recovery is less likely on the unshielded, traversable 1:3 slopes, fixed objects should not be present in the vicinity of the toe of these slopes.

Clear Zone Example \#2

Design Speed: 60 mph

Clear Zone Example \#2

Design Speed: 60 mph

Clear Zone Example \#2

Design Speed: 60 mph

Clear Zone Example \#3

Design ADT: 1,400 vpd
Design Speed: 60 mph

$\begin{aligned} & \text { DESIGN } \\ & \text { SPEED } \end{aligned}$	$\begin{aligned} & \text { DESIGN } \\ & \text { ADT } \end{aligned}$	FILL SLOPES			CUT S OPES		
		$\begin{aligned} & 1: 6 \\ & \text { OR } \end{aligned}$ FLATTER	$\begin{aligned} & 1: 5 \\ & \text { TO } \\ & 1: 4 \end{aligned}$	1:3	1:3	$\begin{aligned} & 1: 4 \\ & \text { TO } \\ & 1: 5 \end{aligned}$	$\begin{gathered} \text { 1:6 } \\ \text { OR } \\ \text { FLATTER } \end{gathered}$
$\begin{gathered} 40 \mathrm{mph} \\ \text { or } \\ \text { Less } \end{gathered}$	under 750	7-10	7-10	**	7-10	7-10	7-10
	750-1500	10-12	12-14	**	10-12	12-14	12-14
	1500-6000	12-14	14-16	**	12-14	14-16	14-16
	over 6000	14-16	16-18	**	14-16	16-18	16-18
$\begin{aligned} & \text { 45-50 } \\ & \mathrm{mph} \end{aligned}$	under 750	10-12	12-14	**	8-10	8-10	10-12
	750-1500	14-16	16-20	**	10-12	12-14	14-16
	1500-6000	16-18	20-26	**	12-14	14-16	16-18
	over 6000	20-22	24-28	**	14-16	18-20	20-22
$\begin{gathered} 55 \\ \mathrm{mph} \end{gathered}$	under 750	12-14	14-18	**	8-10	10-12	10-12
	750-1500	16-18	20-24	**	10-12	14-16	16-18
	1500-6000	20-22	24-30	**	14-16	16-18	20-22
	over 6000	22-24	26-32*	**	16-18	20-22	22-24
mph	under 750	16-18	20-24	**	10-12	12-14	14-16
	750-1500	20-24	26-32*	**	12-14	16-18	20-22
	1500-6000	26-30	32-40*	**	14-18	18-22	24-26
	over 6000	30-32*	36-44*	**	20-22	24-26	26-28
$\begin{aligned} & \geq 65 \\ & \mathrm{mph} \end{aligned}$	under 750	18-20	20-26	**	10-12	14-16	14-16
	750-1500	24-26	28-36*	**	12-16	18-20	20-22
	1500-6000	28-32*	34-42*	**	16-20	22-24	26-28
	over 6000	30-34*	38-46*	**	22-24	26-30	28-30

Where a site specific investigation indicates a high probability of continuing crashes, or such occurrences are indicated by crash history, the designer may provide clear zone distances greater than 30 feet as indicated. Clear zones may be limited to 30 feet for practicality and to provide a consistent roadway template if previous experience with similar projects or designs indicates satisfactory performance.
** Since recovery is less likely on the unshielded, traversable 1:3 slopes, fixed objects should not be present in the vicinity of the toe of these slopes.

Clear Zone Example \#3

- 2011 AASHTO RDG Method (e.g., Example 3-F)
> Use larger of the two clear zones

Clear Zone Example \#4

Where should the clear zone for EB traffic be measured from?

Clear Zone Example \#4

Where should the clear zone for EB traffic be measured from?

Normal Practice
.-- - -

Roadside Barriers

Design Options in Order of Preference

> Remove Obstacle
> Relocate Obstacle
> Reduce Impact Severity
Shield Obstacle
> Delineate Obstacle

Barrier Types

- Roadside Barriers
- Median

Barriers

- Bridge Railings

Barrier Classifications

TYPE DEFLECTION

Flexible

Semi-Rigid

Rigid

Over 5 Feet

2-5 Feet

0-1 Foot

Semi-Rigid Systems (Guardrail)

NCHRP 350 or Older Guardrail Systems

- Type A (Standard Plan R-60 Series)
- Type B (Standard Plan R-60 Series)
- Type BD (Standard Plan R-60 Series)
- Type C (old Standard Plan III-60 E)
- Type CD (old Standard Plan III-60 E)
- Type T (Standard Plan R-60 Series)
- Type TD (Standard Plan R-60 Series)

MASH-Compliant Guardrail Systems

- Type MGS-8 (Standard Plan R-60 Series)
- Type MGS-8D (Standard Plan R-60 Series)

Type A Guardrail

Key Features

- No offset blocks
- 12 '-6" post spacing (typical)
- Typical top rail height is 28 inches
- Current use:
- Cul-de-sacs
- Parking lots
- Locations not exposed to
 through traffic

Type B Guardrail

Key Features

- W-beam guardrail with 8" offset blocks
- Offset blocks are made of wood or plastic
- 6'-3" post spacing (typical)
- Typical top rail height is 28 inches
- IN MOST CASES, NOT PERMITTED FOR CONSTRUCTING NEW GUARDRAIL RUNS

- Current use:
- Repairing existing runs of Type B guardrail

Type BD Guardrail

Key Features

- Double-sided Type B guardrail
- W-beam guardrail and offset blocks on both sides
- Same post spacing and guardrail height as Type B
- IN MOST CASES, NOT PERMITTED FOR CONSTRUCTING NEW
 GUARDRAIL RUNS
- Current use:
- Repairing existing runs of Type BD guardrail

Type C Guardrail

Key Features

- Consists of two wbeams
- Upper beam has offset blocks
- Lower beam (rub rail) has no offset blocks
- 6'-3" post spacing (typical)
- Typical top rail height is 32 inches
- Current use:
- Repairing existing runs of

NOT PERMITTED FOR CONSTRUCTING NEW GUARDRAIL RUNS Type C guardrail

Type CD Guardrail

Key Features

- Double-sided Type C guardrail
- Same post spacing and guardrail height as Type C
- Current use:
- Repairing existing runs of Type CD guardrail

NOT PERMITTED FOR CONSTRUCTING NEW GUARDRAIL RUNS

Type T Guardrail

Key Features

- Thrie-beam guardrail with 8 " offset blocks
- 6'-3" post spacing (typical)
- Typical top rail height is 34 inches

- IN MOST CASES, NOT PERMITTED FOR CONSTRUCTING NEW GUARDRAIL RUNS
- Current use:
- Repairing existing runs of Type T guardrail

Type TD Guardrail

Key Features

- Double-sided Type T guardrail
- Same post spacing and guardrail height as Type T
- IN MOST CASES, NOT PERMITTED FOR CONSTRUCTING NEW GUARDRAIL RUNS

- Current use:
- Repairing existing runs of Type TD guardrail

Type MGS-8 Guardrail

Key Features

- W-beam guardrail with 8 " offset blocks
- Offset blocks are made of wood or plastic
- 6'-3" post spacing (typical)
- Typical top rail height is 31 inches
- Beam element splice located at midspan

- MASH, TL-3 Compliant
- Current use:
- Basic type for all roadways; free access roads, limited access roads, and freeways

Type MGS-8

31" Tall W-Beam Guardrail with 8" Offset Blocks (MGS-8)

Type MGS-8 Guardrail

US-23 Flex Route Project, University Region

Type MGS-8D Guardrail

Key Features

- Double-sided Type MGS-8 guardrail
- Same post spacing and guardrail height as Type MGS-8
- Beam element splice located at midspan
- MASH, TL-3 Compliant
- Current use:
- Basic median guardrail
 type for all roadways; free access roads, limited access roads, and freeways

Type MGS-8 Guardrail Details \& Guidelines

- MDOT Standard Plan (Special Detail) R-60-J
- Type MGS-8 \& MGS-8D Details
- Transition Details from Type MGS-8 to Other Guardrail Types
- Type MGS-8/8D to Type B/BD
- Type MGS-8/8D to Type T/TD
- Transition Details from Type MGS-8 to Guardrail Anchorages
- Transition Details from Type MGS-8 to Type 1B and Type 2B Guardrail Approach Terminals
- Chapter 7 - Road Design Manual
- Guidelines Pertaining to Type MGS-8 Guardrail
- Guardrail Worksheet Includes Type MGS-8 Guardrail Information

Type B
 Post Length Requirements

Specified in Standard Plan R-60-Series

Type B Post Length Requirements

Specified in Standard Plan R-60-Series

Type MGS-8 Post Length Requirements

Specified in Standard Plan R-60-Series

Type MGS-8 Post Length Requirements

Specified in Standard Plan R-60-Series

Guardrail Post Length Requirements Identified in Guardrail Pay Items

Pay ItemPay Unit
Guardrail, Type __, __ inch Post Foot
Guardrail, Temp, Type __, _inch Post Foot
Guardrail, Curved, Type __, _ inch Post Foot
Foot
Guardrail, Curved, Temp, Type _ , _ inch Post
> Defined in Frequently Used Special Provision (FUSP) 20SP-807H-01
> Designers must determine the required post length when setting up pay items

- A single guardrail run may have sections with different post lengths

Barrier Location

Place Barrier
As Far From Traveled Way As Possible
Without Adversely Affecting Barrier Performance

Barrier Location

Barrier to Hazard
Distance Is
Critical Element

MDOT

Guardrail Deflection Table

- Guardrail deflections are typical values
- Deflection may vary:
- Soil Type
- Thawed/Frozen Ground
- Length of installation
- Impact Characteristics
- Treat deflections from table as minimums
- If possible, consider adding factor of safety (e.g., 1^{\prime}) to guardrail deflections listed in table

Guardrail Deflection

Guardrail	Post Spacing	Minimum Design Offset *
Type T	$1^{\prime}-6{ }^{3 / 4}$	1'-2"
Type T	$3^{\prime}-11 / 2^{\prime \prime}$	1'-8"
Type T	$6^{\prime}-3{ }^{\prime \prime}$	2'-0"
Type B	$1^{\prime}-63 / 4^{\text {P }}$	1'-6"
Type B	$3^{\prime}-11 / 2^{\prime \prime}$	2'-0"
Type B	$6^{\prime}-3{ }^{\prime \prime}$	3'-0"
Type MGS-8	$1^{\prime}-63 /{ }^{\text {" }}$	2'-5"
Type MGS-8	$3^{\prime}-11 / 2^{\prime \prime}$	2'-11"
Type MGS-8	$6^{\prime}-3{ }^{\prime \prime}$	3'-6"
Type MGS-8 Adjacent to Curb	$6^{\prime}-3{ }^{\prime \prime}$	4'-1"
Type MGS-8 Near Shoulder Hinge Point **	$6^{\prime}-3{ }^{\prime \prime}$	4'-1"

* An additional $12^{\prime \prime}$ or more is desirable where feasible
** Less than 2'-8" from the shoulder hinge point to the face of guardrail post

Terrain Effects

- Curbs
- Slopes

MDOT Guidelines Curb \& Guardrail

- Section 7.01 .34 of the RDM discusses curb \& guardrail
- Use only Type D or valley gutter when design speed >50 mph
- Follow offset and max curb height recommendations when guardrail is placed away from curb

GUARDRAIL WHEN CURB IS ADJACENT TO EDGE OF PAVED SHOULDER OR TRAVELED LANE

CEESIGN SPEED 50 mph OR LESS)

** 2^{2} * when Curb is placed next to shoulder lane
GUARDRAIL WHEN CURB IS ADJACENT TO EDGE OF PAVED SHOULDER OR TRAVELED LANE (DESIGN SPEED GREATER THAN 50 mph)

GUARDRAIL WHEN CURB IS ADJACENT TO EDGE OF PAVED SHOULDER OR TRAVELED LANE (DESIGN SPEED 50 mph OR LESS)

GUARDRAIL - CURB OFFSET
WHEN GUARDRAIL IS PLACED AWAY FROM CURB

Type D Curb \& Gutter MDOT Standard Plan R-30 Series

SEE NOTES WHEN PAVEMENT JOINT
IS SEaleo with Neoprene

OETAIL	DIMENSION	LANE TIES	CONCRETE CYD / LFI
	T		AS SHOHN
D1	$9^{\prime \prime}$	OMITTED	0.0788
02	$10^{\prime \prime}$	AS SHOHN	0.0886
03			

Valley Gutter MDOT Standard Plan R-33 Series

LaNE TIE

CONCRETE VALLEY GUTTER

Looks OK?

MDOT Standard Plan R-32-Series

CROSS SECTION WHEN APPROACH GUTTER IS USED

CROSS SECTION WHEN APPROACH GUTTER IS NOT USED

Looks OK?

