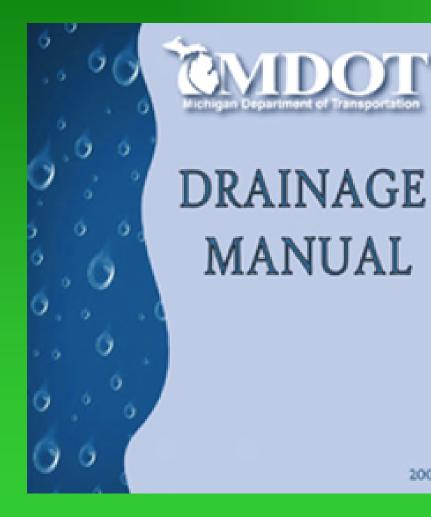


Erik Carlson, P.E. MDOT Hydraulics Unit July 2022

Culvert Design

Objectives

- Discuss required input data
- Discuss design criteria
- Discuss design procedures
- Answer questions

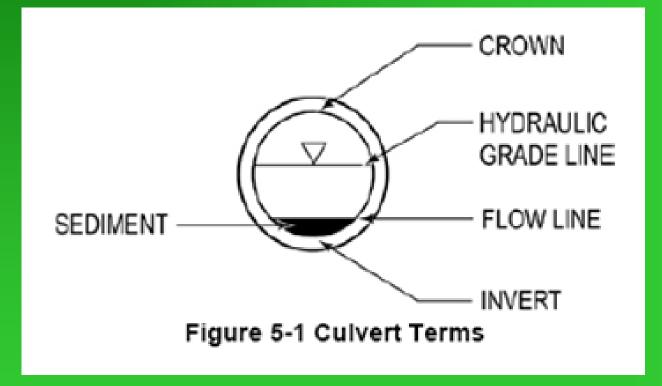

Topics Not Covered

- Basic fluid mechanics
- Hydrologic design
- Theory behind equations
- Weir flow with culverts
- <u>Recommend taking NHI's Culvert Design</u> <u>Workshop</u>

References

2003

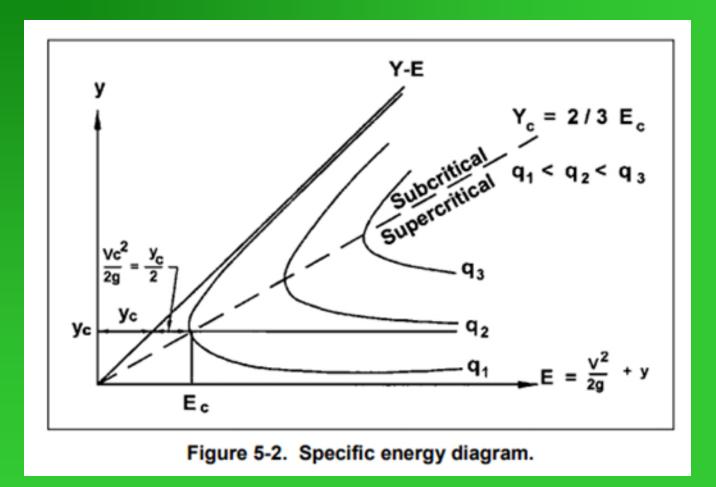
April 2012 Publication No. FHWA-HIF-12-026


Hydraulic Design Series Number 5

HYDRAULIC DESIGN OF **HIGHWAY CULVERTS** Third Edition

U.S. Department of Transportation Federal Highway Administration 2

Terms


- Subcritical vs Supercritical
 - Dimensionless term

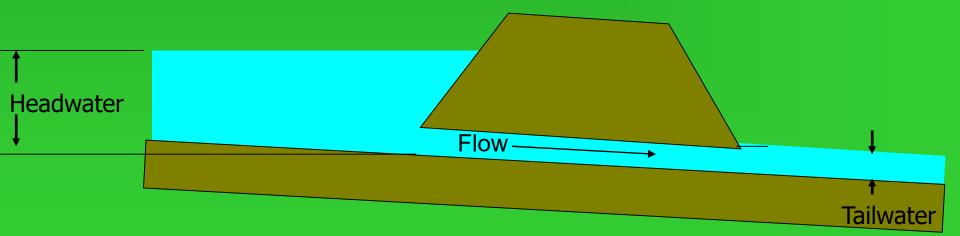
 $- Fr = V / (g * y)^{1/2}$

» V = velocity, ft/s

- » g = gravitational constant = 32.2 ft/s²
- » y = hydraulic depth, A / W, ft.
- Subcritical Fr < 1
- Supercritical Fr > 1
- Critical Depth Fr = 1
- Hydraulic jump when flow transitions from supercritical flow to subcritical

