
MDOT Hydrology 101

Erik Carlson, PE Environmental Section – Hydraulics Unit

Objectives

- Define Hydrologic Cycle and Terms
- Delineate a watershed
- Develop understanding of MDOT Hydrology policy and procedures
- Define Hydrologic design methods
- Delineate and calculate the time of concentration
- Calculate curve number through soil/landuse delineations

Hydrologic Cycle

Hydrologic Cycle

Most design applications:

- Precipitation
- Infiltration
- Storage
- Surface runoff

What is a 100 year storm?

Answer: <u>Rainfall</u> totals that have a 1% probability of occurring at a location in any given year.

What is a 100 year flood?

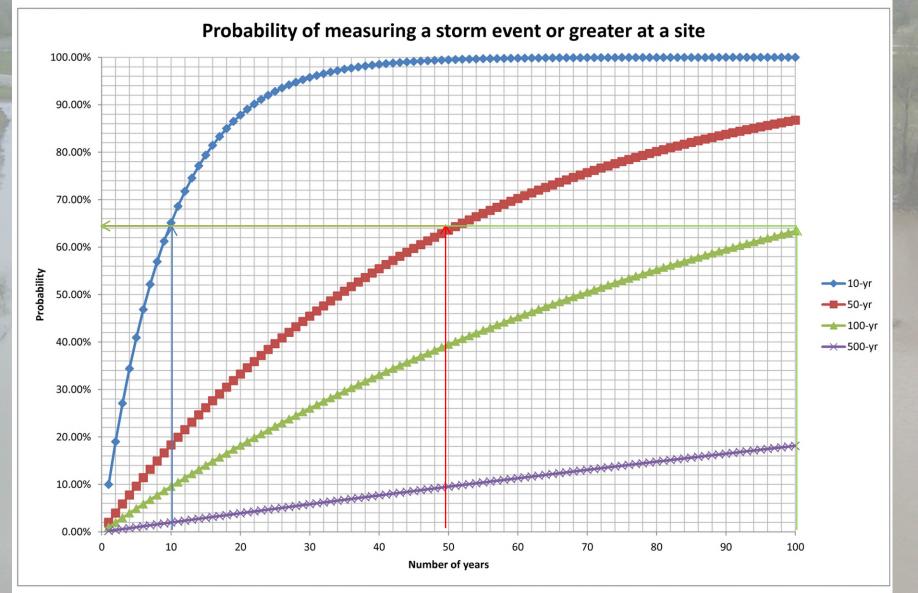
Answer: <u>Flood</u> that has a 1% probability of occurring at a location in any given year.

Probability:

Whereas: $P_T = probability$ T = year rainfall or flood

 $P_{T} = 1/T$

What is the probability of a 10 year storm in any given year?


Answer: 10% chance

Probability of Exceedence:

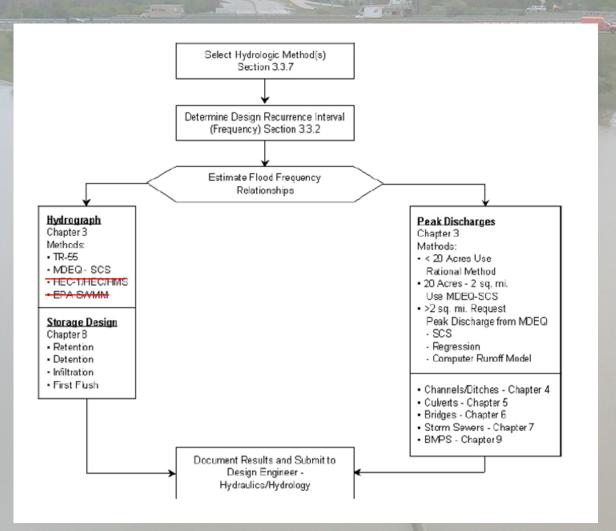
$P_T = 1 - (1 - (1 / T))^n$

Whereas: P_T = probability of exceedence T = year rainfall or flood n = number of years