No !!
Use Detail 1A Bridge Approach Curb \& Gutter (Std. Plan R-32 Series) when there is no guardrail

MDOT Standard Plan R-32-Series

CROSS SECTION WHEN DEPARTING GUTTER IS USED

CROSS SECTION WHEN DEPARTING GUTTER IS NOT USED

Guardrail on Slopes

- Optimum performance on $1: 10$ slopes or flatter
- May be installed on slopes as steep as 1:6 under certain (site-specific) conditions:
- Consult with the Geometric Design Unit (MDOT - Design Division)

milu

Type T Guardrail

TWIN Parallel guardrail Runs

Standard Plan R-56-Series

Type T Guardrail

Standard Plan R-56-Series

Type MGS-8 Guardrail

TWIN PARALLEL GUARDRAIL RUNS USING GUARDRAIL TYPE MGS-8

Standard Plan R-56-Series

Type MGS-8 Guardrail

Standard Plan R-56-Series

MGS Long Span Details

Picture Source: MwRSF Research Report No. TRP-03-187-07

GUARDRAIL LONG SPAN, DETAIL MGS-1

MDOT Standard Plan R-72-Series

MDOT Standard Plan R-72-Series

GUARDRA]L, APPROACH TERM[NAL, TYPE 1B GUARDRAIL, APPROACH TERM[NAL, TYPE $2 B$ GUARDRAJL, DEPART ING TERMINAL, TYPE MGS GUARDRAJL, TYPE MGS-8

$37^{\prime}-6^{\prime \prime}$

GUARDRAIL, TYPE MGS-8 *
$37^{\prime}-6^{\prime \prime}$
$112^{\prime}-6^{\prime \prime}$ GUARDRAIL LDNG SPAN, DETAIL MGS-3
GUARDRAIL, TYPE MGS-8 *

$$
25^{\prime}-0^{\prime \prime}
$$

$28^{\prime \prime}$ GUARDRAIL, APPROACH TERMJNAL, TYPE 18
28 " GUARDRAIL. APPROACH TERMINAL, TYPE 2 B 28" GUARDRAIL, APPROACH TERMINAL, TYPE 2B 31" GUARDRAIL, DEPARTING TERMINAL, TYPE MGS $31^{\prime \prime}$ GUARDRAIL, TYPE MGS-8
$28^{\prime \prime}$ GUARDRAIL, APPROACH TERMJNAL, TYPE 2 B

31" GUARDRAIL, DEPARTING TERMINAL, TYPE MGS
$31^{\prime \prime}$ GUARDRAIL, TYPE MGS-8

MDOT Standard Plan R-72-Series

MDOT Standard Plan R-72-Series

Placing Guardrail in Rock 7.01.33.C

* WIDTH MAY BE INCREASED TO 15" TO ACCOMMODATE CONSTRUCTION TOLERANCES.
** $24^{\prime \prime}$ DIAMETER HOLE MAY BE USED.

WOOD POST PLAN VIEWS

STEEL POST PLAN VIEWS

FOR DVERLYING SOJL DEPTHS (A) RANGING FROM 0 TO 18^{n}. THE DEPTH INTO ROCK (B) [S EQUAL TO $24^{\prime \prime}$.

FOR OVERLYJNG SOIL DEPTHS (A) RANGING FROM $18^{\prime \prime}$ TO FULL POST RANGING FROM 18 TI FULL POST EMBEDMENT DEPTH. THE REQUIRED DEPTH INTO ROCK (B) IS EQUAL TO FULL POST EMBEDMENT DEPTH MINUS (A).

Guardrail Posts through Paved Surfaces 7.01.33.D

Additional Blockouts on Guardrail Posts 7.01.33.E

Double Blockouts (up to 16" deep)

- Not permitted on terminals
- No limit to the number of posts in a guardrail run that can have double blockouts

Multiple Blockouts (up to 36" deep)

- Not permitted on terminals
- Limited to one or two posts in a guardrail run
- May use up to four blockouts on one post
** MUST TAKE SLOPE BEHIND POST INTO CONSIDERATION!!! **

Guardrail Over Box/Slab Culverts MDOT Standard Plan R-73-Series

- 31" Tall Type MGS-8 Guardrail over Box/Slab Culvert
- 6'-3" Post Spacing Over Box/Slab Culvert
- Previous Version of R-73-Series Required a 3'-1½" Post Spacing

ELEVATION SHOWING GUARDRAIL, TYPE MGS-8

ELEVATION SHOWING GUARDRAIL, TYPE MGS-8

MICHIGAN DEPARTMENT OF TRANSPORTATION bureau of development standard plan for			
GUARDRAIL OVER			
BOX OR SLAB CULVERTS			
	8-1-2019	$\mathrm{R}-73-\mathrm{F}$	SHEET

ELEVATION SHOWING GUARDRAIL, TYPE B

MICHIGAN DEPARTMENT OF TRANSPORTATION buneau of development standard plan for			
GUARDRAIL OVER			
B0X	SL	CULVER	
	$\frac{8-1-2019}{\text { Prav Paile }}$	R-73-F	$\begin{aligned} & \hline \text { SHEET } \\ & 1 \end{aligned}$

ELEVATION SHOWING GUARDRAIL, TYPE T

PREFERRED CONSTRUCTION METHOD

SECTION A - A
ALTERNATE CONSTRUCTION METHOD

BASE PLATE DETAIL

Latest Version

Earlier Versions

BASE PLATE DETAIL

Same post type (W6x8.5 or W6x9), but different base plate and welding requirements

Barrier

End Treatments

Guardrail Terminals

- Gating
- Non-Gating

Example of Gating Guardrail Terminals

Beginning Length of Need Point (BLON)

Point where terminal is capable of redirecting a vehicle

Gating Terminal

Gating Terminals

Section 7.01.25.E of RDM

- The area behind and beyond the terminal should be traversable and free of fixed objects
- A 20' $\times 75^{\prime}$ (minimum) runout area beyond and parallel to the terminal should be provided

MDOT MASH Compliant Guardrail Approach Terminals

Type 2M (Tangent) Approach Terminals

- Soft-Stop
- MSKT
- MAX-Tension
- Beginning Length of Need (BLON) varies

USED FOR MAJORITY OF NEW SINGLE-SIDED GUARDRAIL APPROACH TERMINAL INSTALLATIONS

MASH Compliant Guardrail

 Terminals

SoftStop (Trinity Industries)

Soft-Stop

$50^{\prime}-g^{\prime \prime} /{ }^{\prime \prime}$

MDOT Standard Plan R-62-Series

MASH Compliant Guardrail Terminals

Source: Road Systems

MSKT (Road Systems, Inc.)

SKT
 NCHRP 350 Compliant

MSKT

MASH Compliant

MSKT

$59^{\prime}-4^{1} / 2^{\prime \prime}$

MDOT Standard Plan R-62-Series

Max-Tension

$55^{\prime}-0^{\prime} / 2^{\prime \prime}$

MDOT Standard Plan R-62-Series

Max-Tension Crash Test Small Car (MASH, TL-3)

Max-Tension Crash Test Pickup Truck (MASH, TL-3)

MDOT NCHRP 350 Compliant Guardrail Approach Terminals

Type 1B or 1 T (Flared) Approach Terminals

- SRT
- FLEAT
- Beginning Length of Need (BLON) starts 12 '- 6 " from nose

USED VERY RARELY IN NEW GUARDRAIL INSTALLATIONS!
CONSULT WITH GEOMETRIC DESIGN UNIT BEFORE USING.

SRT (Slotted Rail Terminal)

FLEAT (Flared Energy Absorbing Terminal)

MDOT NCHRP 350 Compliant Guardrail Approach Terminals

Type 2B or 2T (Parallel) Approach Terminals

- ET
- SKT
- Beginning Length of Need (BLON) starts 12'-6" from nose

NOT USED FOR NEW GUARDRAIL INSTALLATIONS!

ET (Extruder Terminal)

SKT (Sequential Kinking Terminal)

 atian

MDOT NCHRP 350 Compliant Guardrail Approach Terminals

Type 3 (Double-Sided) Approach Terminals

- CAT (Standard Plan R-63 Series)
- FLEAT-MT (Standard Plan R-63 Series)
- All Type 3 Terminals are gating
- BLON varies - see MDOT Standard Plan R-63 Series
- STILL USED FOR NEW GUARDRAIL INSTALLATIONS, but MDOT will soon be switching to other terminals that are MASH compliant:
- MATT
- Max-Tension Median

CAT

(Crash Cushion Attenuation Terminal)

FLEAT-MT (Median Terminal)

MATT

- MASH, TL-3 compliant
- Currently not shown in Standard Plan R-63 Series, but this is expected to change in the near future

Source: Valtir

MAX-Tension Median

- MASH, TL-3 compliant
- Currently not shown in Standard Plan R-63 Series, but this is expected to change in the near future

Source: Lindsay Transportation Solutions

MDOT
 Guardrail Approach Terminals

Type 4 (Buried in Backslope)

- Non-proprietary
- Special Detail 24
- Non-Gating Terminal
> CAN BE USED FOR NEW GUARDRAIL INSTALLATIONS
> RECOMMENDED WHEN CONDITIONS ALLOW ITS USE

Buried in Backslope

Transition: MGS-8/8D to Type B or Guardrail Approach Terminals 1B/3B MDOT Standard Plan R-60-Series

ELEVATION SHOWING POST SPACING CONNECTING
GUARDRAIL, TYPE MGS-8 OR MGS-8D TO
GUARDRAIL, TYPE B, GUARDRAIL, TYPE BD, OR
GUARDRAIL APPROACH TERMINAL TYPE 1B, 2B, OR 3B

Transition: MGS-8/8D to Type T/TD or Guardrail Bridge/Median Anchorages

MDOT Standard Plan R-60-Series guardrail, type T
GUARDRAIL, TYPE TD
GUARDRAIL ANCHORAGE, MEDIAN GUARDRAIL ANCHORAGE, BRIDGE DETAIL A1, T1, T4, OR T6

In This Case,
Height Transition is Measured and Paid as Type MGS-8 I 8D Guardrail

ELEVATION SHOWING POST SPACING CONNECTING GUARDRAIL, TYPE MGS-8 OR MGS-8D TO
GUARDRAIL, TYPE T, GUARDRAIL, TYPE TD, GUARDRAIL ANCHORAGE, MEDIAN,
GUARDRAIL ANCHORAGE, BRIDGE DETAIL A1, T1, T4 OR T6

Transition: Type B to Guardrail Approach Terminal 2M
 MDOT Standard Plan R-60-Series

ELEVATION SHOWING TRANSITION DETAIL FOR CONNECTING GUARDRAIL, TYPE B TO
GUARDRAIL APPROACH TERMINAL TYPE 2M

NOTE: $34^{\prime}-4 \frac{1}{2} 2^{\prime \prime}$ Height Transition Included as Part of Guardrail Approach Terminal, Type 2M pay item, as defined in Guardrail Approach Terminal, Type 2M FUSP.

Transition: Type T to Guardrail Approach Terminal 2M
 MDOT Standard Plan R-60-Series

ELEVATION SHOWING TRANSITION DETAIL FOR CONNECTING GUARDRAIL, TYPE T TO
GUARDRAIL APPROACH TERMINAL TYPE 2M
NOTE: 28'-1½" Height Transition Included as Part of Guardrail Approach Terminal, Type 2M pay item, as defined in Guardrail Approach Terminal, Type 2M FUSP.

Payment for Height Transitions When Connecting Guardrail Approach Terminal, Type 2M to Guardrail Types B or T MDOT FUSP 20SP-807F-01

Payment for Guardrail Approach Terminal, Type 2M includes all materials, labor, and equipment within the length of each terminal, as defined in subsections d.1, d.2, and d. 3 of this special provision, and also includes payment for all materials, labor, and equipment required to construct a transition section, per Standard Plan R-60-Series, for connecting Guardrail Approach Terminal, Type 2M to guardrail Type B or Type T.

* Transition Included as Part of Guardrail Approach Terminal, Type 2M Pay Item

Guardrail Terminal Action Plan

> Use Type 2M guardrail approach terminals for all new installations and upgrades on MDOT trunkline projects, unless deemed unfeasible due to site-specific conditions

- Use of NCHRP 350 compliant flared terminals will be permitted on a case-by-case basis
- Consult with the MDOT Geometric Design Unit, Design Division for assistance

May be difficult to install Type 2 (tangent) approach terminal in this case

- Consult with MDOT Geometric Design Unit, Design Division

Possible Solution Type 2 (Tangent) Terminal Along Inside of Curve

Guardrail Terminal Action Plan

- It will be necessary to obtain project-specific special details, and possibly develop a special provision, in order to use Type 1B or 1T guardrail approach terminals on a project.

Guardrail Terminal Action Plan

- Use the Type 2M guardrail terminal frequently used special provision (FUSP) and Standard Plan R-62-Series when specifying Type 2M guardrail approach terminals
- Per the FUSP, manufacturers will be required to provide an electronic copy of detailed drawings, installation manuals, and maintenance manuals for each type of terminal being provided.

Guardrail Terminal Action Plan

- Currently-approved, NCHRP 350 double sided Type 3 terminals (CAT and FLEAT-MT) will be specified until Standard Plan R-63 is updated
- CAT and FLEAT-MT will be retired and replaced by MATT and MAX-Tension Median in Standard Plan R-63
- The MATT and MAX-Tension Median will be classified as Type 3M guardrail approach terminals
- It is expected that an FUSP will be developed for Type 3M guardrail approach terminals

Guardrail Terminal Action Plan

- Continue using Buried-in Backslope or Type 4 terminals (Special Detail 24 Series).