Terms

Source: FHWA HEC-22 Urban Drainage Design


Required Input Data

Hydrologic Information

- Drainage Area
 - If greater than or equal to 20 acres, use EGLE SCS procedures
 - If less than 20 acres, use Rational Method
 - If greater than 2 square miles, Hydraulic Unit will request discharge information from EGLE.
- Flood Discharge Information
 - 10 year (10% chance)
 - 50 year (2% chance)
 - 100 year (1% chance)

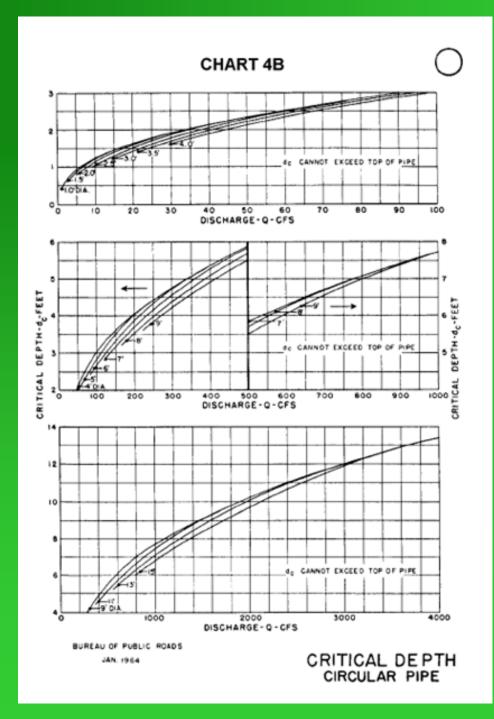
Required Input Data

- Site Constraints
 - Tailwater conditions
 - Headwater constraints
 - Existing culvert information
 - Discharge constraints

- MDOT culverts are typically sized for a 50 year (2% chance) flood
- Check for harmful interference in a 100 year (1% chance) flood

- Design headwater often controlled by site features
 - Buildings
 - Crops
 - Adjacent drainage structures (i.e. ditch culverts)
 - Road features

 The design headwater should be no greater than the elevation where flow diverts around culvert (i.e. bypass flow)


- Design Headwater General Procedures
 - Target is 0.9D for circular and elliptical culverts; nearly full for box culverts for a 50-year storm (2% chance).
 - At a minimum, size to limit outlet velocities less than 6 ft/s unless consistent with downstream channel per 5.3.4 in the Drainage Manual
 - Maximum allowable headwater is 1.5 below the edge of shoulder for a 50-year storm (2% chance). Use with caution for outlet velocities.

Outlet Velocity

- Beware of scour at outlets
- Limit outlet velocities to 6 ft/s (unless consistent with downstream channel).

- Tailwater Determination
 - Perform site visit to determine downstream controls
 - If downstream controls are present, a detailed survey will be required of the channel
 - Tailwater determined using Manning's Equation
 - If no downstream controls are present, the tailwater may be estimated using the average of critical depth and barrel diameter.
 - Contact Hydraulic Unit supervisor for rating curve spreadsheet for HY-8.

 Based on MDOT design, what is the design (target) headwater depth for the following?

> Proposed concrete box Invert Upstream - 851.00 ft. Invert Downstream - 850.90 ft. Length - 56 ft. Roadway elevation - 860.00 ft. Culvert rise - 5 feet Discharge Info: 50 year (2% chance): 120 cfs 100 year (1% chance): 150 cfs First floor elevation of upstream building - 857.50 ft.

