Overview of Drainage Design

A STATE

<u>Basic</u> drainage design
Where to find MDOT drainage policy
Look at more than the road surface
Know what you don't know

Hydraulics Unit

- Erik Carlson– Supervisor
- Liz McCann Assistant QA/QC
- Justin Logsdon Scour/Hydraulics
- > Kim Moody-Holmes Permits/Hydraulics
- Jacob Moyer- Hydraulics
- Jack Krueger Hydraulics
- Jim Davis County Drain Coordination
- Ron McKee County Drains/Apportionments
- > Milad Alesmail Student Assistant

Hydraulics Unit Lead Items

Hydraulic Analyses

 Task 3520

 County Drains
 Bridge Scour Analyses & Countermeasures
 EGLE Permit (NREPA Part 31 - Floodplain)
 Hydraulic Connection Permits

Hydraulics Unit Assistance Items

General scoping Hydrology Bridge Deck Drainage Drainage Agreements - Cost Participation Drainage Studies – task 3522 Storm Sewer Design Stormwater Quantity/Quality Detention basins and BMP's

Drainage Manual

- MDOT Policy and Procedure for design of Drainage Facilities
- Stormwater Program, NPDES Phase 2
 - Best Management Practices BMPs
 - Public Education Internal & External
 - Being partially replaced with Post-Construction BMP Manual
- Design Contract Document
- https://www.michigan.gov/mdot/business/design/drainage-manual

Drainage Manual continued

- FHWA Program Review March 2021
 - 15 Observations and Recommendations
 - Hydrology outdated rainfall
 - Atlas 14
 - Research with EGLE/MTU
 - Pooled fund research with USGS
 - Design Standards
 - Risk based to include Federally funded LAP projects
 - Temporary structures
 - Updated culvert and bridge summary tables
 - Updated bridge scour coding and procedures
 - Working with Design Support with rollout of ORD's Drainage and Utilities software

Chapter Two – Legal

Covers Federal, State, and local laws affecting drainage

Perpetuate natural drainage – look outside of ROW
 State is held to a higher standard than a private citizen

Stream vs. Drainage course (Part 301)
 Order of law supremacy
 Participation agreements

>23 CFR 650.115

> Establishes design standards for encroachments on the Interstate System (50-yr, 2% chance) Remaining design standards left up to the States >AASHTO Drainage Manual State drainage manual/standards Flood Disaster Protection Act 1973 Established the Flood Insurance Program > Federal EO 11988 (1977) Floodplain Management > Applicable to participating communities

Federal EO 11988 (cont) **EGLE serves as liaison with FEMA** Federal EO 13690 – Not currently in DM Flood Risk Reduction Standard Signed by Pres. Obama and rescinded by Pres. Trump ► Reinstated May 20, 2021 > No clear direction yet FHWA Task Order 5520 (2014) – Not currently in DM Policy on preparedness and resilience to climate change and extreme weather events >No changes defined (yet) for MDOT Drainage Manual, but Climate Resiliency Chapter to be added to AASHTO DM.

>FHWA considers HEC-18 required guidance for bridge scour > Design and check events left up to the States > State EO 1977-4 & EO 2001-5 State flood hazard mitigation >2001-5 updated 1977-4 Requires mitigation strategy EGLE lead agency with input from MDOT & other agencies Requires hazard mitigation planning including bridges Current plan from 2019 - 2024

- > P.A. 451 of 1994 (Michigan) EGLE Regulatory Authority Part 301 – Inland Lakes and Streams (Task 3522) Permit required for work below the OHWM for any stream consisting of a defined bed and bank. Part 31 – Floodplains (Task 3520) > Permit/hydraulic analysis required for work below the 100-yr (1% chance) floodplain with crossings having drainage areas > 2 sq. miles Road grade raise > 4 inches
 - No differentiation between permanent or temporary conditions, unless temporary structure(s) is in place less than 14 days
 - Contact the Hydraulic Unit supervisor

Not a stream

Stream

No bed, banks, or evidence of flow

Bed, banks, or evidence of flow

Common law drainage requirements

- "The owner of the dominant estate has no right to divert, concentrate, or increase the velocity of the natural surface water."
- "The owner of a lower or servient estate is obligated to receive surface water from the upper or dominant estate in its natural flow."