Departing Terminals

- Detailed in MDOT Standard Plan R-66 Series

Important Note:

- Departing terminals may not be placed within approaching traffic's clear zone
- Not designed to withstand a head-on impact
- Comparable to blunt end

Departing Terminals

- Type B Departing Terminals are used for terminating Type B guardrail (i.e., WBeam Guardrail)
- Type T Departing Terminals are used for terminating Type T guardrail (i.e., ThrieBeam Guardrail)
- Terminal is not flared
- It has a semi-circular end shoe
- Last post does not have an offset block
- No ground strut

Departing Terminals

- Type MGS Departing Terminals are used for terminating Type MGS-8 guardrail
- Terminal is not flared
- It has a semi-circular end shoe
- Last post does not have an offset block
- No ground strut

Curved Guardrail

Curved Guardrail

Key Features:

- Used primarily when there is guardrail at intersections (e.g., driveways, freeway ramps, side streets, etc.).
- Guardrail can be terminated at the end of the curve with either an approach terminal or departing terminal.
- Guardrail may continue to run parallel to intersecting roadway beyond curved portion.
- MDOT Special Detail 21

Use Type B-CRT guardrail along curved section when using Special Detail 21

Curved Type B-CRT Guardrail Pay Items

Pay Item

Pay Unit
Guardrail, Curved, Type B-CRT...
Guardrail, Curved, Temp, Type B-CRT...........
> Defined in Frequently Used Special Provision (FUSP) 20SP-807H-01
> Clearly identifies when Special Detail 21 is applicable

- Curved Type B guardrail pay item was used previously

Use CRT Posts Along Curved Portion of Special Detail 21

CONTROLLED RELEASING TERMINAL POST (CRT)

Curved Guardrail

NOTE:

FOR DRIVEWAYS, IF R.O.W. ALLOWS, USE DEPARTING END TERMINAL. (SEE STANDARD PLAN R-66-SERIES) IF R.O.W. IS LIMITED SUCH THAT A TYPICAL DEPARTING END TERMINAL CANNOT BE FIT IN, DRILL 8 HOLES IN THE CURVED BEAM GUARDRAIL TO ACCOMODATE AN ANCHOR PLATE AND INSTALL A CABLE ANCHOR SIMILAR TO THAT OF THE DEPARTING END TERMINAL ON STANDARD PLAN R-66-SERIES. THIS WILL BE PAID FOR AS GUARDRAIL, DEPARTING TERMINAL.

- Always use an approach terminal or departing terminal, as appropriate, to terminate curved guardrail
- Never use a terminal end shoe by itself
- Common mistake

Purpose of Cable Assembly

Curved Guardrail

NOTE:

- Not all curved guardrail installations are constructed per Special Detail 21.

- In the example above, curved Type MGS-8 guardrail was correctly specified.
-Not constructed according to Special Detail 21.

Grading

$1: 10$ slope or flatter at least 2'-0" feet behind guardrail posts and tapering toward road in advance of terminal

Note, this applies to ALL guardrail approach terminals

Designers must ensure grading quantities are included!

AASHTO Roadside Design Guide Terminal Grading Recommendations

 PREFERRED GRADING

NOT TO SCALE

ALTERNATIVE GRADING
Source: MSKT Installation Manual

Guardrail Approach Terminal, Type 2M Grading Requirements

MDOT Standard Plan R-62 Series

Guardrail Approach Terminal, Type 2M Grading Requirements

MDOT Standard Plan R-62 Series

Soft-Stop

Guardrail Approach Terminal, Type 2M Grading Requirements

MDOT Standard Plan R-62 Series

Max-Tension

Preferred Grading In Vicinity of
 Flared Guardrail and Terminal

= 1:10 or flatter

Brading Puantities and Pay ltems

> Ensure earthwork and slope restoration pay items and quantities are included for all necessary grading associated with guardrail installations
> Standard guardrail pay items only include shoulder/berm grading to provide drainage

- This is very minor and does not cover significant slope regrading and other required slope work

Lack of Grading

Poor/Improper Grading

Hinge Point Too Close to Approach Terminal Posts
(Should be at least 2'-0" Behind Posts)

Curb in Vicinity of Guardrail Approach Terminal

- Try to avoid placing curbs adjacent to guardrail terminals if possible. But if a curb is necessary:
- Use Type D curb or valley gutter adjacent to terminal
- Transition from high profile curb to Type D or valley gutter in advance of approach terminal
- Transition should occur at or in advance of grading transition

Low-Profile Curb

Placement Recommendation

L_Low-Profile Curb / No Curb Recommended

Guardrail

Anchorages and Transitions

Anchorages \& Transitions

- Adequate Connection
- Block Outs as Specified
- Adequate Length
- Gradually Increase Stiffness

Guardrail Strength Transition

- Typical transition from guardrail to concrete
- Must have gradual change in stiffiness
- Avoid sudden and extreme changes in stiffness

M-Series Guardrail Anchorages MDOT Standard Plan R-67-Series

- There are nine different M-Series anchorages
- Determined by designer and defined in guardrail anchorage pay item
- Function of guardrail type attached to anchorage and concrete barrier type
- However, T-Series anchorages will be used for anchoring to existing concrete safety-shape railings

MDOT Approved Guardrail Transitions

- Guardrail Anchorage Bridge Detail M-1
- Guardrail Anchorage Bridge Detail M-2
- Guardrail Anchorage Bridge Detail M-3

MASH-Compliant Anchorages
Detailed in MDOT Standard Plan R-67 Series

MDOT Approved Guardrail Transitions

- Guardrail Anchorage Bridge Detail M-4
- Guardrail Anchorage Bridge Detail M-5
- Guardrail Anchorage Bridge Detail M-6

MASH-Compliant Anchorages
Detailed in MDOT Standard Plan R-67 Series

MDOT Approved Guardrail Transitions

- Guardrail Anchorage Bridge Detail M-7
- Guardrail Anchorage Bridge Detail M-8
- Guardrail Anchorage Bridge Detail M-9

MASH-Compliant Anchorages
Detailed in MDOT Standard Plan R-67 Series

MDOT Approved Guardrail Transitions

- Guardrail Anchorage Bridge Detail T-1
- Guardrail Anchorage Bridge Detail T-2
- Guardrail Anchorage Bridge Detail T-3

Detailed in MDOT Standard Plan R-67-SD
NOTES: Only Used for Connecting to Existing Safety-Shape Barriers
> T-series anchorages are NCHRP 350 Compliant

MDOT Approved Guardrail Transitions

- Guardrail Anchorage Bridge Detail T-4
- Guardrail Anchorage Bridge Detail T-5
- Guardrail Anchorage Bridge Detail T-6

Detailed in MDOT Standard Plan R-67-SD
NOTES: Only Used for Connecting to Existing Safety-Shape Barriers
$>$ T-series anchorages are NCHRP 350 Compliant

Detail M-1 (Sheet 1; R-67-G)

Detail M-2 (Sheet 2; R-67-G)

36.5 feet

GUARDRAIL

Detail M-3 (Sheet 3; R-67-G)

42.75 feet

Detail M-4 (Sheet 4; R-67-G)

GUARDRAIL TYPE MGS-8
$45^{\prime}-7^{3 / 4}{ }^{\prime \prime}$
GUARDRAIL ANCHORAGE, BRIDGE, DETAIL M4
39.625 feet

Detail M-5 (Sheet 5; R-67-G)

GUARDRAIL TYPE T
$45^{\prime}-7^{3 / 4}{ }^{\prime \prime}$

39.625 feet

Detail M-6 (Sheet 6; R-67-G)

$51^{\prime}-10^{3} /_{4}^{\prime \prime}$

GUARORAIL ANCHORAGE, BRIDGE, DETALL M6

Detail M-7 (Sheet 7; R-67-G)

$51^{\prime}-10^{3} /_{4}^{\prime \prime}$

$51^{\prime}-10^{3} 6^{*}$

POST 1 THROUCH $9-W 6 \times 9$ OR W6 $\times 8.5$ POST ($6^{\prime}-0^{\circ}$ LONG) WITH $12^{\prime \prime}$ OFFSET BLOCK
POST 10 THROUGH $13-W 6 \times 15$ POST $\left(7^{\prime}-0^{*}\right.$ LONG) WITH 12^{*} OFFSET BLOCX

Deduction Value = 39.625 feet

Detail M-8 (Sheet 8; R-67-G)

$51^{\prime}-10^{3 / 4} 4^{\prime \prime}$
GUARDRA[L ANCHORAGE, BRIDGE, DETA]L NB

Deduction Value = 39.625 feet

Detail M-9 (Sheet 9; R-67-G)

$58^{\prime}-1^{3} / 4^{\prime \prime}$

Deduction Value = 45.875 feet

Detail T-1 (Sheet 1; R-67-SD)

Detail T-2 (Sheet 1; R-67-SD)

THRIE BEAM TERMINAL CONNECTOR
THRIE BEAM EXPANSION SECTION

BRIDCE BARRIER RAILING

Detail T-4 (Sheet 2; R-67-SD)

GUARDRAIL ANCHORAGE. BRIDGE, DETAIL T-A (SEE NOTES. SHEET 7 OF 7 I

Detail T-3 (Sheet 2; R-67-SD)

SPECIAL END SHOE

Detail T-1 (Sheet 3; R-67-SD)

THRIE BEAM TERMINAL CONNECTOR

BRIDGE BARRIER RAILING. TYPE 4

Detail T-5 (Sheet 3; R-67-SD)

GUARDRAIL ANCHORAGE. BRIDCE. DETAIL T-5 (SEE NOTES. SHEET 7 OF 7)

$$
43^{\prime}-9^{\prime \prime}
$$

TERMINAL CONNECTOR THRIE BEAM EXPANSION SECTION
RIER RAILING, TYPE 4

Detail T-6 (Sheet 4; R-67-SD)

GUARDRAIL ANCHORAGE, BRIDGE, DETAIL T-6 (SEE NOTES, SHEET 7 OF 7)

$$
37^{\prime}-6^{\prime \prime}
$$

SEE APPRRACH POST SPACING REQUIREMENTS CHART

$$
1^{\prime}-6^{\prime \prime}
$$

$$
1^{\prime}-6^{3 / 4}
$$

$$
\overrightarrow{M I N} .
$$

Detail T-5 (Sheet 4; R-67-SD)

GUARDRAIL ANCHORAGE. BRIDGE, DETAIL T-5 (SEE NOTES. SHEET 7 OF 7)

$$
43^{\prime}-9^{\prime \prime}
$$

SEE APPROACH POST SPACING REOUIREMENTS CHART
6'-3" TYPICAL POST SPACING

FIRST POST

M-Series Guardrail Anchorages MDOT Standard Plan R-67-Series

- May Be Installed With or Without Curb \& Gutter
- However, curb height cannot exceed 4" !!
- Refer to Curb \& Gutter Details from Standard Plan R-32 Series
- Bridge Approach Curb \& Gutter, Details 5 through 7

T-Series Guardrail Anchorages MDOT Standard Plan R-67-SD

- Curb \& Gutter Required with Safety-Shape Barrier
- Curb height is 12 " !!
- Refer to Curb \& Gutter Details from Standard Plan R-32-SD
- Bridge Approach Curb \& Gutter, Details 1 through 3

MDOT Approved Guardrail Transitions

Standard Plan B-22 and B-23 Series

- Guardrail Anchorage, Bridge, Detail A-3
- Guardrail Anchorage, Bridge, Detail A-4
- Guardrail Anchorage, Bridge, Detail A-5

MDOT Approved Guardrail Transitions

Standard Plan B-22 and B-23 Series

- May be constructed with or without curb
- $4^{\prime \prime}$ max curb height !!