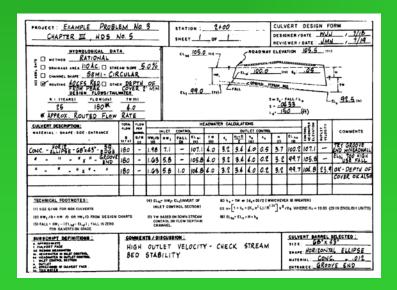
Answer: 856.00 ft (+/-) for a 50-year storm

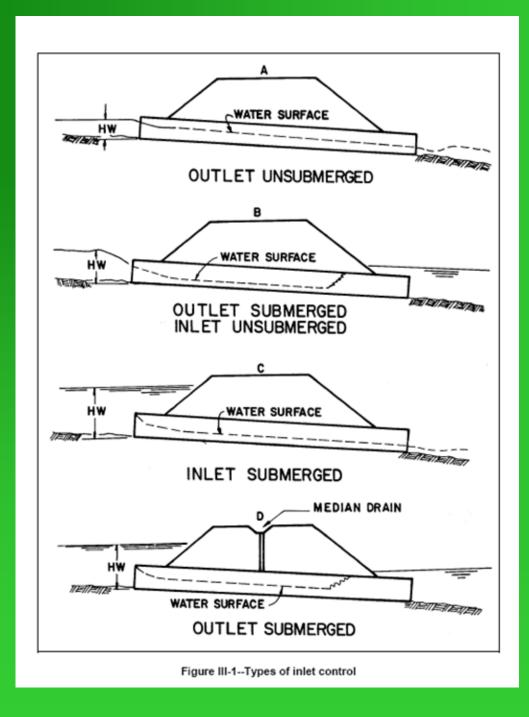
 Based on MDOT Design, what is the maximum headwater depth for the following?

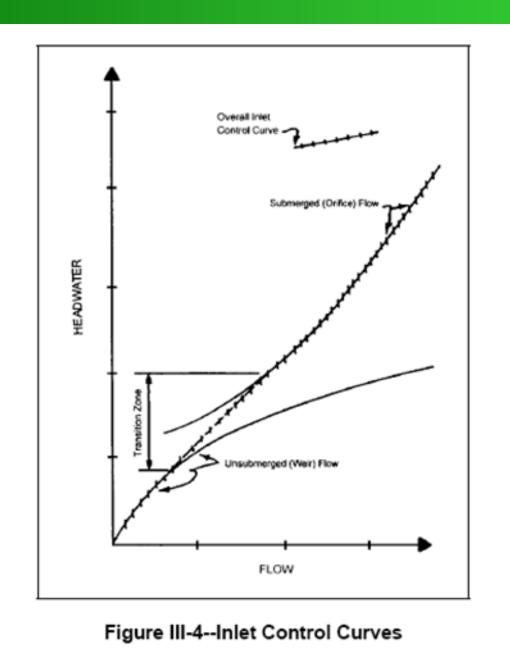
> Proposed concrete box Invert Upstream - 851.00 ft. Invert Downstream - 850.90 ft. Length - 56 ft. Roadway elevation - 860.00 ft. Culvert rise - 5 feet Discharge Info: 50 year (2% chance): 120 cfs 100 year (1% chance): 150 cfs First floor elevation of upstream building - 857.50 ft.

Answer: 857.50 ft for a 100-year storm

- Perform site visit to determine controlling features.
 - Tailwater
 - Existing culvert information (inlet type, culvert shape, culvert material, etc.)
 - Headwater constraints
 - Visible problems with existing culverts

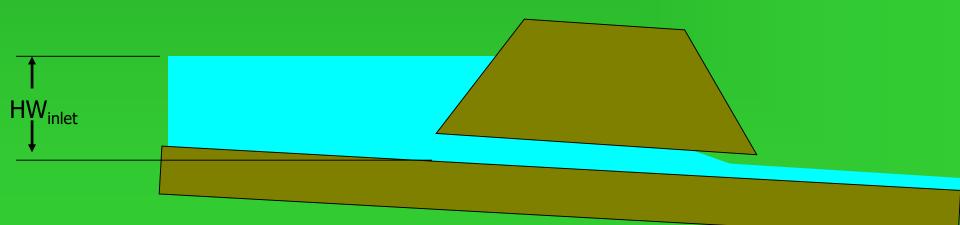



- Rules of Thumb
 - Most culverts in Michigan are designed for outlet control.
 - Culverts steeper than 1% are generally governed by inlet control.
 - Culverts in inlet control may have issues with air/cavitation and outlet velocities using conventional design.