.20

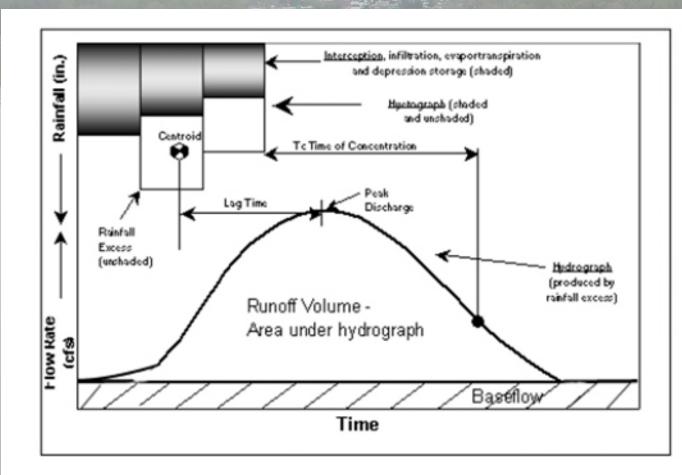
- Additional notes:
 - Modeling assumes uniform rainfall across entire watershed
 - Often see high rainfall amounts over small portions of the watershed, leading to flooding of small structures but not major structures.
 - Rainfall and discharge values are determined based on limited statistical data, and are constantly evolving

- Spread calculations
 - 10 year (10% chance) flood
 - 50 year (2% chance) flood at sag points and depressed freeways
- Storm Sewer Pipe
 - 10 year (10% chance) flood
 - 50 year (2% chance) flood for depressed freeways
- Culverts (drainage areas less than 2 sq. miles)
 - 50 year (2% chance) flood
 - Check for harmful interference in the 100 year (1% chance) flood
- Ditches
 - 50 year (2% chance) flood
 - Check for harmful interference in the 100 year (1% chance) flood


- Watershed delineation
 - Typically done on USGS topographic maps
 - Do not assume political or property boundaries for watershed divides
 - Things to watch for
 - Cutting valleys
 - Not choosing closest contour
 - Assuming roads as divides rather than contours
 - Boundary not perpendicular to contours

Watershed delineation (cont.)

Assumptions


- If not absolutely clear that a watercourse crosses a road through a <u>filled</u> area, assume the road is the divide.
- Assume drainage <u>can</u> cross roads unless clearly shown otherwise by contours.
- Depressions of <u>one</u> contour can either be assumed to contribute or not depending on size/circumstance.
- Depressions of <u>two</u> contours are considered non-contributing as well as their individual contributing drainage areas.
 - To determine contributing/non-contributing
 - » Define storage potential (compute using average end areas of contours)
 - » Define runoff potential (SRO * DA)
 - » Compare the two

1815-

Peak discharge vs. Volume?

18 Mar

Figure 3-1 Representation of Hydrograph, Hyetograph, and Rainfall Excess

- Rational Method (drainage areas under 20 acres)
 - Not typically used for volume computations
- MDEQ-SCS (drainage areas over 20 acres but less than 2 sq. miles)
 - TR-55 used with MDEQ unit hydrograph when T_c < 1 hr
 - Typically used for volume computations
- For drainage areas greater than 2 square miles, contact Hydraulic Unit.

Rational Method (drainage areas less than 20 acres):

Q = C | A

(MDOT Drainage Manual 3.1)

Whereas:

- Q = peak discharge
- C = Runoff coefficient
- I = Rainfall Intensity, in./hr.
- A = drainage area, acres

Rational Method:

- Limited to drainage areas less than 20 acres
- C factors based on Table 3-1 in MDOT Drainage Manual
- Rainfall intensities are defined by the time of concentration (IDF tables, Appendix 3-B, MDOT Drainage Manual)
- The time of concentration (t_c) is often assumed, unless the flow path is well defined:
 - 15 minutes for most applications
 - 10 minutes for depressed freeways and pump station designs
- When choosing a C factor, the designer should consider 20 years of future development
- Use should be limited to computing peak discharge

MDOT DRAINAGE MANUAL RAINFALL INTENSITY – DURATION TABLE

TIME INTERVAL ON THIS SHEET = 0.1 MINUTES Rainfall Intensity given in inches per hour.