MDOT Approved Guardrail Transitions

- Guardrail

Anchorage, Median

- Used to connect double-sided guardrail to concrete barrier

Detailed in MDOT Standard Plan R-71 Series NCHRP 350 Compliant

Figure 2.6.1-Roadside barrier elements
2.6.1

Guardrail Terminal Selection

One-Way Traffic

Guardrail Terminal Selection

Two-Way Traffic

Guardrail Terminal Selection

Two-Way Traffic

Runout Length

Edge of Pavement

Hazard

Runout Length

Traffic Volume (ADT) veh/day

	Traffic Volume (ADT) veh/day			
	Over 10,000	Over $5,000-10,000$	$\mathbf{1 0 0 0 - 5 0 0 0}$	Under 1000
Design Speed (mph)	Runout Length $\mathrm{L}_{\mathrm{R}}(\mathrm{ft})$			
80	470	430	380	330
70	360	330	290	250
60	300	250	210	200
50	230	190	160	150
40	160	130	110	100
30	110	90	80	70

- RDM - Section 7.01.19
- Runout length is a function of design speed and traffic volume - Interpolation is recommended for intermediate design speeds
- Example: DS = $75 \mathrm{mph} \& ~ A D T=12,000: \mathrm{L}_{\mathrm{r}}=415^{\prime}$

Minimum

Length of Barrier Needed

AASHTO Method: Φ typically varies between 25° and 90°

Length of Barrier Needed

MDOT's Current Method: $\boldsymbol{\Phi}=90^{\circ}$

Design Factors

Clear Zone Line

Note: Edge of Pavement (a.k.a. Edge of Metal)

CLEAR ZONE DISTANCES
(IN FEET FROM EDGE OF DRIVING LANE)

DESIGN SPEED	$\begin{aligned} & \text { DESIGN } \\ & \text { ADT } \end{aligned}$	FILL SLOPES			CUT SLOPES		
		$\begin{gathered} \text { 1:6 } \\ \text { OR } \\ \text { FLATTER } \end{gathered}$	$\begin{aligned} & 1: 5 \\ & \text { TO } \\ & 1: 4 \end{aligned}$	1:3	1:3	$\begin{aligned} & 1: 4 \\ & \text { TO } \\ & 1: 5 \end{aligned}$	$\begin{gathered} 1: 6 \\ \text { OR } \\ \text { FLATTER } \end{gathered}$
$\begin{array}{\|c\|} 40 \mathrm{mph} \\ \text { or } \\ \text { Less } \end{array}$	under 750	7-10	7-10	**	7-10	7-10	7-10
	750-1500	10-12	12-14	**	10-12	12-14	12-14
	1500-6000	12-14	14-16	**	12-14	14-16	14-16
	over 6000	14-16	16-18	**	14-16	16-18	16-18
$\begin{gathered} 45-50 \\ \mathrm{mph} \end{gathered}$	under 750	10-12	12-14	**	8-10	8-10	10-12
	750-1500	14-16	16-20	**	10-12	12-14	14-16
	1500-6000	16-18	20-26	**	12-14	14-16	16-18
	over 6000	20-22	24-28	**	14-16	18-20	20-22
$\begin{gathered} 55 \\ \mathrm{mph} \end{gathered}$	under 750	12-14	14-18	**	8-10	10-12	10-12
	750-1500	16-18	20-24	**	10-12	14-16	16-18
	1500-6000	20-22	24-30	**	14-16	16-18	20-22
	over 6000	22-24	26-32*	**	16-18	20-22	22-24
$\begin{gathered} 60 \\ \mathrm{mph} \end{gathered}$	under 750	16-18	20-24	**	10-12	12-14	14-16
	750-1500	20-24	26-32*	**	12-14	16-18	20-22
	1500-6000	26-30	32-40*	**	14-18	18-22	24-26
	over 6000	30-32*	36-44*	**	20-22	24-26	26-28
$\begin{aligned} & \geq 65 \\ & \mathrm{mph} \end{aligned}$	under 750	18-20	20-26	**	10-12	14-16	14-16
	750-1500	24-26	28-36*	**	12-16	18-20	20-22
	1500-6000	28-32*	34-42*	**	16-20	22-24	26-28
	over 6000	30-34*	38-46*	**	22-24	26-30	28-30

Where a site specific investigation indicates a high probability of continuing crashes, or such occurrences are indicated by crash history, the designer may provide clear zone distances greater than 30 feet as indicated. Clear zones may be limited to 30 feet for practicality and to provide a consistent roadway template if previous experience with similar projects or designs indicates satisfactory performance.
$*$ Since recovery is less likely on the unshielded, traversable $1: 3$ slopes, fixed objects should not be present in the vicinity of the toe of these slopes.

Design Factors

Clear Zone Line

MDOT Shy Distance Table

Design Speed (mph)	Shy Line Offset (Ls) (ft)
80	12
75	10
70	9
60	8
55	7
50	6.5
45	6
40	5
30	4

RDM - Section 7.01.18

Design Factors

Clear Zone Line

Runout Length Table

	Traffic Volume (ADT) veh/day			
	Over 10,000	Over $5,000-10,000$	$1000-5000$	Under 1000
Design Speed (mph)	Runout Length $\mathrm{L}_{R}(\mathrm{ft})$	Runout Length $\mathrm{L}_{R}(\mathrm{ft})$	Runout Length $\mathrm{L}_{R}(\mathrm{ft})$	Runout Length $L_{R}(\mathrm{ft})$
80	470	430	380	330
70	360	330	290	250
60	300	250	210	200
50	230	190	160	150
40	160	130	110	100
30	110	90	80	70

RDM - Section 7.01.19

Design Factors

Clear Zone Line

MDOT Guardrail Worksheet specifies L_{1} must be 25 ' min., but there are exceptions:

- Guardrail bridge anchorages
- Guardrail installations with a large offset between the hazard and the guardrail

Bridge Approach Rail

* Use $L_{1}=L_{T}$ even when $L_{T}<25$ '

Design Factors

Clear Zone Line

AASHTO RDG Table 5-9 Recommended Flare Rates

Table 5-9. Suggested Flare Rates for Barrier Design

Design Speed		Flare Rate for Barrier Inside Shy Line	Flare Rate for Barrier at or Beyond Shy Line	
$\mathbf{k m} / \mathbf{h}$	[mph]	A	B	
110	$[70]$	$30: 1$	$20: 1$	$15: 1$
100	$[60]$	$26: 1$	$18: 1$	$14: 1$
90	$[55]$	$24: 1$	$16: 1$	$12: 1$
80	$[50]$	$21: 1$	$14: 1$	$11: 1$
70	$[45]$	$18: 1$	$12: 1$	$10: 1$
60	$[40]$	$16: 1$	$10: 1$	$8: 1$
50	$[30]$	$13: 1$	$8: 1$	$7: 1$

Notes:
A = Suggested maximum flare rate for rigid barrier system.
$B=$ Suggested maximum flare rate for semi-rigid barrier system.
In most cases, use flare rate at or beyond shy line column even when guardrail is within the shy line.

Design Factors

NOTES: TYPE 1 TERMINAL ILLUSTRATED

$\frac{b}{a}($ FLARE RATE $)=0$ WHEN THE GUARDRAIL RUN IS TANGENT

Note: d and Z are not described in the AASHTO RDG

Design Factors

Clear Zone Line

Design Factors

Clear Zone Line

Note: Y is a term from the AASHTO RDG typically not used by MDOT.

Design Factors

Clear Zone Line

$$
\mathrm{Z}=\mathrm{L}_{2}+\mid\left(\text { Sta. }_{\mathrm{B}}-\text { Sta. }_{\mathrm{A}}\right) \mid \times(\mathrm{b} / \mathrm{a})
$$

Calculating Z

Calculating Stations A and B

Assume L \approx L' for most guardrail applications (unless dealing with extremely long flared sections)

Graphic Solution

Vehicular trajectory must intersect or be located in advance of beginning length of need (BLON) point

Horizontal Curve Solution

 leaves the roadway (at location P_{T})

Length of Need - Approach End Flared vs. Parallel

Figure 2.6.5-Simplified representation of length of need

Flaring the guardrail reduces the length of need (X)

Length of Need - Departing End Flared vs. Parallel

Flaring the guardrail reduces the length of need (X)

Grading Requirements

> = 1:10 or flatter

- Grading requirements for flared installations may be impractical or cost-prohibitive
- Decision to install flared or parallel guardrail run is site-specific

Calculating Length of Guardrail

Freestanding Guardrail Shielding Fixed Object \& One-Way Traffic

$$
G^{*}=X-M+H
$$

M (Deduction Value)

 MDOT Guardrail Worksheet
DEDUCTION TABLE

GUARDRAIL APPROACH TERMINAL TYPE

$1 B$	1 T	$2 B$	2 T	2 M	$3 B$	3 T
25^{\prime}	31.25^{\prime}	37.5^{\prime}	43.75^{\prime}	34.3^{\prime}	12.5^{\prime}	31.25^{\prime}

Example:
For Type 2M terminals, use 34.3' for the deduction value

Soft-Stop (Type 2M Terminal)

Of the three MDOT-approved Type 2M terminals, Soft-Stop has the smallest deduction value

- Use deduction value of 34.3 ' when specifying a Type 2M terminal

Calculating Length of Guardrail

Freestanding Guardrail Shielding Fixed Object \& One-Way Traffic

- $\mathrm{H}=$ fixed object width
- $M=$ portion of approach terminal located within length of need
- Deduction values from guardrail worksheet
- $G=$ guardrail quantity

$$
G^{*}=X-M+H
$$

* Important Notes
- Always round up guardrail quantity based on whole number of guardrail panels
> With a freestanding run consisting of Type 2M approach terminals, Type MGS-8 guardrail, and/or Type MGS departing terminals, guardrail quantity will be divisible by 12.5^{\prime}
> When interconnecting NCHRP 350 and MASH-compliant guardrail features, guardrail quantity might not be divisible by 12.5
\& Examples: Type MGS-8 guardrail to Type B or Type T guardrail, or Type MGS-8 guardrail to NCHRP 350-compliant anchorages
* Must take MGS ($9^{\prime}-4.5^{\prime \prime}$) beam elements and thrie-beam transition panels into consideration when determining guardrail quantities

MDOT Standard Plan R-60-Series

ELEVATION SHOWING TRANSITION DETAIL FOR CONNECTING GUARDRAIL, TYPE MGS-8 OR MGS-8D TO
GUARDRAIL, TYPE B, GUARDRAIL, TYPE BD, OR GUARDRAIL APPROACH TERMINAL TYPE 1B, 2B, OR 3B

Note: Transition is part of Guardrail, Type MGS-8 or MGS-8D

MDOT Standard Plan R-60-Series

ELEVATION SHOWING TRANSITION DETAIL FOR CONNECTING
GUARDRAIL, TYPE MGS-8 OR MGS-8D TO GUARDRAIL, TYPE T, GUARDRAIL, TYPE TD, GUARDRAIL ANCHORAGE, MEDIAN,
GUARDRAIL ANCHORAGE, BRIDGE DETAIL A1, T1, T4 OR T6
Note: Transition is part of Guardrail, Type MGS-8 or MGS-8D

MDOT Standard Plan R-60-Series

Note: Transition is part of Guardrail Approach Terminal, Type 2M

MDOT Standard Plan R-60-Series

Note: Transition is part of Guardrail Approach Terminal, Type 2M

Calculating Length of Guardrail

Guardrail Anchored to Bridge Railing

Calculating Length of Guardrail

Guardrail Anchored to Bridge Railing

- $\mathrm{T}=$ transition length measured from edge of bridge railing/barrier (if applicable)
- Do not deduct overall transition length
- Deduction lengths for M-series and T-series anchorages provided in earlier slides
- $M=$ portion of approach terminal located within length of need
- Deduction values from guardrail worksheet
- $\mathrm{G}=$ guardrail quantity

$$
G^{*}=X-M-T
$$

* Important Notes
> Always round up guardrail quantity to the nearest whole number of guardrail panels
$>$ Must take MGS (9'-4.5") beam elements and thrie-beam transition panels into consideration when determining guardrail quantities
* Guardrail quantity may not be divisible by 12.5^{\prime} in certain cases

Reflectors

- MDOT Standard Plan R-60 Series describes recommended reflector spacing
- Do not install reflectors on approach terminals

$$
N_{R}=\left(\frac{\text { Guardrail Length }^{*}}{\text { Reflector Spacing }}\right)+1
$$

N_{R} is always rounded up to nearest integer

* Total Guardrail Length, including anchorages, but excluding approach terminals

Reflectors

- One-Way Roads:
- Reflector quantity $=\mathrm{N}_{\mathrm{R}}$
- Two-Way Roads:
- Reflector quantity $=2 \mathrm{~N}_{\mathrm{R}}$

ONE-WAY TRAFFIC

\Longleftarrow DIRECTION
DIRECTION

TWO-WAY TRAFFIC
PLACEMENT OF GUARDRAIL REFLECTORS

Common Design Problem

Driveway

Described in Section 7.01.30. H of RDM

Driveway

Driveway

Otherwise, consider continuing guardrail past intersecting driveway until LON is satisfied

Other Factors

- Sight Distance
- Run Length
- Right of Way
- Multiple Drives

However, designers must take other factors into consideration...design is site-specific!!