- Definitions
 - Inlet Control Occurs when the culvert barrel is capable of conveying more flow than the inlet will accept
 - Outlet Control Occurs when the culvert barrel is not capable of conveying as much flow as the opening will accept.

Calculations

 Headwater values for both inlet and outlet control are calculated and compared to determine appropriate (and controlling) headwater value.



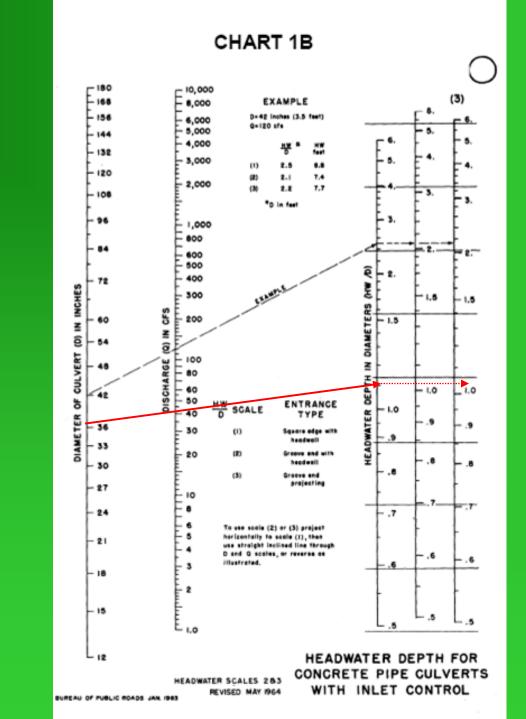
- Inlet Control
 - Factors influencing inlet control include inlet area, inlet edge configuration, and inlet shape.
 - Trapped air/cavitation may occur for submerged inlets designed in inlet control.
 - Most culverts in Michigan <u>are not</u> designed in inlet control.

Inlet Control

 Is the inlet control headwater affected by switching from a manufactured end section to just the pipe with the grooved end projecting?

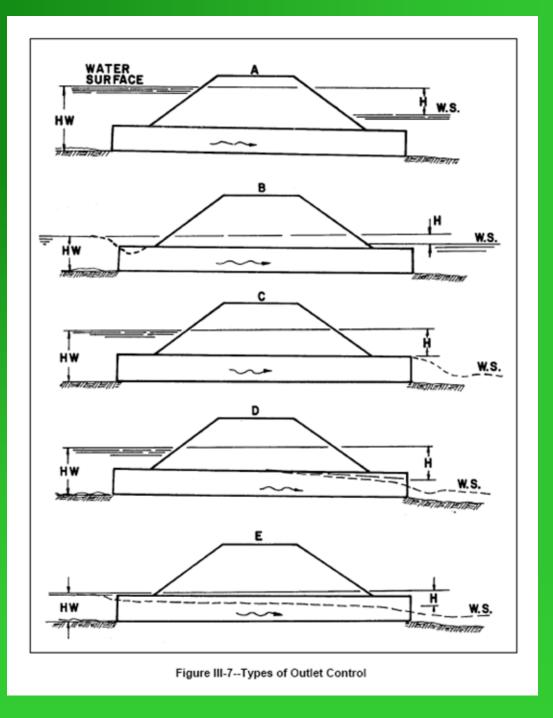
- Inlet Control
 - HW/D values found in Nomographs in HDS-5 or MDOT Drainage Manual
 - HW added to upstream invert
 - Beware of correct inlet configuration

Inlet Control


HW_{inlet}

• Find the inlet control HW value for the following:

Prop. 36" diameter concrete culvert Square edge with headwall 56 feet long


Q = 40 cfs

• Answer: 3.3 feet (Chart 1B)

Outlet Control

- Based on the Energy Equation
- Factors influencing outlet control include inlet area, inlet edge configuration, inlet shape, barrel roughness, barrel area, barrel shape, barrel length, barrel slope, and tailwater elevation.
- Most culverts in Michigan are designed for outlet control (conventional design).