t_c

Time in	Zone 1		Zone 2			Zone 3			Zone 4		Zone 5				
Minutes	10 year	50 year	100 year	10 year	50 year	100 year	10 year	50 year	100 year	10 year	50 year	100 year	10 year	50 year	100 year
13,0	3.35	4.26	4.64	3.19	4.06	4.42	3.44	4.37	4.76	3,36	4.27	4.64	3,69	4.68	5.11
13.1	3.34	4.25	4.62	3.18	4.04	4.41	3.43	4.36	4.74	3.35	4.25	4.62	3.67	4.67	5.09
13.2	3.33	4.23	4.60	3.17	4.03	4.39	3.41	4.34	4.72	3.33	4.24	4.60	3.66	4.65	5.07
13,3	3.31	4.21	4.58	3.16	4.01	4.37	3.40	4.32	4.71	3.32	4.22	4.58	3.64	4.63	5.05
13.4	3.30	4.20	4.57	3.14	4,00	4,36	3.39	4.31	4.69	3,31	4.20	4.57	3.63	4.61	5.03
13,5	3.29	4.18	4.55	3.13	3.98	4.34	3.37	4.29	4.67	3.29	4.19	4.55	3.61	4.60	5.02
13,6	3.27	4.17	4.53	3.12	3.97	4.33	3.36	4.28	4.66	3.28	4.17	4.53	3.60	4.58	5.00
13.7	3.26	4.15	4.52	3.11	3.95	4.31	3.35	4.26	4.64	3.27	4.16	4.52	3.58	4.56	4.98
13.8	3.25	4.14	4.50	3.10	3.94	4.29	3.33	4.24	4.62	3.25	4.14	4.50	3.57	4.55	4.96
13,9	3.24	4.12	4.49	3.08	3.93	4.28	3.32	4.23	4.61	3.24	4.13	4.49	3.56	4.53	4.94
14.0	3.22	4.11	4.47	3.07	3.91	4.26	3.31	4.21	4.59	3.23	4.11	4.47	3.54	4.51	4.93
14.1	3.21	4.09	4.45	3.06	3,90	4.25	3.30	4.20	4.57	3.22	4.10	4.45	3.53	4.50	4,91
14.2	3.20	4.08	4.44	3.05	3.88	4.23	3.28	4.18	4.56	3.21	4.08	4.44	3.52	4.48	4.89
14.3	3.19	4.06	4.42	3.04	3,87	4,22	3.27	4.17	4.54	3.19	4.07	4.42	3.50	4.46	4.87
14.4	3.18	4.05	4.41	3.03	3.86	4.20	3.26	4.15	4.53	3.18	4.06	4.41	3.49	4.45	4.86
14.5	3.16	4.03	4.39	3.01	3.84	4.19	3.25	4.14	4.51	3.17	4.04	4.39	3,48	4.43	4.84
14.6	3.15	4.02	4.38	3.00	3,83	4.18	3.24	4.13	4.50	3,16	4.03	4.38	3.46	4.42	4.82
14.7	3.14	4.01	4.36	2.99	3.82	4.16	3.22	4.11	4.48	3.15	4.01	4.36	3.45	4.40	4.81
14.8	3.13	3.99	4.35	2.98	3,80	4.15	3.21	4.10	4.47	3.14	4.00	4.35	3.44	4.39	4.79
14.9	3.12	3.98	4.33	2.97	3,79	4.13	3.20	4.08	4.45	3.12	3.99	4.33	3.43	4.37	4.78
15.0	3.11	3.97	4.32	2.96	3.78	4.12	3.19	4.07	4.44	3.11	3.97	4.32	3.42	4.36	4.76
15.1	3.10	3.95	4.31	2.95	3.77	4.11	3.18	4.06	4.43	3.10	3.96	4.31	3,40	4.34	4.74
15.2	3.09	3.94	4.29	2.94	3.75	4.09	3.17	4.04	4.41	3.09	3.95	4.29	3.39	4.33	4.73
15.3	3.08	3.93	4.28	2.93	3.74	4.08	3.16	4.03	4.40	3.08	3.93	4.28	3.38	4.32	4.71
15.4	3.07	3.91	4.26	2.92	3.73	4.07	3.15	4.02	4.38	3.07	3.92	4.26	3.37	4.30	4.70
15.5	3.05	3.90	4.25	2.91	3.72	4.05	3.13	4.00	4.37	3.06	3.91	4.25	3.36	4.29	4,68
15.6	3.04	3.89	4.24	2.90	3.71	4.04	3.12	3.99	4.36	3.05	3.90	4.24	3.35	4.27	4.67
15.7	3.03	3.88	4.22	2.89	3.69	4.03	3.11	3.98	4.34	3.04	3.88	4.22	3.33	4.26	4.65
15.8	3.02	3.87	4.21	2.88	3.68	4.02	3.10	3.97	4.33	3.03	3.87	4.21	3.32	4.25	4.64
15.9	3.01	3.85	4.20	2.87	3.67	4.00	3.09	3.95	4.31	3.02	3.86	4.20	3.31	4.23	4.62