Practice Example \#1

$>$ ADT: 4,500 vpd

> Design Speed: 60 mph
$>$ Slope: 1:5, Fill
> Non-Freeway
> Flare guardrail where possible
> Two-lane, two-way road with 12' lanes

EOP

Practice Example \#1

CLEAR ZONE DISTANCES
(IN FEET FROM DGE OF DRIVING LANE)

DESIGN SPEED	$\begin{aligned} & \text { DESIGN } \\ & \text { ADT } \end{aligned}$	FILL SLPES			CUT SLOPES		
		$1: 6$ OR FLATTER	$\begin{aligned} & 1: 5 \\ & \text { TO } \\ & 1: 4 \end{aligned}$	1:3	1:3	$\begin{aligned} & 1: 4 \\ & \text { TO } \\ & \text { 1:5 } \end{aligned}$	1:6 OR FLATTER
$\begin{gathered} 40 \mathrm{mph} \\ \text { or } \\ \text { Less } \end{gathered}$	under 750	7-10	7-10	**	7-10	7-10	7-10
	750-1500	10-12	12-14	**	10-12	12-14	12-14
	1500-6000	12-14	14-16	**	12-14	14-16	14-16
	over 6000	14-16	16-18	**	14-16	16-18	16-18
$\begin{aligned} & \text { 45-50 } \\ & \mathrm{mph} \end{aligned}$	under 750	10-12	12-14	**	8-10	8-10	10-12
	750-1500	14-16	16-20	**	10-12	12-14	14-16
	1500-6000	16-18	20-26	**	12-14	14-16	16-18
	over 6000	20-22	24-28	**	14-16	18-20	20-22
$\begin{gathered} 55 \\ \mathrm{mph} \end{gathered}$	under 750	12-14	14-18	**	8-10	10-12	10-12
	750-1500	16-18	20-24	**	10-12	14-16	16-18
	1500-6000	20-22	24-30	**	14-16	16-18	20-22
	over 6000	22-24	26-32*	**	16-18	20-22	22-24
$\begin{gathered} 60 \\ \mathrm{moh} \end{gathered}$	under 750	16-18	20-24	**	10-12	12-14	14-16
	750-1500	20-24	26-32*	**	12-14	16-18	20-22
	1500-6000	26-30	32-40*	**	14-18	18-22	24-26
	over 6000	30-32*	36-44*	**	20-22	24-26	26-28
$\begin{aligned} & \geq 65 \\ & \mathrm{mph} \end{aligned}$	under 750	18-20	20-26	**	10-12	14-16	14-16
	750-1500	24-26	28-36*	**	12-16	18-20	20-22
	1500-6000	28-32*	34-42*	**	16-20	22-24	26-28
	over 6000	30-34*	38-46*	**	22-24	26-30	28-30

Where a site specific investigation indicates a high probability of continuing crashes, or such occurrences are indicated by crash history, the designer may provide clear zone distances greater than 30 feet as indicated. Clear zones may be limited to 30 feet for practicality and to provide a consistent roadway template if previous experience with similar projects or designs indicates satisfactory performance.
${ }^{* *}$ Since recovery is less likely on the unshielded, traversable $1: 3$ slopes, fixed objects should not be present in the vicinity of the toe of these slopes.

Questions

- Which guardrail type should be used?
\checkmark Type MGS-8
- Which terminal type should be used on the approach end of the guardrail run?
\checkmark Guardrail Approach Terminal, Type 2M
\checkmark Terminal within clear zone of approaching traffic
- Which terminal type should be used on the departing end of the guardrail run?
\checkmark Guardrail Approach Terminal, Type 2M
\checkmark Terminal within clear zone of opposing traffic

GUARDRAJL RUN \# \qquad
FJXED OBJECT

NOTES: TYPE 1 TERUCNAL JLUSTRATED

$$
X=\frac{L_{H}+\left(\frac{b}{a}\right)\left(L_{1}\right)-\left(L_{z}+d\right)}{\frac{b}{a}+\frac{L_{H}}{L_{R}}}
$$

$$
Z=L_{g^{+}}\left(\left|S_{B}-S_{A}\right|\right)\left(\frac{b}{a}\right)
$$

LEMGTH OF NEED guardrall taper rate (7.01.29a)
E.O.P. TO FACE OF BARRIER (DESJGMED)

CLEAR ZONE (7.01.11)
\qquad
\qquad \qquad
$X=$ \qquad
$L_{R}=$ $=$ \qquad
$=$
\square
c $\square$${ }_{s}=$
$=$
\square EFFECTJYE TURNED OUT DISTANCE OF ANCHORAGE ...d =
lateral extent of roadside feature (neasuredl. $L_{H}=$
Lateral offset at end of flare................. $Z=$ \qquad
NOTE: DJSTANCE OF OBJECT FRON baCE OF baRRIER wUSt be greater tham the maxchum deflection (7.01 .20)
$L_{H} \leq L_{C}$
refer to standard plan r-59-SErles and destge manual
SECTLON 7.01 .30 FOR GUARDRALL AT EMBAMKMENTS

\qquad

CALCULATIONS OR NOTES

Pay [TENS

DEDUCTLON TABLE						
GUARDRAJL APPROACH TERMJNAL TYPE						
18	1 T	28	2 T	2 N	38	3 T
25^{\prime}	31.25^{\prime}	37.5^{\prime}	43.75^{\prime}	34.3^{\prime}	12.5^{\prime}	31.25^{\prime}

PAY LENGTHS MUST BE DJVJSJBLE BY 12.5'.
ROUND TO NEXT HJGHEST RA[L LENGTH, EXCEPT WHEN TYPE MGS-8 OR TYPE NGS-BD GUARDRALL IS ATTACHED TO A GUARDRALL FEATURE REOULRLNG A HE[GHT TRANS[T]ON (e.g., GUARDRA[L APPROACH A HE[GHT TRANSITION (e.g., GUARDRALL APPR GUARDRA[L BRLDCE ANCHORAGE; otc.)

* FOR THIS PAY JTEM, THE GUARDRAJL APPROACH TERUINAL, TYPE PORTION OF LENGTH OF NEED (X) MUST BE DEDUCTED

	Traffic Volume (ADT) veh/day			
	Over 10,000	Over $5,000-10,000$	$\mathbf{1 0 0 0 - 5 0 0 0}$	Under 1000
Design Speed (mph)	Runout Length $L_{R}(\mathrm{ft})$	Runout Length $\mathrm{L}_{R}(\mathrm{ft})$	Runout Length $\mathrm{L}_{R}(\mathrm{ft})$	Runout Length $L_{R}(\mathrm{ft})$
80	470	430	380	330
70	360	330	290	250
60	300	250	210	200
50	230	190	160	150
40	160	130	110	100
30	110	90	80	70

Design Speed (mph)	Shy Line Offset (Ls) (ft)
80	12
75	10
70	9
60	8
55	7
50	6.5
45	6
40	5
30	4

Practice Example \#1

Shy distance for $60 \mathrm{mph}=8 \mathrm{ft}$
Clear Zone = 40 feet

MDOT

Guardrail Deflection Table

Guardrail	Post Spacing	Minimum Design Offset *
Type T	1'-63/4"	1'-2"
Type T	$3^{\prime}-11 / 2^{\prime \prime}$	Sth 1'-8"
Type T	6'-3"	2'-0"
Type B	1'-63/4"	1'-6"
Type B	$3^{\prime}-11 / 2^{\prime \prime}$	2'-0"
Type B	6'-3"	3'-0"
Type MGS-8	1'-63/4"	2'-5"
Type MGS-8	$3^{\prime}-11 / 2^{\prime \prime}$	2'-11"
Type MGS-8	$6^{\prime}-3$ "	(-3'-6"_) ${ }^{\text {a }}$
Type MGS-8 Adjacent to Curb	6'-3"	4'-1"
Type MGS-8 Near Shoulder Hinge Point **	6'-3"	4'-1"

RDM - Section 7.01.20

AASHTO RDG Table 5-9 Recommended Flare Rates

Table 5-9. Suggested Flare Rates for Barrier Design

Design Speed		Flare Rate for Barrier Inside Shy Line	Flare Rate for Barrier at or Beyond Shy Line $\mathbf{k m} / \mathbf{h}$	
$\mathbf{[m p h}]$	$[70]$	$30: 1$	\mathbf{A}	B
110	$[60]$	$26: 1$	$18: 1$	$15: 1$
100	$[55]$	$24: 1$	$16: 1$	$14: 1$
90	$[50]$	$21: 1$	$14: 1$	$12: 1$
80	$[45]$	$18: 1$	$12: 1$	$11: 1$
70	$[40]$	$16: 1$	$10: 1$	$10: 1$
60	$[30]$	$13: 1$	$8: 1$	$8: 1$
50				$7: 1$

Notes:
A = Suggested maximum flare rate for rigid barrier system.
$B=$ Suggested maximum flare rate for semi-rigid barrier system.
In most cases, use flare rate at or beyond shy line column even when guardrail is within the shy line.

Practice Example \#1

Practice Example \#1

Practice Example \#1

$X=\frac{L_{H}+(b / a)\left(L_{1}\right)-\left(L_{2}+d\right)}{(b / a)+\left(L_{H} / L_{R}\right)}$

Practice Example \#1

Practice Example \#1

Practice Example \#1

Opposing Traffic

Clear Zone Line

12' lanes
$\mathrm{L}_{\mathrm{c}}=40^{\prime}$

Practice Example \#1

$X=\frac{L_{H}+(b / a)\left(L_{1}\right)-\left(L_{2}+d\right)}{(b /)+\left(L_{H} / L_{R}\right)}$

Practice Example \#1

$$
X=\frac{L_{H}+(b / a)\left(L_{1}\right)-\left(L_{2}+d\right)}{(b / a)+\left(L_{H} / L_{R}\right)}=\frac{27+(1 / 14)(25)-(20+0)}{(1 / 14)+(27 / 250)}=?
$$

Practice Example \#1

Practice Example \#1

Deduction Value Type 2M Approach Terminal MDOT Guardrail Worksheet

DEDUCTION TABLE

GUARDRAIL APPROACH TERMINAL TYPE

$1 B$	1 T	$2 B$	2 T	$(\overline{2 M})$	3 B	3 T
25^{\prime}	31.25^{\prime}	37.5^{\prime}	43.75^{\prime}	$\left(\overline{3} \overline{3} \mathbf{B}^{\prime}\right)$	12.5^{\prime}	31.25^{\prime}

Practice Example \#1

BLON

Calculating Guardrail Quantity

Number of Guardrail Panels

- Type MGS-8 guardrail connected to Type 2M approach terminals
- Guardrail quantity is divisible by 12.5 (i.e., whole number of 12.5' panels)

$$
\frac{\mathrm{G}_{\min }}{12.5}=\frac{48.2}{12.5}=3.86 \longrightarrow 4 \text { panels }
$$

Type MGS-8 Guardrail Length $=(12.5)(4)=50 \mathrm{ft}$

Reflectors

- Do not install reflectors on approach terminals

$$
N_{R}=\left(\frac{50}{50}\right)+1=2 \longrightarrow 2
$$

Since this is a two-way road, number of reflectors is $2 N_{R}$:
Number of Reflectors =2(2) = 4

Practice Example \#2

Design Data \& Assumptions

- Rural Two-Lane Road
- Design Speed = 55 mph
- ADT $=5,000 \mathrm{vpd}$
- River is 6^{\prime} deep
- $1: 5$ Slope in advance of bridge ends
- Flare guardrail where possible

NE Quadrant

Determining Guardrail Components

Guardrail Anchored to Bridge Railing

Detail T-1 (Sheet 1 of R-67-SD)

Determining Guardrail Components

Guardrail Anchored to Bridge Railing

route. Practice Example \#2 control SEction 99999 Job \#EXAMPLE DESIGNED BY _ABC __ DATE .00/01/18 CHECKED BY XYZ __ DATE 00/01/18

APPROX. STATION OR M.P346+78 DESCRIPTION Practice Example \#2 GUARDRAIL RUN \# INE Quad

IF STATION]NG [S NOT AVAILABLE, LOCATE TO NEAREST FIXED OBJECT

NOTES: TYPE 1 TERMINAL [LLUSTRATED

$$
\begin{aligned}
& d=1.88^{\text {FOR TYPE }} 1 \text { TERMINALS } \\
& d=0 \text { FOR TYPE } 2 \text { AND } 3 \text { TERMIN }
\end{aligned}
$$

$$
X=\frac{L_{H}+\left(\frac{b}{a}\right)\left(L_{1}\right)-\left(L_{2}+d\right)}{\frac{b}{a}+\frac{L_{H}}{L_{R_{n}}}}
$$

$$
Z=L_{2}+\left(\left|S_{B}-S_{A}\right|\right)\left(\frac{b}{a}\right)
$$

DESIGN ADT	$5,000 \mathrm{vpd}$
DESICN SPEED	55 mph
APPROACH SLOPE	$1: 5$

E.O.P. TO ROADSIDE FEATURE (MEASUREDI $\ldots \ldots L_{3}=.4$

EFFECTIVE TURNED OUT DJSTANCE OF anchorace $\ldots \mathrm{d}=0$
$L_{1}=23.125^{\prime}$ ' u[s.)
$L_{s}=\ldots 7^{\prime} \quad$ SHY LINE (7.01 .18)
station at a $-347+01.1$
station at в $-347+66.8$
Lateral extent of roadstde feature (veasuredi. $L_{H}=3^{\prime}$
lateral offset at end of flare. \qquad $. z=9.47^{\text {** }}$