Outlet Control

• Equations:

$$HW_{o} + \frac{V_{u}^{2}}{2g} = TW + \frac{V_{d}^{2}}{2g} + H_{L}$$
 (HDS-5, Eq.6)

 $H_{L} = H_{e} + H_{f} + H_{o} + H_{b} + H_{j} + H_{g}$ (HDS-5, Eq.1)

$$V = \frac{Q}{A}$$

(HDS-5, Eq.2)

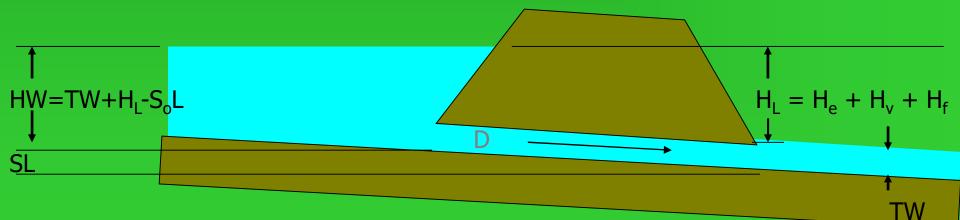
- Outlet Control
 - Typically calculated as follows:

$$HW_o = TW + H_L \tag{HDS-5, Eq.7}$$

$$H_{L} = \left[1 + k_{e} + \frac{29n^{2}L}{R^{1.33}}\right] \frac{V^{2}}{2g}$$
 (HDS-5, Eq.5)

- Bend and grate losses neglected
- Elevations must be known

Entrance Loss Coefficients (Outlet Control, Full or Partly Full)


 $H_e = k_e (y^2/2g)$

Type of Structure and Design of Entrance	Coefficient ke
Pipe, Concrete	
Mitered to conform to fill slope	0.7
* End-Section conforming to fill slope	
Projecting from fill, sq. cut end	
Headwall or headwall and wingwalls	
I	
Square-edge	0.0
Socket and of size (groove and)	0.2
Projecting from fill, socket end (groove-end	i)
Beveled edges, 33.7E or 45E bevels	
Side- or slope-tapered inlet	
Pipe, or Pipe-Arch, Corrugated Metal	
Projecting from fill (no headwall)	
Mitered to conform to fill slope, paved or un	npaved slope 0.7
Headwall or headwall and wingwalls square	e-edge0.5
* End-Section conforming to fill slope	
Beveled edges, 33.7E or 45E bevels	
Side- or slope-tapered inlet	
Box, Reinforced Concrete	
Wingwalls parallel (extension of sides)	
Wingwalls at 10E to 25E or 30E to 75E to 1	arrel
Square-edged at crown	
Headwall parallel to embankment (no wing	walle)
Readwait parallel to embankment (no wing	walls)
Square-edged on 3 edges	0.5
Rounded on 3 edges to radius of 1/	12 barrel
dimension, or beveled edges on	3 sides0.2
Wingwalls at 30E to 75E to barrel	
Crown edge rounded to radius of 1/	
Side- or slope-tapered inlet	
* Note: "End Section conforming to fill slope," ma	
sections commonly available from manuf	
they are equivalent in operation to a heat	dwall in both inlet and outlet control.

they are equivalent in operation to a headwall in both <u>inlet</u> and <u>outlet</u> control. Some end sections, incorporating a <u>closed</u> taper in their design have a superior hydraulic performance. These latter sections can be designed using the information given for the beveled inlet.

