Overview of Drainage Design

Erik Carlson, P.E. Hydraulic Unit Supervisor

<u>Basic</u> drainage design
 Where to find MDOT drainage policy
 Look at more than the road surface
 Know what you don't know

Hydraulics Unit

- > Erik Carlson– Supervisor
- Vacant QA/QC
- Liz McCann Scour/Hydraulics
- Kim Moody-Holmes Permits/Hydraulics
- Justin Logsdon Hydraulics
- Vacant Hydraulics
- Jim Davis County Drain Coordination
- Ron McKee County Drains/Apportionments

Hydraulics Unit Lead Items

Hydraulic Analyses

 PPMS Task 3520

 County Drains
 Bridge Scour Analyses & Countermeasures
 EGLE Permit (NREPA Part 31 - Floodplain)
 Hydraulic Connection Permits

Hydraulics Unit Assistance Items

Hydrology **Bridge Deck Drainage Drainage Agreements - Cost Participation** Drainage Studies – PPMS task 3522 Storm Sewer Design Stormwater Quantity/Quality - Detention basins and BMP's

Drainage Manual

- MDOT Policy and Procedure for design of Drainage Facilities
- Stormwater Program, NPDES Phase 2
 - Best Management Practices BMPs
 - Public Education Internal & External
- Design Contract Document

Chapter Two – Legal

Covers Federal, State, and local laws affecting drainage

Perpetuate natural drainage – look outside of ROW
 State is held to a higher standard than a private citizen

Stream vs. Drainage course
 Order of law supremacy
 Participation agreements

Not a stream

Stream

No bed, banks, or evidence of flow

Bed, banks, or evidence of flow

Chapter Two – Legal continued

Common law drainage requirements

- "The owner of the dominant estate has no right to divert, concentrate, or increase the velocity of the natural surface water."
- "The owner of a lower or servient estate is obligated to receive surface water from the upper or dominant estate in its natural flow."

Chapter Three – Hydrology

Drainage basin required information

- Stream characteristics
- Floodplain characteristics
- Precipitation amounts, type, and rates
- >A science and an art
 - Incorrect assumptions can lead to discharge errors of +/- 30%
- FHWA requirements for highway encroachments (FAPG 650)
 - Plans must show magnitude, frequency, and water surface elevations for 50 (2%) and 100 (1%) year floods
 - 50 year shall not overtop the road (Interstate)

Chapter Three – Hydrology continued

Hydrologic Method Selection

- Use the rational formula for drainage area of 20 acres or less. (Q=CIA)
- Over 20 acres, use MDEGLE's "Computing Discharges for Small Ungaged Watersheds"
- Over 2 square miles, determined by MDEGLE

Design examples and rainfall intensity charts

Chapter Three – Hydrology continued

EGLE Requirements

No harmful interference over a range of flows – regardless
 of drainage area

>MDOT Requirements

- Culverts 50 year design event, 100 year check for NHI
- Bridges 100 year design event, 500 year scour check
- Storm sewers 10 year design
- Depressed roadway 50 year design
- Ditches 50 year design, 100 year check for NHI
- Ditch enclosures???

Chapter Four – Natural Channels and Roadside Ditches

>Natural Channels

- Evaluate hydraulic conditions over a range of flows 10 year to 100 year
- Avoid relocation whenever possible
 - Relocated channels should mimic cross section and slope of existing
- Stabilize stream banks with high velocity or poor angle of attack
- Can be analyzed using HY-8 or HEC-RAS

Chapter Four – Natural Channels and Roadside Ditches continued

> Ditches

- 50 year storm event, check harmful interference for 100 year storm event.
- Grades from 0.1% minimum to 0.3% maximum (desirable)
- The water in the ditch needs an 18 inch freeboard below the road's shoulder
- If in clear zone, 2' depth at design event without guardrail can be analyzed using HY-8 or HEC-RAS

Chapter Four – Natural Channels and Roadside Ditches continued

- Cross sections
 - 2 types of hydraulic survey scopes (PPMS task 3350)
 - Cover cross section spacing, distance into floodplain, and number of point shots in the stream.