3-B-4

- Rational Method (cont):
 - Use a weighted C for different land uses within a watershed

$$\bar{C} = \frac{\sum CA}{A}$$

 For storm sewer computations, the CA values for each catch basin/manhole are added, and then multiplied by the rainfall intensity:

$$Q_n = \Sigma(CA) * I$$

or
 $Q_n = ((C_1A_1) + (C_2A_2) + ... (C_nA_n)) * I$

Sample Problem

Determine a weighted "C" for a 0.5 acre watershed with 0.4 acres of grassy area and 0.1 acres of pavement.

Table 3-1 Runoff Coefficients for Rational Formula

Type of Drainage Area	Runoff Coefficient, C*
Concrete or Asphalt Pavement	0.8 - 0.9
Commercial and Industrial	0.7 - 0.9
Gravel Roadways and Shoulders	0.5 - 0.7
Residential – Urban	0.5 - 0.7
Residential – Suburban	0.3 - 0.5
Undeveloped	0.1 - 0.3
Berms	0.1 – 0.3
Agricultural – Cultivated Fields	0.15 - 0.4
Agricultural – Pastures	0.1 - 0.4
Agricultural – Forested Areas	0.1 - 0.4

For flat slopes or permeable soil, lower values shall be used. For steep slopes or impermeable soil, higher values shall be used. Steep slopes are 2:1 or steeper.

From Michigan State Administrative Rules R 280.9.

Pavement Grass

0.9 * 0.1 acres =

<u>C</u>

- 0.2 * 0.4 acres =
- $\Sigma = 0.5$ acres

0.09 acres

Sample Problem

CA

- 0.08 acres
- 0.17 acres

$$\bar{C} = \frac{0.17 \text{ acres}}{0.5 \text{ acres}} = 0.34$$

MDEQ-SCS Method:

- Drainage areas greater than 20 acres but less than 2 square miles
- "Computing Flood Discharges for Small Ungaged Watersheds," Sorrell, 2010
- Rainfall to runoff model
 - RCN determined from soil/landuse delineations
 - Consider 20 years of future development
- SCS Method with modified unit hydrograph
 - 28.5 percent of volume under the rising limb
 - Type II rainfall distribution
- 24 hour design rainfall

Computing Flood Discharges For Small Ungaged Watersheds

Peak Discharge Calculations:

Warercourse	Clear Creek					
Drainage Area Com Drainage Area Basin Number Basin Nume Quad Section Town/Range Latitude Longitude County Township Location Job Number	18.23 16.80 12 Clintori P23SW 14 T03NR03E 42.222222 54.11111 Macomb Ray First Street	19 mile 19 mile	Insert infom green cells. Place your cu the red toinny additional by	rsor over gles for		
4	Jun-04-2010					
Frequency	50%	20%	10%	4%	2%	1%
Discharge (cfs)		31	415	553	665	7
Volume (Acre.ft)	190	6.4	L 842	1122	1350	15