- Outlet Control
 - If elevations unknown, use the following equation:

$$HW = TW + H_L - S_0L \qquad (MDOT, Eq. 5.7)$$

Outlet Control

- Hydraulic radius and velocity must be adjusted for partial depth
- Use outlet depth (TW) for partial elements

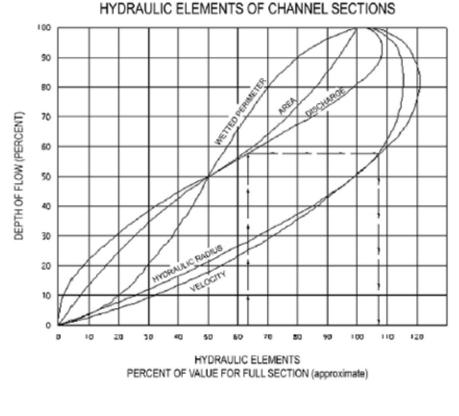
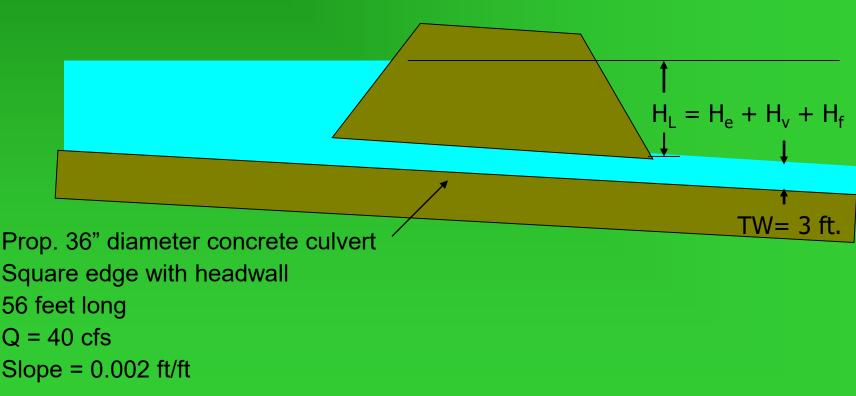



Figure 7-19 Values of Hydraulic Elements of Circular Section for Various Depths of Flow

Outlet Control

• Find the headloss for the following:

Outlet Control

Full flow at outlet:

$$A = \frac{\pi D^2}{4} = \frac{\pi (3)^2}{4} = 7.07 \text{ sft.}$$

$$R = \frac{A}{P} = \frac{\pi D^2}{4} = \frac{D}{4} = \frac{3}{4} = 0.75 \text{ ft.}$$

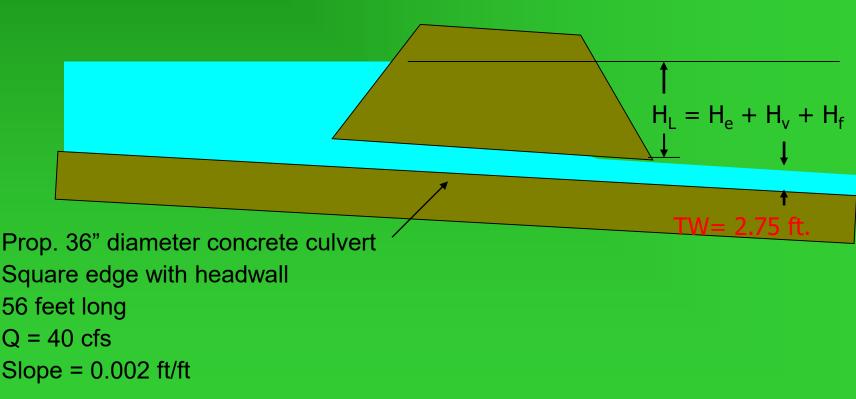
$$n = 0.012$$

$$k_e = 0.5$$

$$V = \frac{Q}{A} = \frac{40}{7.07} = 5.66 \text{ ft/s}$$

$$H_{L} = \left[1 + k_{e} + \frac{29n^{2}L}{R^{1.33}}\right] \frac{V^{2}}{2g} = \left[1 + 0.5 + \frac{29(0.012)^{2}56}{(0.75)^{1.33}}\right] \frac{(5.66)^{2}}{2(32.2)} = 0.92 \text{ ft.}$$