NOTE: DISTANCE OF OBJECT FROW BACK OF BARRIER MUST BE greater than the max[wuy deflection ($7,01,20$) ** Refer to Calculations and Notes $L_{H} \leq L_{c}$

$$
\begin{aligned}
& d=1.8^{\prime} \text { FOR TYPE } 1 \text { TERMINALS } \\
& d=0 \text { FOR TYPE } 2 \text { AND } 3 \text { TERMINALS }
\end{aligned}
$$

$$
X=\frac{L_{H}+\left(\frac{b}{a}\right)\left(L_{1}\right)-\left(L_{2}+d\right)}{\frac{b}{a}+\frac{L_{H}}{L_{R}}}
$$

$$
Z=L_{2}+\left(\left|S_{B}-S_{A}\right|\right)\left(\frac{b}{a}\right)
$$

$$
\text { E.O.P. TO FACE OF BARRIER (DESIGNEDI } \ldots \ldots L_{2}=\frac{a}{4^{\prime}}
$$

$$
\text { CLEAR ZONE }(7.01 .11), \ldots . L_{c}={ }_{c} 3^{\prime}
$$

$$
L_{1}=.23 .125^{\prime} \quad \text { 'и[N.) }
$$

$$
\text { E.O.P. TO ROADSIDE FEATURE (MEASURED) } \ldots \ldots, \ldots, L_{3}=.4^{\prime}
$$

$$
\text { EFFECTJVE TURNED OUT DISTANCE OF ANCHORAGE } \ldots d=0
$$

$$
L_{s}=\ldots 7^{\prime} \quad \text { SHY LINE }(7.01 .18 \text {) }
$$

$$
\text { Lateral extent of roadside feature (weasured). } L_{H}=-30^{\prime}
$$

$$
\text { station at a }-347+01.1
$$

$$
\text { STATION AT 日 } \quad-347+66.8
$$

$$
\text { Lateral offset at end of flare } Z=9.47^{\text {** }}
$$

Runout Length Table

	Traffic Volume (ADT) veh/day			
	Over 10,000	$\begin{gathered} \text { Over } \\ 5,000-10,000 \end{gathered}$	1000-5000	Under 1000
Design Speed (mph)	Runout Length $L_{R}(\mathrm{ft})$	Runout Length $L_{R}(\mathrm{ft})$	Runout Length $\mathrm{L}_{\mathrm{R}}(\mathrm{ft})$	Runout Length $\mathrm{L}_{\mathrm{R}}(\mathrm{ft})$
80	470	430	380	330
70	360	330	290	250
60	300	250	I 210	200
50	230	190	1 160	150
40	160	130	110	100
30	110	90	80	70

RDM - Section 7.01.19
${ }^{* *}$ Must interpolate in this case to obtain L_{R}

$$
\begin{aligned}
& d=1.8^{\prime} \text { FOR TYPE } 1 \text { TERMINALS } \\
& d=0 \text { FOR TYPE } 2 \text { AND } 3 \text { TERMINALS }
\end{aligned}
$$

$$
X=\frac{L_{H}+\left(\frac{b}{a}\right)\left(L_{1}\right)-\left(L_{2}+d\right)}{\frac{b}{a}+\frac{L_{H}}{L_{R}}}
$$

$$
Z=L_{2}+\left(\left|S_{B}-S_{A}\right|\right)\left(\frac{b}{a}\right)
$$

$$
\text { LENGTH OF NEED } \ldots . X=\frac{113.76^{\prime}}{185^{\prime}} \text { DESIGN ADT }
$$

$$
\text { GUARDRAIL TAPER RATE (R-59-SERLES) } \ldots \ldots \ldots \cdot \frac{b}{a}=\frac{\overline{1 / 12}}{1^{\prime}} \quad \text { APPROACH SLOPE }
$$

$$
\begin{aligned}
& \text { E.O.P. TO FACE OF BARREER (DESIGNED) } \ldots L_{2}=\frac{a}{4} \\
& \text { CLEAR ZONE }(7.01 .11) \ldots . L_{c}=-30^{\prime}
\end{aligned}
$$

$$
L_{1}=.23 .125^{\prime} \quad \text { ' и[N.) }
$$

$$
\text { E.O.P. TO ROADSIDE FEATURE (MEASURED) } \ldots \ldots, \ldots, L_{3}=.4^{\prime}
$$

$$
\text { EFFECTJVE turned out distance of anchorace } \ldots d=0
$$

$$
L_{s}=\ldots 7 ' \text { SHY LINE (} 7.01 .18 \text {) }
$$

$$
\text { Lateral extent of roadside feature (weasured). } L_{H}=-30^{\prime}
$$

$$
\text { station at a }-347+01.1
$$

$$
\text { STATION AT a }-347+66.8
$$

$$
\text { lateral offset at end of flare. } Z=9.47^{\text {n* }}
$$

AASHTO RDG Table 5-9 Recommended Flare Rates

Table 5-9. Suggested Flare Rates for Barrier Design

Design Speed		Flare Rate for Barrier Inside Shy Line	Flare Rate for Barrier at or Beyond Shy Line $\mathbf{k m} / \mathbf{h}$	
$\mathbf{[m p h}]$	$[70]$	$30: 1$	\mathbf{A}	B
110	$[60]$	$26: 1$	$18: 1$	$15: 1$
90	$[55]$	$24: 1$	$16: 1$	$14: 1$
80	$[50]$	$21: 1$	$14: 1$	$12: 1$
70	$[45]$	$18: 1$	$12: 1$	$11: 1$
60	$[40]$	$16: 1$	$10: 1$	$10: 1$
50	$[30]$	$13: 1$	$8: 1$	$8: 1$

Notes:
A = Suggested maximum flare rate for rigid barrier system.
$B=$ Suggested maximum flare rate for semi-rigid barrier system.
In most cases, use flare rate at or beyond shy line column even when guardrail is within the shy line.

$$
\begin{aligned}
& \boldsymbol{d}=1.8^{\prime} \text { FOR TYPE } 1 \text { TERMINALS } \\
& d=0 \text { FOR TYPE } 2 \text { AND } 3 \text { TERMINALS }
\end{aligned}
$$

$$
X=\frac{L_{H}+\left(\frac{b}{a}\right)\left(L_{1}\right)-\left(L_{2}+d\right)}{\frac{b}{a}+\frac{L_{H}}{L_{R}}}
$$

$$
Z=L_{2}+\left(\left|S_{B}-S_{A}\right|\right)\left(\frac{b}{a}\right)
$$

$$
\text { CLEAR ZONE }(7.01 .11), \ldots . L_{c}=3^{\prime}
$$

$$
L_{1}=.23 .125^{\prime} \quad \text { ' u[N.) }
$$

$$
\text { E.O.P. TO ROADSIDE FEATURE (MEASURED) } \ldots \ldots, \ldots, L_{3}=.4^{\prime}
$$

$$
\text { EFFECTJVE turned out distance of anchorace } \ldots d=0
$$

$$
L_{s}=\ldots 7 ' \text { SHY LINE (} 7.01 .18 \text {) }
$$

$$
\text { Lateral extent of roadside feature (veasured). } L_{H}=-30^{\prime}
$$

$$
\text { station at a }-347+01.1
$$

$$
\text { Lateral offset at end of flare }
$$

$$
\text { STATION AT а }-347+66.8
$$

Used distance to face of bridge railing

$$
\begin{aligned}
& d=1.8^{\prime} \text { FOR TYPE } 1 \text { TERMINALS } \\
& d=0 \text { FOR TYPE } 2 \text { AND } 3 \text { TERMINALS }
\end{aligned}
$$

$$
X=\frac{L_{H}+\left(\frac{b}{a}\right)\left(L_{1}\right)-\left(L_{2}+d\right)}{\frac{b}{a}+\frac{L_{H}}{L_{R}}}
$$

$$
Z=L_{2}+\left(\left|S_{B}-S_{A}\right|\right)\left(\frac{b}{a}\right)
$$

$$
\text { LENGTH OF NEED } . \ldots .
$$

$$
\text { GUARDRAIL TAPER RATE (R-59-SERLES) } \ldots \ldots \ldots \ldots \cdot \frac{b}{a}=\frac{1 / 12}{4^{\prime}} \quad \text { APPROACH SLOPE }
$$

$$
\text { E.O.P. TO FACE OF BARRIER (DESJGNEDI } L_{2}^{a}=\frac{4^{\prime}}{30^{\prime}}
$$

$$
\text { CLEAR ZONE }(7.01 .11), \ldots . L_{c}={ }^{\prime} 0^{\prime}
$$

$$
L_{1}=.23 .125^{\prime} \quad \text { 'и[N.) }
$$

$$
\text { E.O.P. TO ROADSIDE FEATURE (MEASURED) } \ldots \ldots, \ldots, L_{3}=.4^{\prime}
$$

$$
\text { EFFECTJVE turned out distance of anchorace } \ldots d=0
$$

$$
L_{s}=\ldots 7^{\prime} \quad \text { SHY LINE }(7.01 .18 \text {) }
$$

$$
\text { station at a }-347+01.1
$$

$$
\text { Lateral extent of roadside feature (weasured). } L_{H}=-30^{\prime}
$$

$$
\text { STATION AT a }-347+66.8
$$

$$
\text { Lateral offset at end of flare. } Z=9.47^{\text {n* }}
$$

CLEAR ZONE DISTANCES
(IN FEET FROM DGE OF DRIVING LANE)

DESIGN SPEED	$\begin{aligned} & \text { DESIGN } \\ & \text { ADT } \end{aligned}$	FILL SLPES			CUT SLOPES		
		$1: 6$ OR FLATTER	$\begin{aligned} & 1: 5 \\ & \text { TO } \\ & 1: 4 \end{aligned}$	1:3	1:3	$\begin{aligned} & 1: 4 \\ & \text { TO } \\ & \text { 1:5 } \end{aligned}$	1:6 OR FLATTER
$\begin{gathered} 40 \mathrm{mph} \\ \text { or } \\ \text { Less } \end{gathered}$	under 750	7-10	7-10	**	7-10	7-10	7-10
	750-1500	10-12	12-14	**	10-12	12-14	12-14
	1500-6000	12-14	14-16	**	12-14	14-16	14-16
	over 6000	14-16	16-18	**	14-16	16-18	16-18
$\begin{aligned} & \text { 45-50 } \\ & \mathrm{mph} \end{aligned}$	under 750	10-12	12-14	**	8-10	8-10	10-12
	750-1500	14-16	16-20	**	10-12	12-14	14-16
	1500-6000	16-18	20-26	**	12-14	14-16	16-18
	over 6000	20-22	24-28	**	14-16	18-20	20-22
$\stackrel{55}{\mathrm{mnh}}$	under 750	12-14	14-18	**	8-10	10-12	10-12
	750-1500	16-18	20-24	**	10-12	14-16	16-18
	1500-6000	20-22	24-30	**	14-16	16-18	20-22
	over 6000	22-24	26-32*	**	16-18	20-22	22-24
$\begin{gathered} 60 \\ \mathrm{mph} \end{gathered}$	under 750	16-18	20-24	**	10-12	12-14	14-16
	750-1500	20-24	26-32*	**	12-14	16-18	20-22
	1500-6000	26-30	32-40*	**	14-18	18-22	24-26
	over 6000	30-32*	36-44*	**	20-22	24-26	26-28
$\begin{aligned} & \geq 65 \\ & \mathrm{mph} \end{aligned}$	under 750	18-20	20-26	**	10-12	14-16	14-16
	750-1500	24-26	28-36*	**	12-16	18-20	20-22
	1500-6000	28-32*	34-42*	**	16-20	22-24	26-28
	over 6000	30-34*	38-46*	**	22-24	26-30	28-30

Where a site specific investigation indicates a high probability of continuing crashes, or such occurrences are indicated by crash history, the designer may provide clear zone distances greater than 30 feet as indicated. Clear zones may be limited to 30 feet for practicality and to provide a consistent roadway template if previous experience with similar projects or designs indicates satisfactory performance.
${ }^{* *}$ Since recovery is less likely on the unshielded, traversable $1: 3$ slopes, fixed objects should not be present in the vicinity of the toe of these slopes.