Chapter Three – Hydrology

Drainage basin required information

- Stream characteristics
- Floodplain characteristics
- Precipitation amounts, type, and rates
- >A science and an art
 - Incorrect assumptions can lead to discharge errors of +/- 30%
- FHWA requirements for highway encroachments (23 CFR 650.115)
 - Plans must show magnitude, frequency, and water surface elevations for 50 (2%) and 100 (1%) year floods
 - 50 year shall not overtop the road (Interstate)

Chapter Three – Hydrology continued

>Hydrologic Method Selection

- Use the rational formula for drainage area of 20 acres or less. (Q=CIA)
- Over 20 acres, use EGLE's "Computing Discharges for Small Ungaged Watersheds"
- Over 2 square miles, determined by EGLE
- Design examples and rainfall intensity charts
 Will be updating for rational method with Atlas 14 with designs starting in FY2024.

Chapter Three – Hydrology continued

EGLE Requirements

No harmful interference over a range of flows – regardless
 of drainage area

>MDOT Requirements

- Culverts 50 year design event, 100 year check for NHI
- Bridges 100 year design event, 500 year scour check
- Storm sewers 10 year design
- Depressed roadway 50 year design
- Ditches 50 year design, 100 year check for NHI
- Ditch enclosures???

Chapter Four – Natural Channels and Roadside Ditches

➢Natural Channels

- Evaluate hydraulic conditions over a range of flows 10 year to 100 year
- Avoid relocation whenever possible
 - Relocated channels should mimic cross section and slope of existing
- Stabilize stream banks with high velocity or poor angle of attack
- Can be analyzed using HY-8, HEC-RAS, or SRH2D (SMS)

Chapter Four – Natural Channels and Roadside Ditches continued

> Ditches

- 50 year storm event, check harmful interference for 100 year storm event.
- Grades from 0.1% to 0.3% (desirable) minimum
- The water in the ditch needs a minimum of 18 inch freeboard below the road's shoulder
- If in clear zone, 2' depth at design event without guardrail can be analyzed using HY-8, HEC-RAS, or SRH2D

Chapter Four – Natural Channels and Roadside Ditches continued

- Cross sections
 - 2 types of hydraulic survey scopes (PPMS task 3350)
 - Cover cross section spacing, distance into floodplain, and number of point shots in the stream.

Proposed ground

Culvert Selection

Satisfy topography and budget, including maintenance

Culvert Analysis

- Environmental impacts
- Harmful interference
- Risk and costs
- Practical site access for maintenance

continued

Culvert Design Criteria

- All culverts require a hydraulic analysis
 - Compare existing vs proposed conditions for a range of flows up to the 100-yr (1% chance) event
- Design life = design storm = 50 years
- Culvert material can be site specific
 - If not specifying, assume worst case for hydraulic analysis
- Multiple culverts should be avoided
- Regularly inspected and maintained (2 yr. cycle)
- Shortest length possible and aligned with channel
- May need to be recessed into channel bottom
- Avoid steep slopes

Culvert Design Criteria

 Maximum headwater 1.5' below shoulder at design event

continued

- No harmful interference compared to existing
- Outlet velocity < 6 fps or natural velocity
- DA>2 sq. miles done by Hydraulics Unit
- Culvert recess??
 - Grade control with perched existing culverts
 - Beware of long-term degradation in steep streams and future cleanout/legal drain elevations with County Drains

continued

Culvert Extensions

- Can be done with dissimilar materials and shapes but best if consistent throughout
- Extending slab culverts is not recommended
- Perched culverts should not be extended
- < 24 ft. extensions exempt from Part 31 review
 - Still have liability for harmful interference

continued

Culvert linings are <u>only</u> allowed for

- Drive culverts carrying ditch flow
- Cross culverts
- CMP's that don't experience inlet control
- Can create other problems
 - Reduce area, increase velocity

continued

> Q = V₁ A₁ = V₂ A₂

Discharge constant from one cross section to the next.