Culvert Summary Table - Culvert 1



Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth(ft)	Outlet Control Depth(ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	3.00	0.00	2.89	0-NF	0.00	0,00	0.00	3.00	0.00	0.00
5.00	5.00	3.02	0.95	2.91	3-M1f	0.79	0.69	3.00	3.00	0.71	0.00
10.00	10.00	3.09	1.38	2.98	3-M1f	1.15	0.99	3.00	3.00	1.41	0.00
15.00	15.00	3.20	1.76	3.09	3-M1f	1.44	1.23	3.00	3.00	2.12	0.00
20.00	20.00	3.23	2.10	3.12	4-FFf	1.72	1.43	3.00	3.00	2.83	0.00
25.00	25.00	3.36	2.41	3.25	4-FFf	1.99	1.61	3.00	3.00	3.54	0.00
30.00	30.00	3.52	2.70	3.41	4-FFf	2.31	1.77	3.00	3.00	4.24	0.00
35.00	35.00	3.70	2.99	3.59	4-FFf	3.00	1.92	3.00	3.00	4.95	0.00
40.00	40.00	3.92	3.30	3.81	4-FFf	3,00	2.06	3.00	3.00	5.66	0.00
45.00	45.00	4.16	3.63	4.05	4-FFf	3.00	2,18	3.00	3.00	6.37	0.00
50.00	50.00	4.43	4.00	4.32	4-FFf	3.00	2,29	3.00	3.00	7.07	0.00

Crossing Summary Table Culvert Summary Table	Geometry Inlet Elevation: Outlet Elevation:	0.11 ft 0.00 ft	Plot Crossing Rating Curve		
Water Surface Profiles Improved Inlet Table	Culvert Length: Culvert Slope: Inlet Crest:	56.00 ft 0.0020 0.00 ft	Culvert Performance Curve		
Customized Table Options Help Flow Types Edit Input Data	Inlet Throat:	0.00 ft Profiles	Selected Water Profile Close		

Outlet Control

• Find the velocity for the following:

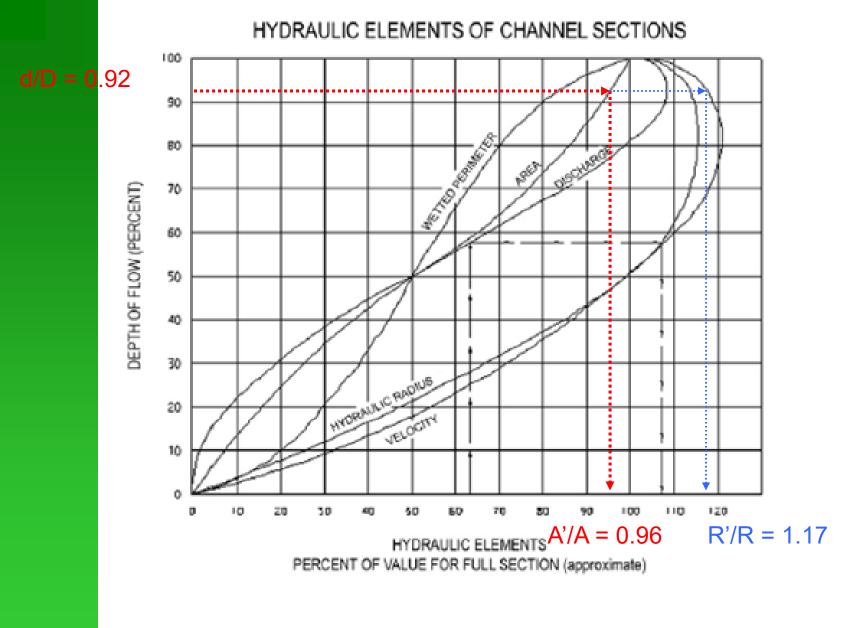
Outlet Control

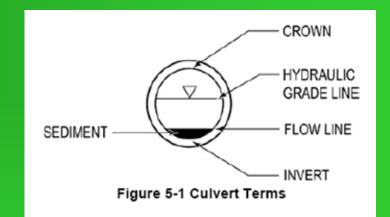
$$A = \frac{\pi D^2}{4} = \frac{\pi (3)^2}{4} = 7.07 \text{ sft.} \text{ (full flow)}$$
$$\frac{d}{D} = \frac{2.75}{3} \approx 0.92$$
$$A'$$

 $\frac{A}{A} \approx 0.96$ (Hydraulic Elements chart)

A' = 0.96A = 0.96(7.07) = 6.79 sft.