Frequency	50%	20%	10%	4%	2%	1%	0.50%	0.20%
Discharge (cfs)	192	317	415	553	665	786	914	1100
Volume (Acre-ft)	389	644	842	1122	1350	1595	1854	2232
Pending								
% throughout/mid	2.1	2.1	2.1	2.1	2.1	21	2.1	2.1
% upper reaches	0	0	0	0	0	0	0	0
% design point	0	0	0	0	0	0	0	0
Ponding Adjustment	0.77	0.78	0.80	0.82	0.84	0.86	0.88	0.90
Adjusted Flow (cfs)	148	247	332	453	560	679	800	985

Richard C. Sorrell, P.E. Michigan Department of Natural Resources and Environment Land and Water Management Division June 22, 2010 www.michigan.gov/hydrology

MDEQ-SCS Method (cont.): $q_p'=238.6 * T_c^{0.82}$ $SRO = \frac{(P - Ia)^2}{P - Ia + S}$ $S = \frac{1000}{RCN} - 10$ $I_a = 0.2 *S$ $Q = q_p' * SRO * DA * pond$

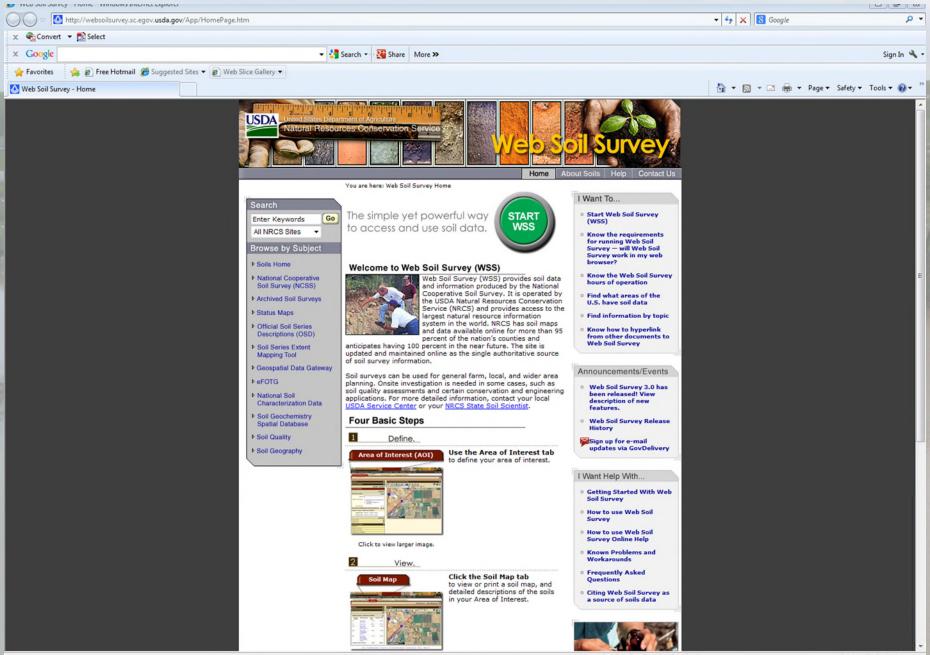
DA = drainage area (sq. miles)
RCN = Runoff curve number
Pond = watershed ponding reduction factor
P = 24 hr. rainfall (in.) found in "Computing Flood Discharges for Small Ungaged Watersheds"