Equalizer culverts

Very rare, most common in wetland complexes

Installed with no slope

This is an equalizer culvert

This isn't

Culverts and the Scoping Process

Important to look at all existing culverts

- Condition
- Drainage area and discharge values
- Watershed changes
- Including them later impacts schedule and budget

Chapter Six – Bridges

- >Bridge Design Criteria
 - Design storm = 100 years
 - May be updating freeboard return with DM updates.
 - No harmful interference compared to existing
 - 2 ft. freeboard where practical but avoid pressure flow
 - Require scour calculations
 - Foundations must be stable for a 500 yr. scour event
 - Blend with environment
 - Analyzed with HEC-RAS or SRH2D (SMS)
 - Recommend 2D modeling for designing scour countermeasures and computing scour for multi-span structures.

Chapter six – Bridges

continued

Chapter also covers

- Hydraulic analysis using HEC-RAS
- Scour analysis using SRH2D (SMS) and FHWA HEC-18
- Bridge Deck Drainage / Maintenance
 - HEC-21 methodologies
 - We don't assume 15 min. time of concentration for bridge deck drainage
- Hydraulic Report format
- Bridge Hydraulic summary tables
- MDOT Scour evaluation process

Chapter Seven – Storm Drainage Systems

Design for 10 year storm, use 50 year for depressed roadways

- Design life is 70 years
- Rational method Q=CiA for most drainage to catch basins
- 15 minute Tc, 10 minute Tc for depressed roadways
- Use all contributing drainage area, not just ROW
- Pipes most efficient at 90% full
- Velocities < 12 fps in pipe, 6 fps at outlet
- Pipe slope minimums given in chapter
- Inlets not further than 300' meet design spread
- Avoid placement of trunks in traffic lanes
Chapter Seven – Storm Drainage Systems continued

- Spiral ribbed cmp or concrete same Manning's "n" value
- > 20 years future development
- Surcharge only allowed when caused by high tailwater
 - Keep HGL 1' below gutter grade
- Can be analyzed by hand or computer program (GEOPAK Drainage; future ORD Drainage & Utilities)

Chapter Seven – Storm Drainage Systems

continued

- Water does not acknowledge jurisdictional, property, ROW lines
- Laws/Permits/Agreements/Litigation Chapter 2
- > Receiving Waters
 - Drainage Course
 - County Drain
 - Intermittent Stream
 - Inland Lake, Stream

Chapter Eight – Storage Facilities

Used for flood control requirements

- Overhaul with new MS4 permit and Post Construction BMP Manual
- Reduce direct discharges
- Reduce runoff velocity
- Design by hand or computer model (Hydraulic Toolbox)
- Routing requires stage/storage, stage/discharge curves, and inflow hydrograph

 Need borings for groundwater elevations in ponds. No storage to be included below groundwater table.
Detention vs. Retention (infiltration)

Chapter Eight – Storage Facilities continued

Design Criteria

- Criteria to be updated with DM updates
- Pre-project discharge >= post-project dischargeSpillway design: 1% post development, 1.5' freeboard
- 2' maximum depth if located in clear zone
- Spillway preference of sheet pile orifice/weir over perforated riser
 - Email Hydraulic Unit Supervisor for details
- Requirements for side slopes, fencing, and embankment

Chapter Nine – Stormwater BMP's

Stormwater Quality

- SESC (Soil Erosion and Sedimentation Control)
 - Water quality during construction
- May be eliminated with Drainage Manual updates
 - MDOT Soil Erosion and Sedimentation Control Manual
 - MDOT Post Construction BMP Manual coming soon

Chapter Ten – Pump Stations

E Main St

Prefer gravity drainage

Long term maintenance costs

Design Criteria

- . 50 year design event
- Storage in station 2' below gutter line low point
- When upgrading, can't increase capacity of pump(s)
- Need to evaluate storage upstream of the pumpstation if inflow greater than outflow.

12/29/2008