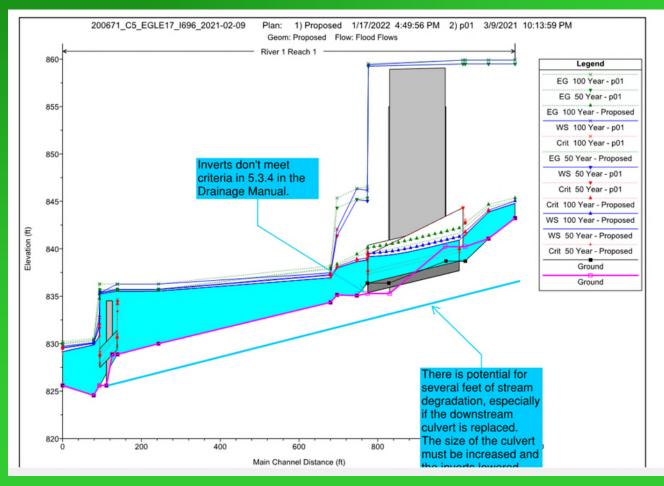
$$V = \frac{Q}{A'} = \frac{40}{6.79} = 5.89$$
 ft/s

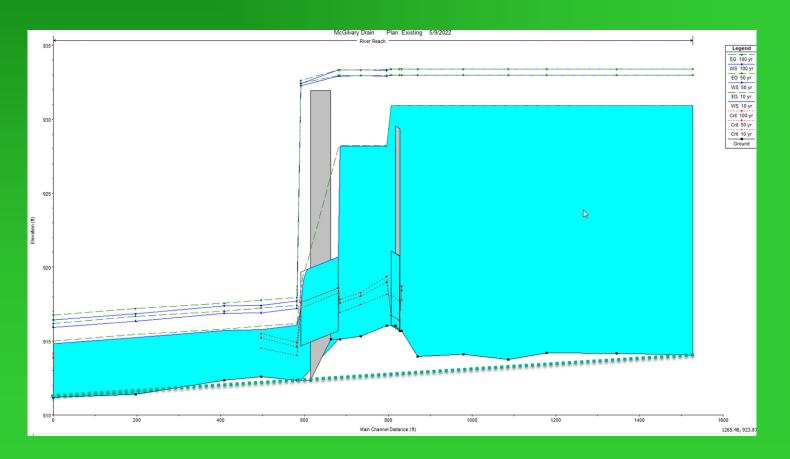



Figure 7-19 Values of Hydraulic Elements of Circular Section for Various Depths of Flow

- Miscellaneous Items
 - Recommend using actual surveyed elevations when sizing culverts to reduce errors.
 - Tailwater
 - Use surveyed cross-sections for all crossings with a defined bed and bank in channel (which includes "blue lines" on USGS maps).
 - Don't forget to check for any downstream structures!

- Miscellaneous Items
 - Beware of evidence of problems in the field.
 - Scour/erosion/headcuts
 - Debris lines at inlet
 - High water marks
 - Culvert damage (joint separation)
 - Road cracking over culvert




- Miscellaneous Items
 - Bury the inverts below the flowline as described in
 5.3.4 and on page
 5-16 in the MDOT Drainage Manual

- Miscellaneous Items
 - Beware of long-term degradation on steep streams or future drain cleanouts or legal drain elevations on County Drain crossings

- Miscellaneous Items
 - High head differential at inlet can lead to problems with buoyancy and trapped air/cavitation.
 - Can be problematic with joints on commercial ends.
 - Also problematic with cast-in-place headwalls without proper reinforcement.

- Miscellaneous Items
 - Energy Dissipation
 - Required when flow transitions from supercritical to subcritical flow
 - Can be problematic for crossings requiring a Part 301 permit.
 - Common practice is to utilize manholes as drop structures for steep culverts
 - Beware of trapped air in pressure flow conditions.
 - Contact the Hydraulic Unit Supervisor for assistance

Questions?