 $(1 hr < T_c < 40 hr)$

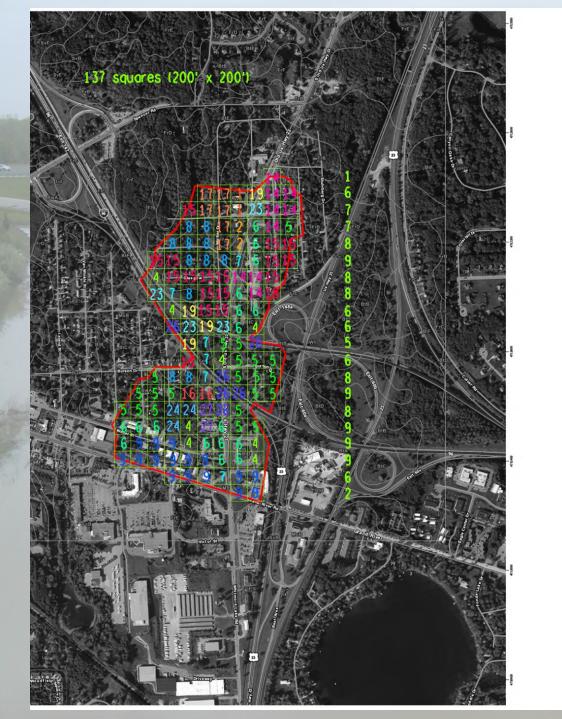
- MDEQ-SCS Method (cont.):
 - DEQ Excel spreadsheet:

http://www.michigan.gov/deq/0,4561,7-135-3313_3684_3724-9324--,00.html

If tc < 1 hr, use TR-55 with the following ordinates for unit hydrograph: 0.0, 0.5, 1.0, 0.8, 0.6, 0.4, 0.2, 0.0


- Runoff Curve Number (RCN)
 - Combination of soil type and landuse
 - Soil types
 - A (well-drained)
 - B
 - C
 - D (poorly drained)
 - Landuse values developed for agricultural purposes
 - Beware of drained/undrained soil types (A/D, B/D, etc.)!
 - Beware of complex soils!




Table 6.1 - Runoff curve numbers for hydrologic soil-cover complexes (AMC-II conditions)

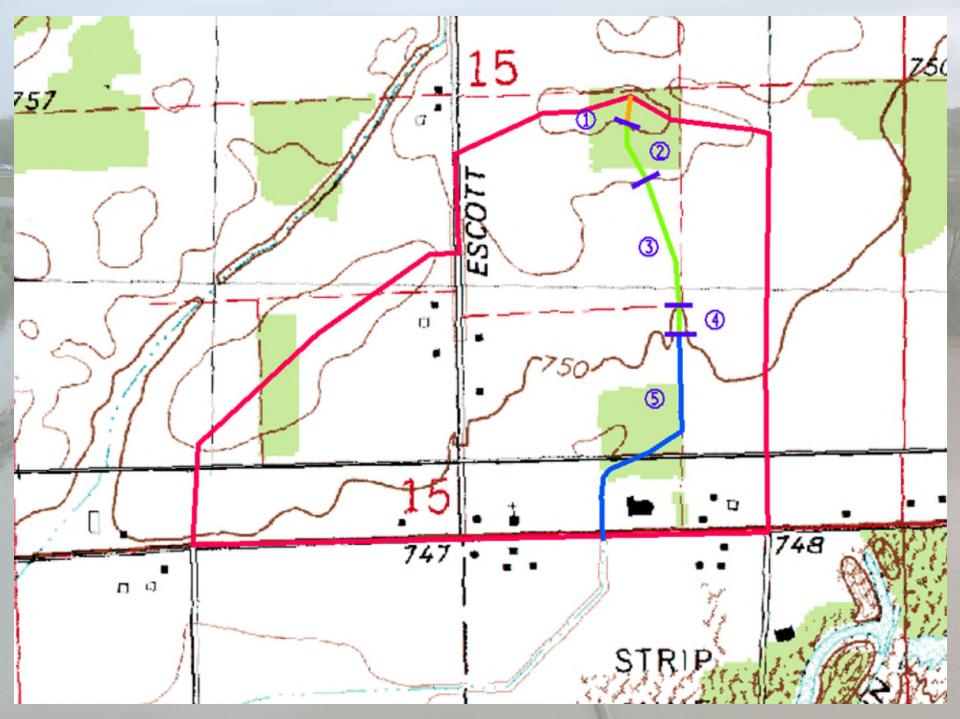
Land use		Hydrologic	Hydrologic soil group			
	Treatment or practice	condition	A	B	С	D
Fallow soil	Straight row		77	86	91	94
	Charlisht annu	Poor	72	81	88	91
	Straight row	Good	67	78	85	89
Demostra	Contoured	Poor	70	79	84	88
Row crops	Contoured	Good	65	75	82	86
	Contoured and terraced	Poor	66	74	80	82
	Contoured and terraced	Good	62	71	78	81
	Straight row	Poor	65	76	84	88
	Straight row	Good	63	75	83	87
Small arain	Contoured	Poor	63	74	82	85
Small grain	Contoured	Good	61	73	81	84
	Contoured and terraced	Poor	61	72	79	82
	Contoured and terraced	Good	59	70	78	81
	Straight row	Poor	66	77	85	89
	Straight Tow	Good	58	72	81	85
Close-seeded legumes or	Contoured	Poor	64	75	83	85
rotation meadow	Contoured	Good	55	69	78	83
	Contoured and terraced	Poor	63	73	80	83
	Contoured and terraced	Good	51	67	76	80
		Poor	68	79	86	89
		Fair	49	69	79	84
Pasture or range		Good	39	61	74	80
Fasture of range		Poor	47	67	81	88
	Contoured	Fair	30	59	75	83
		Good	30	35	70	79
Meadow			30	58	71	78
		Poor	45	66	77	83
Woods		Fair	36	60	73	79
		Good	30	55	70	77
	1/ acre		77	85	90	92
	1/4 acre		61	75	83	87
Residential	1/3 acre		57	72	81	86
	1/2 acre		54	70	80	85
	1 acre		51	68	79	84
Open spaces (parks, golf	Good condition: Grass cover >	75% of area	39	61	74	80
courses, cemeteries, etc.)	Fair condition: Grass cover 50-	75% of area	49	69	79	84
Commercial or business area (85% impervious)			89	92	94	95
Industrial district (72%			-			-
impervious)			81	88	91	93
Farmsteads			59	74	82	86
Paved areas (roads, drive-						
ways, parking lots, roofs)			98	98	98	98
Water surfaces (lakes, ponds,			100	107	100	100
reservoirs, etc.)			100	100	100	100
Swamp	At least 1/3 is open water		85	85	85	85
Sugard,	Vegetated		78	78	78	78