$$
\begin{aligned}
& \boldsymbol{d}=1.8^{\prime} \text { FOR TYPE } 1 \text { TERMINALS } \\
& d=0 \text { FOR TYPE } 2 \text { AND } 3 \text { TERMINALS }
\end{aligned}
$$

$$
X=\frac{L_{H}+\left(\frac{b}{\mathrm{a}}\right)\left(L_{1}\right)-\left(L_{2}+d\right)}{\frac{\mathrm{b}}{\mathrm{a}}+\frac{L_{H}}{L_{R}}}
$$

$$
Z=L_{2}+\left(\left|S_{B}-S_{A}\right|\right)\left(\frac{b}{a}\right)
$$

$$
\text { E.0.P. TO FACE OF BARRIER (DESJGNEDI } \ldots L_{2}^{a}=\frac{4^{\prime}}{30^{\prime}}
$$

$$
\text { CLEAR ZONE }(7.01 .11), \ldots . L_{c}=3^{\prime}
$$

$$
L_{1}=.23 .125^{\prime} \quad \text { ' и[N.) }
$$

$$
\text { E.O.P. TO ROADSIDE FEATURE (YEASURED) } \ldots \ldots, \ldots, L_{3}=.4^{\prime}
$$

$$
\text { EFFECTIVE TURNED OUT DISTANCE OF ANCHORAGE } \ldots d=0
$$

$$
L_{s}=\ldots 7 ' \text { SHY LINE (} 7.01 .18 \text {) }
$$

$$
\text { Lateral extent of roadside feature (weasured). } L_{H}=-30^{\prime}
$$

$$
\text { station at a }-347+01.1
$$

$$
\text { Lateral offset at end of flare }
$$

$$
\text { STATION AT а }-347+66.8
$$

Used distance to face of bridge railing

$$
\begin{aligned}
& \boldsymbol{d}=1.8^{\prime} \text { FOR TYPE } 1 \text { TERMINALS } \\
& d=0 \text { FOR TYPE } 2 \text { AND } 3 \text { TERMINALS }
\end{aligned}
$$

$$
X=\frac{L_{H}+\left(\frac{b}{a}\right)\left(L_{1}\right)-\left(L_{2}+d\right)}{\frac{b}{a}+\frac{L_{H}}{L_{R}}}
$$

$$
Z=L_{2}+\left(\left|S_{B}-S_{A}\right|\right)\left(\frac{b}{a}\right)
$$

LENGTH OF NEED ... $=$ \qquad 185^{\prime} \qquad guardrail taper rate (r-59-SERIES) \qquad $\frac{b}{a}=$ $\frac{1 / 12}{4^{\prime}}$ E.OP. TO FACE OF BARRIER (DESIGNEDI $\ldots, L_{2}=$ \qquad	DESJGN ADT DESJCN SPEED approach slope	5,000 vpd
		55 mph
		1:5

E.O.P. TO FACE OF BARRCER (DESJGNED) $L_{2}^{a}=\frac{4^{\prime}}{30^{\prime}}$

CLEAR ZONE (7.01 .11) $\ldots . L_{c}=3^{\prime}$
$L_{1}=23.125^{\prime} \quad$ ' U[N.)
E.O.P. TO ROADSIDE FEATURE (MEASUREDI $\ldots \ldots L_{3}=.4$ '
$L_{s}=\ldots 7$ ' SHY LLNE (7.01 .18)
EFFECTJVe turned out distance of anchorage $\ldots d={ }^{2} 0$
lateral extent of roadside feature (weasured). $L_{H}=3^{\prime}$ Lateral offset at end of flare.................. $Z=9.47^{\text {** }}$
station at a $-347+01.1$
station at a $-347+66.8$

Using a Type 2M approach terminal, so d=0

$$
\begin{aligned}
& d=1.8^{\prime} \text { FOR TYPE } 1 \text { TERMINALS } \\
& d=0 \text { FOR TYPE } 2 \text { AND } 3 \text { TERMINALS }
\end{aligned}
$$

$$
X=\frac{L_{H}+\left(\frac{b}{a}\right)\left(L_{1}\right)-\left(L_{2}+d\right)}{\frac{b}{a}+\frac{L_{H}}{L_{R}}}
$$

$$
Z=L_{2}+\left(\left|S_{B}-S_{A}\right|\right)\left(\frac{b}{a}\right)
$$

* ${ }^{\text {c }}$ 113.76'	5,000 vpd
	DESICN SPEED - 55 mph
guardeail taper pate (r-59-SEPIES) $\underline{b}^{n}=1 / 12$	Roach slope $1: 5$
E.O.P. TO FACE OF BARRIER (DESJGNED) $L_{2}=$ 4 \qquad	
CLEAR ZONE (7.01 .11) $L_{c}=$ _ 30^{\prime}	
E.O.P. TO ROADSIDE FEATURE (MEasuredi $L_{3}=.4{ }^{\text {a }}$	$L_{s}=\ldots \ldots 7{ }^{\text {c }}$ SHY LINE (7.01 .18
effective turned out distance of anchorage ... d	station at a $-347+01.1$
Lateral extent of roadside feature ineasuredi. $L_{H}={ }^{\text {a }}$ 30'	Station at a $-347+66.8$
lateral offset at end of flare Z Z $=9.47$ '	

$L_{H}=L_{C}$ in this case, since the river is the hazard and extends beyond the clear zone

$$
\begin{aligned}
& \boldsymbol{d}=1.8^{\prime} \text { FOR TYPE } 1 \text { TERMINALS } \\
& \boldsymbol{d}=0 \text { FOR TYPE } 2 \text { AND } 3 \text { TERMINALS }
\end{aligned}
$$

$$
X=\frac{L_{H}+\left(\frac{b}{a}\right)\left(L_{1}\right)-\left(L_{2}+d\right)}{\frac{b}{a}+\frac{L_{H}}{L_{R}}}
$$

$$
Z=L_{2}+\left(\left|S_{B}-S_{A}\right|\right)\left(\frac{b}{a}\right)
$$

LENGTH OF NEED .. $=$ RUNOUT LENGTH (7.01 .19) $L_{R}=$ guardrail taper rate (r-59-SERES) $\frac{b}{a}=\frac{\overline{1 / 12}}{4^{\prime}}$		5,000 vpd
	DESJGN ADT	55 mph
		1:5

E.O.P. TO FACE OF BARRIER (DESICNED) $L_{2}^{a}=\frac{4^{\prime}}{30^{\prime}}$ CLEAR ZONE (7.01 .11) $\ldots . L_{c}=3^{\prime}$

$$
L_{1}=.23 .125^{\prime} \quad \text { ' u[N.) }
$$

E.O.P. TO ROADSIDE FEATURE (MEASUREDI $\ldots \ldots, \ldots, L_{3}=.4^{\prime}$
effective turned out distance of anchorage $\ldots d=0$ lateral extent of roadside feature (weasured). $L_{H}=3^{\prime}$ Lateral offset at end of flare.................. $Z=9.47^{\text {** }}$
$L_{s}=\ldots 7$ ' SHY LINE (7.01 .18)
station at a $-347+01.1$
station at a $-347+66.8$
$L_{1}<25^{\prime}$ in this case because $L_{1}=L_{T}$ (exception to $L_{1}=25$ ' min. rule)

Detail T-1 (Sheet 1 of R-67-Series)

$\boldsymbol{d}=1.8^{\prime}$ FOR TYPE 1 TERMINALS
$\boldsymbol{d}=0$ FOR TYPE 2 AND 3 TERMINALS

$$
X=\frac{L_{H}+\left(\frac{b}{a}\right)\left(L_{1}\right)-\left(L_{2}+d\right)}{\frac{b}{a}+\frac{L_{H}}{L_{R}}}
$$

$$
Z=L_{2}+\left(\left|S_{B}-S_{A}\right|\right)\left(\frac{b}{a}\right)
$$

$$
\text { E.O.P. TO FACE OF barrier (DESJGNEDI } \ldots \stackrel{L}{2}_{2}^{a}=\frac{4^{\prime}}{20^{\prime}}
$$

$$
L_{1}=.23 .125^{\prime} \quad \text { ' и[N.) }
$$

$$
\text { E.0.P. TO ROADSIDE FEATURE (MEASURED } L_{3}=.4^{\prime}
$$

$$
\text { EFFECTIVE TURNED OUT DISTANCE OF anchorace } \ldots d=0
$$

$$
\text { Lateral extent of roadside feature (weasuredl. } L_{H}=3^{\prime}
$$

STATJON AT A $-347+01.1$
station at a $-347+66.8$

Design Speed (mph)	Shy Line Offset (Ls) (ft)
80	12
75	10
70	9
60	8
55	7
50	6.5
45	6
40	5
30	4

$$
\begin{aligned}
& \boldsymbol{d}=1.8^{\prime} \text { FOR TYPE } 1 \text { TERMINALS } \\
& d=0 \text { FOR TYPE } 2 \text { AND } 3 \text { TERMINALS }
\end{aligned}
$$

$$
X=\frac{L_{H}+\left(\frac{b}{a}\right)\left(L_{1}\right)-\left(L_{2}+d\right)}{\frac{b}{a}+\frac{L_{H}}{L_{R}}}
$$

$$
Z=L_{2}+\left(\left|S_{B}-S_{A}\right|\right)\left(\frac{b}{a}\right)
$$

$$
\text { E.0.P. TO FACE OF BARRIER (DESJGNED1 } \stackrel{L}{L}_{2}^{a}=\frac{4^{\prime}}{30^{\prime}}
$$

$$
\text { CLEAR ZONE }(7.01 .11) \ldots \ldots . \ldots L_{c}=L^{\prime}
$$

$$
L_{1}=.23 .125^{\prime} \quad \text { ' u[N.) }
$$

$$
\text { E.O.P. TO ROADSIDE FEATURE (MEASURED) } \ldots \ldots, \ldots, L_{3}=.4^{\prime}
$$

$$
\text { EFFECTJVE TURNED OUT DISTANCE OF anchorace } \ldots d^{-}=0
$$

$$
L_{s}=\ldots 7 ' \text { SHY LINE (} 7.01 .18 \text {) }
$$

$$
\text { Lateral extent of roadside feature (veasuredl. } L_{H}=-30^{\prime}
$$

$$
\text { station at a }-347+01.1
$$

$$
\text { Lateral offset at end of flare } Z=9.47^{* *}
$$

$$
\text { STATION AT а }-347+66.8
$$

$L_{1}<25^{\prime}$ in this case because $L_{1}=L_{T}$ (exception to $L_{1}=25$ min. rule)

Length of Need (X)

$X=\frac{30+\left(\frac{1}{12}\right) \times(23.125)-4}{\left(\frac{1}{12}\right)+\left(\frac{30}{185}\right)}=113.76^{\prime}$

Minimum Guardrail Length

$$
G_{\min }=113.76^{\prime}-34.3^{\prime}-23.125^{\prime}=56.34^{\prime}
$$

However, the MGS ($\left.9^{\prime}-4.5^{\prime \prime}\right)$ beam element and thrie-beam

 transition panel must be considered due to $\mathrm{T}-1$ anchorage

ELEVATION SHOWING TRANSITION DETAIL FOR CONNECTING
GUARDRAIL, TYPE MGS-8 OR MGS-8D TO
GUARDRAIL, TYPE T, GUARDRAIL, TYPE TD,
GUARDRAIL ANCHORAGE, MEDIAN,
GUARDRAIL ANCHORAGE, BRIDGE DETAIL A1, T1, T4 OR T6
\therefore \# of 12.5' panels $=\left(\frac{56.34-9.375-6.25}{12.5}\right)=3.26 \rightarrow 4$ panels Type MGS-8 guardrail length $=(12.5)(4)+9.375+6.25$

$$
=\underline{65.625 \text { feet }}
$$

Reflectors

$\#$ of reflectors $=\left(\frac{65.625+23.125}{50}\right)+1=2.78 \rightarrow$ round up to 3 *** But two-way roads require reflectors facing both sides ***
\therefore \# of reflectors $=3 \times 2=\underline{6}$ reflectors

Stations A and B

Calculating Stations A and B

Does Flaring Affect the Calculations?

Assume L \approx L' for most guardrail applications
(unless dealing with extremely long installations)

Stations

Station $A=(346+78)+23.125^{\prime} \approx \underline{347+01.1}$

Station $B=(346+78)+23.125+65.625^{\prime} \approx \underline{347+66.8}$

Calculating Z

$$
\begin{aligned}
\mathrm{Z} & =\mathrm{L}_{2}+\left(\text { Distance }_{\mathrm{B}-\mathrm{A}}\right) \times\left(\frac{b}{a}\right) \\
& =4+(65.625) \times\left(\frac{1}{12}\right)=\underline{9.47^{\prime}}
\end{aligned}
$$

Pay [TENS

65.625 Ft * Guordrail, Type MGS-8
_1 - Ea Guardrail Anchorage, Bridge, Det T-1
___ Ft Bridge Railing. Thrie Beom Retrofit
_ _ Eo Guordrail Approoch Terminal, Type 2M
___ Ea Guardrail Departing Terminal, Type _
_6 . Ea Guardrail Reflector
___Cyd Embonkment, LK

$\boldsymbol{d}=1.8^{\prime}$ FOR TYPE 1 TERMINALS
$\boldsymbol{d}=0$ FOR TYPE 2 AND 3 TERMINALS

$$
X=\frac{L_{H}+\left(\frac{b}{a}\right)\left(L_{1}\right)-\left(L_{2}+d\right)}{\frac{b}{a}+\frac{L_{H}}{L_{R}}}
$$

$$
\left.Z=L_{2^{+}}+\left|S_{B}-S_{A}\right|\right)\left(\frac{b}{a}\right)
$$

LENGTH OF NEED $X=64.88{ }^{\prime}$	DESJGN ADT	5,000 vpd
RUNOUT LENGTH (7.01 .19) $L_{R}=.185^{\prime}$	DESJCN SPEED	55 mph