Proposed ground

Culvert Selection

Satisfy topography and budget, including maintenance

Culvert Analysis

- Environmental impacts
- Harmful interference
- Risk and costs
- Practical site access for maintenance

Culvert Design Criteria

- <u>All</u> culverts require a hydraulic analysis
- Design life = design storm = 50 years
- Culvert material can be site specific
- Multiple culverts should be avoided
- Regularly inspected and maintained (2 yr. cycle)
- Shortest length possible and aligned with channel
- May need to be recessed into channel bottom
- Avoid steep slopes

continued

Culvert Design Criteria

Maximum headwater 1.5' below shoulder at design event

continued

- No harmful interference compared to existing
- Outlet velocity < 6 fps or natural velocity
- DA>2 sq. miles done by Hydraulics Unit
- Culvert recess??

continued

Culvert Extensions

- Can be done with dissimilar materials and shapes but best if consistent throughout
- Extending slab culverts is not recommended
- Perched culverts should not be extended
- < 24 ft. extensions exempt from Part 31 review
 Still have liability for harmful interference

Culvert lining only allowed for

- Drive culverts carrying ditch flow
- Cross culverts
- CMP's that don't experience inlet control
- Can create other problems
 - Reduce area, increase velocity

 $> Q = V_1 A_1 = V_2 A_2$

Discharge constant from one cross section to the next.

> Equalizer culverts

Very rare, most common in wetland complexes

Installed with no slope

This is an equalizer culvert

This isn't

Culverts and the Scoping Process

Important to look at all existing culverts

- Condition
- Watershed changes

Including them later impacts schedule and budget

Chapter Six – Bridges

>Bridge Design Criteria

- Design storm = 100 years
- No harmful interference compared to existing
- 2 ft. freeboard where practical but avoid pressure flow
- Require scour calculations
- Foundations must be stable for a 500 yr. scour event
- Blend with environment
- Analyzed with HEC-RAS

Chapter six – Bridges

Chapter also covers

- Hydraulic analysis using HEC-RAS
- Scour analysis using FHWA HEC-18
- Bridge Deck Drainage / Maintenance
- Hydraulic Report format

Chapter Seven – Storm Drainage Systems

Design for 10 year storm, use 50 year for depressed roadways

- Design life is 70 years
- Rational method Q=CiA for most drainage to catch basins
- 15 minute Tc, 10 minute Tc for depressed roadways
- Use all contributing drainage area, not just ROW
- Pipes most efficient at 90% full
- Velocities < 12 fps in pipe, 6 fps at outlet
- Pipe slope minimums given in chapter
- Inlets not further than 300' meet design spread
- Avoid placement of trunks in traffic lanes

Chapter Seven – Storm Drainage Systems continued

- Spiral ribbed cmp or concrete same Manning's "n" value
- > 20 years future development
- Surcharge only allowed when caused by high tailwater
 - Keep HGL 1' below gutter grade
- Can be analyzed by hand or computer program (GEOPAK Drainage)

Chapter Seven – Storm Drainage Systems

continued

- Water does not acknowledge jurisdictional, property, ROW lines
- Laws/Permits/Agreements/Litigation Chapter 2
- Receiving Waters
 - Drainage Course
 - County Drain
 - Intermittent Stream
 - Inland Lake, Stream

Chapter Eight – Storage Facilities

Used to meet NPDES and MS4 permit requirements

- Reduce direct discharges
- Reduce runoff velocity
- Potential changes upcoming to MS4 Water Quality/Water Quantity
- Design by hand or computer model (HYDRAIN)
- Routing requires stage/storage and stage/discharge curves and inflow hydrograph

Need borings for groundwater elevations in ponds.
 No storage to be included below groundwater table.
 Detention vs. Retention

Chapter Eight – Storage Facilities continued

Design Criteria

- Design outlet rate: 10% to 4% existing peaks
- Design volume: 10% to 4% post development
- Spillway design: 1% post development, 1.5' freeboard
- 2' maximum depth if located in clear zone
- Spillway preference of weir over perforated riser
- Requirements for side slopes, fencing, and embankment

Chapter Nine – Stormwater BMP's

Stormwater Quality

- SESC (Soil Erosion and Sedimentation Control)
 - Water quality during construction
- MS4 (Municipal Separate Storm Sewer System)
 - Water quality post construction

Chapter Nine – Stormwater BMP's continued

> During construction

Keep things vegetated, reduce exposure

2006/12/0

Reestablish quickly

Post construction

- Vegetative controls
- Good housekeeping
- · Fit to the extent practicable

Chapter Nine – Stormwater BMP's continued

Development of future stormwater manual to be independent of the Drainage Manual.

2006/12/01

Chapter Ten – Pump Stations

E Main St

Prefer gravity drainage Long term maintenance costs

> Design Criteria

- 50 year design event
- Storage in station 2' below gutter line low point
- · When upgrading, can't increase capacity
- Need to evaluate storage upstream of the pumpstation if inflow greater than outflow.

12/29/2008