GUARDRALL TAPER RATE (R-59-SERIES) $\ldots \ldots \ldots \ldots, \frac{b}{a}=_1 / 12$. APPROACH SLOPE _ $1: 5$
E.O.P. TO FACE OF BARRIER (DESIGNEDI $L_{z}=1^{16}$ '_
CLEAR ZONE (7.01 .11) $\ldots . L_{c}=30^{\prime}$
$L_{1}=23.125^{\prime} 5^{\prime}$ u[N.)
E.0.p. TO ROADSIDE FEATURE (MEASURED) $\ldots \ldots L_{3}=16^{\prime}$
$L_{s}=$ _ $^{\prime}$. SHY LLNE (7.01 .18)
effective turned out distance of anchorage $\ldots d=$. 0
Lateral extent of roadside feature tweasuredi. $L_{H}=3^{\prime}$
station at a $345+76.9$
station at a $345+48.8$ Lateral offset at end of flare $z=6.34^{\prime}$ (measured from EOP)** 18.34' (measured from CL)**

NOTE: DISTANCE OF OBJECT FROK BACK OF BARRLER MUST be GREATER THAN THE NAX[MUN DEFLECT]ON (7.01 .20)
$L_{H} \leq L_{c}$
REFER TO STANDARD PLAN R-59-SERJES AND DESIGN MANUAL
SECTION 7.01.30 FOR GUARDRALL AT EMBANKMENTS
** Refer to Calculations and Notes

Length of Need (X)

$$
X=\frac{30+\left(\frac{1}{12}\right) \times(23.125)-16}{\left(\frac{1}{12}\right)+\left(\frac{30}{185}\right)}=64.88^{\prime}
$$

Guardrail Length

Using a Guardrail Approach Terminal, Type 2M with Guardrail, Type MGS-8 in this case
\therefore Min. Guardrail Length $=64.88^{\prime}-23.125^{\prime}-34.3^{\prime}=7.46^{\prime}$

However, in this case, the minimum length of Type MGS-8 between the $\mathrm{T}-1$ anchorage and Type 2 M approach terminal is 28'-1.5" due to the required height transition section; see MDOT Standard Plan R-60-Series.
\therefore Type MGS-8 guardrail length $=\underline{28.125 \text { feet }}$

Reflectors

$\#$ of reflectors $=\left(\frac{28.125+23.125}{50}\right)+1=2.02 \rightarrow$ round up to 3 *** But two-way roads require reflectors facing both sides ***
\therefore \# of reflectors $=3 \times 2=\underline{6}$ reflectors

PAY [TENS

$28.125 \mathrm{Ft} *$ Guordrail, Type MGS-8
_1.Ee Guardrail Anchorage, Bridge, Det T-1
___ Ft Bridge Railing. Thrie Beom Retrofit
_1 . Eo Guordrail Approach Terminal, Type 2M
__ Ea Guardrail Departing Terminal, Type __
_6 _ Eo Guordrail Reflector
__Cyd Embonkment, LL

Stations
Station $A=(346+00)-23.125^{\prime} \approx \underline{345+76.9}$
Station $B=(346+00)-23.125-28.125^{\prime} \approx \underline{345+48.8}$

Calculating Z

Z

$$
\begin{aligned}
& =\mathrm{L}_{2}+\left(\text { Distance }_{\mathrm{B}-\mathrm{A}}\right) \times\left(\frac{b}{a}\right) \\
& =16+(28.125) \times\left(\frac{1}{12}\right)=\underline{18.34^{\prime}(\text { measured from CL) }}
\end{aligned}
$$

$$
\begin{gathered}
\text { or } \\
=4+(28.125) \times\left(\frac{1}{12}\right)=\underline{6.34^{\prime}(\text { measured from EOP) })}
\end{gathered}
$$

Guardrail Design Shielding Embankments

Guardrail at Embankments MDOT Method

Parallel Guardrail Installations

- Section 7.01.30F of RDM
$\underset{\text { DF TRAFFIC }}{\text { DIRECTION }}$

SHOULDER

Guardrail at Embankments MDOT Method

Parallel Guardrail Installations

- Section 7.01.30F of RDM

GUARDRAIL AT EMBANKMENTS (PARALLEL INSTALLATIONS)				
HEIGHT OF FILL AT $1: 3$ (ft)	LENGTH OF NEED IN ADVANCE OF $1: 3(\mathrm{ft})$			
OVER	TO	70 mph	60 mph	50 mph
5	10	147	121	100
10	12	197	171	122
12	14	235	205	153
14	16	269	238	179
16	18	296	262	198
18	20	316	280	212
20	22	331	294	223
22	24	343	305	231
24	25	349	309	235

Guardrail at Embankments
 MDOT Method

Flared Guardrail Installations

- Section 7.01.30E of RDM
- MDOT Standard Plan R-59 Series

** SEE CHART FOR THE " X " AND THE "K" DISTANCE. (SHEET 6 OF 6)
BEAM GUARDRAIL AT EMBANKMENTS - TWO-WAY ROADWAYS

1:10 SLOPE BETWEEN SHOULDER LINE AND $2^{\prime}-0^{\prime \prime}$ BEHIND FACE DF POST.
"/7/ 1:6 BERM

Standard Plan R-59-E X \& K Values

GUARDRAIL AT EMBANKMENTS (FLARED INSTALLATIONS, b/a)							
HEIGHT OF FILL AT 1:3 SLOPE (FEET)		70 MPH FLARE 1 : 15		$\begin{gathered} 60 \text { MPH } \\ \text { FLARE } 1: 14 \end{gathered}$		$\begin{gathered} 50 \text { MPH } \\ \text { FLARE } 1: 11 \end{gathered}$	
OVER	TO	X	K	X	K	X	K
5	10	100	37.5	100	12.5	100	0
10	12	100	37.5	100	12.5	100	0
12	14	100	37.5	100	12.5	100	0
14	16	113	24.5	110	2.5	100	0
16	18	155	-17.5	149	-36.5	101	-1
18	20	193	-55.5	182	-69.5	127	-27
20	22	223	-85.5	207	-94.5	148	-48
22	24	246	-108.5	227	-113.5	164	-64
24	25	256	-118.5	235	-122.5	171	-71

FOR POSITIVE "K" DISTANCES, BEGIN FLARE POINT BEYOND THE $1: 3$ SLOPE.

FOR NEGATIVE "K" DISTANCES, BEGIN FLARE POINT IN ADVANCE OF THE 1:3 SLOPE.

BEAM GUARDRAIL AT EMBANKMENTS - TWO-WAY ROADWAYS
(BARN ROOF SLOPE)

** SEE CHART FOR THE " X " AND THE "K" DISTANCE. (SHEET 6 OF 6)
BEAM GUARDRAIL AT EMBANKMENTS - DUAL ROADWAYS

BEAM GUARDRAIL AT EMBANKMENTS - DUAL ROADWAYS

Guardrail at Embankments
 Calculation Method (AASHTO RDG)

L_{c} is clear zone based on slope at Point V (in this example, the slope would be a 1:6 Fill Slope)

Guardrail at Embankments

Calculation Method

Methodology

- Step 1: Determine L_{R}
- Step 2: Determine L_{c}
- In this case, $\mathrm{L}_{\mathrm{H}}=\mathrm{L}_{\mathrm{c}}$

Guardrail at Embankments

Calculation Method

Methodology

- Step 3: Determine Layout and Terminal
- Flared or Parallel Guardrail If flared:
- Determine flare rate (b/a)
- Determine location where flare begins
- Terminal Type:
- Type 1 (Flared) or Type 2 (Parallel) Terminal

Guardrail at Embankments

Calculation Method

Methodology

- Step 4: Determine Guardrail Location $\left(\mathrm{L}_{2}\right)$

Guardrail at Embankments

Calculation Method

Methodology

- Step 5: Use appropriate formula to calculate length of need (X) in advance of 1:3 point

Guardrail at Embankments

Calculation Method

Methodology

- Step 5: Use appropriate formula to calculate length of need (X) in advance of 1:3 point

$$
X=\frac{L_{H}+(b / a)\left(L_{1}\right)-\left(L_{2}+d\right)}{(b / a)+\left(L_{H} / L_{R}\right)}
$$

Design Data \& Assumptions

- Rural Two-Lane Road
- Design Speed = 60 mph
- ADT = 8,700 vpd
- Parallel Installation (SB side; west side of road)
- Approach End: Use Chapter 7 - RDM to design guardrail
- Departing End: Use Calculation Method to design guardrail
- Type MGS-8 guardrail will be used
- Type 2M guardrail approach terminals will be used
- $L_{c}=32^{\prime}\left(1: 6\right.$ slope at Sta. $168+79 ; 250^{\prime}\left(L_{r}\right)$ south of Sta. 171+29)
- Assume $L_{2}=8.4^{\prime}$ (i.e., $10^{\prime}-1.6^{\prime}$); requires use of 9^{\prime} posts

9' Posts
 Required

Approach End (North End)

Refer to Subsection 7.01.30.F of Michigan Road Design Manual

- Fill Height $=14^{\prime}$ at 1:3 Point (Sta. $178+84$); Speed $=60 \mathrm{mph}$
\therefore Length of Need in Advance of 1:3 = 205'

GUARDRAIL AT EMBANKMENTS (PARALLEL INSTALLATIONS)				
HEIGHT OF FILL AT 1:3 (ft)		LENGTH OF NEED IN ADVANCE OF 1:3 (ft)		
OVER	TO	70 mph	60 mph	50 mph
5	10	147	121	100
10	12	197	171	122
12	14	235	205	153
14	16	269	238	179
16	18	296	262	198
18	20	316	280	212
20	22	331	294	223
22	24	343	305	231
24	25	349	309	235

Departing End (South End)

- Shoulder hinge point on west side of road is within northbound (NB) traffic's clear zone
- Use guardrail worksheet to calculate length of need
- Guardrail ending on south end is within NB traffic's clear zone
- Must use a crashworthy guardrail terminal (i.e., Type 2M guardrail approach terminal).

	desjgn adt $\quad 8,700 \mathrm{vpd}$
RUNOUT LENGTH (7.01 .19) $L_{R}=.250^{\prime}$	design speed _ 60 mph
guardrail taper rate (R-59-SERIES) $\cdot \frac{b}{a}={ }_{-} 0$	approach slope _1:6
E, O.P. TO FACE OF BARRIER (DESJGNEDI $\ldots \ldots L_{2}=L_{2}=20.4{ }^{\prime}$	
CLEAR ZONE (7.01 .11) . $L_{c}=3{ }^{\prime}$	$L_{1}=\mathrm{N} / \mathrm{A}$
E.0.p. TO ROADSJDE FEATURE (Measured) $L_{3}=16{ }^{\prime}$	$L_{s}=\ldots 8^{\prime}$. SHY LINE (7.01.18)
effective turned out distance of anchorage ... d	station ata N / A
lateral extent of roadside feature (weasured). $L_{H}={ }^{\text {a }}$ 3'	Station at a $170+72.7$
lateral offset at end of flare................ $Z=8.4{ }^{\prime}$	

Departing End

On two-lane, two-way roads, $\mathrm{L}_{2}, \mathrm{~L}_{\mathrm{H}}$, and L_{C} referenced from centerline on departing end

Length of Need (X) - South End (Using Guardrail Worksheet)
$X=\frac{32-20.4}{\left(\frac{32}{250}\right)}=90.63^{\prime}{ }^{\prime}$ (measured from 1:3 point; Sta. 171+29)

Total Guardrail Length

Min. Length $=(178+84)-(171+29)+205+90.63-2(34.3)$

$$
=982.03^{\prime}
$$

\# of panels $=\frac{982.03}{12.5}=78.56 \rightarrow$ round up to 79 panels
\therefore Type MGS-8 Guardrail Length $=(12.5)(79)=\underline{987.5 \text { feet }}$

Reflectors

$\#$ of reflectors $=\left(\frac{987.5}{50}\right)+1=20.75 \rightarrow$ round up to 21 *** But two-way roads require reflectors facing both sides ***
\therefore \# of reflectors $=21 \times 2=\underline{42}$ reflectors

Stations

- The difference between the minimum guardrail length and the actual guardrail length $=987.5-982.03 \approx 5.47^{\prime}$
- The additional 5.47^{\prime} of guardrail will be placed on the north (approach) end.

North (Approach) End

Station where approach terminal meets Type MGS-8 guardrail on the north (approach) end is:

Station $B_{n}=(178+84)+205+5.47-34.3=\underline{180+60.2}$
Station $A_{n} \rightarrow N / A$ in this case

South (Departing) End

Station where approach terminal meets Type MGS-8 guardrail on the south (departing) end is:

Station $B_{s}=(171+29)-90.63+34.3 \approx \underline{170+72.7}$
Station $A_{s} \rightarrow N / A$ in this case

Check: Type MGS-8 Guardrail Length $=$ Sta. $\mathrm{B}_{\mathrm{n}}-$ Sta. B_{s}

$$
\begin{aligned}
& 987.5 \text { feet }=(180+60.2)-(170+72.7) \\
& 987.5 \text { feet }=987.5 \text { feet } \checkmark
\end{aligned}
$$

Calculating Z
$Z=\underline{8.4^{\prime}}$ (measured from EOP)

Quantities

987.5 Ft Guardrail, Type MGS-8

2 Ea
42 Ea
Guardrail Approach Terminal, Type 2M Guardrail Reflector

Questions?

Contact Information Carlos Torres

Phone: (517) 335-2852
E-mail: torresc@michigan.gov