- Runoff Curve Number (RCN)
 - Miller Grid Method
 - Divide watershed into individual squares, and assign numeric values correlating to a soil/landuse combination
 - Sample grid size (may have to adjust for site conditions)
 - Drainage areas less than 0.5 sq. mi. 200' x 200'
 - Drainage areas less than 1.0 sq. mi. 400' x 400'
 - Drainage areas less than 2.0 sq. mi. 500' x 500'
 - Digital soil maps can be electronically printed and imported into Microstation
 - http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm

Class	A
Commercial	1
Res ¹ /2	2
Paved	3
Res1	21
Class	8
Open Good	4
Res ¹ /2	5
Commercial	6
Forest	24
Paved	26
Closs	с
Open Good	7
Res ¹ /2	8
Commercial	9
Paved	20
Forest	22
Class	D
Swamp	10
Forest	11
Water	12
Paved	18
	10

Complex	1
Forest	13
Commercial	14
Res ¹ /2	15
Open Good	23

Complex	2
Forest	16
Res ¹ /2	17
Commercial	27


- Time of Concentration (t_c)
 - Travel time from the hydraulically most distant point within a watershed.
 - $V = K * S^{1/2}$

(MDOT Drainage Manual, Eq. 3.2)

- K
- Small tributary defined watercourses (blue lines on topographical maps) = 2.1
- Waterway = 1.2
- Sheet flow (limited to 300') = 0.48
- S is slope in %
- $T_c = L / (3600 * V)$

(in hrs.)

- Beware of units!
- Establish breaks at contour lines and flow type changes
- Gap out ponds and lakes when delineating flow paths
- Beware of higher discharges within subwatersheds
- Use TR-55 when $T_c < 1$ hr.

- Ponding factors
 - Used to account for storage within a watershed
 - Examples of ponding:
 - Depression contours
 - Swamps
 - Lakes or ponds
 - Factors based on location within watershed (upper reaches, throughout, at design point)
 - Use only one adjustment factor
 - Do not use ponding factor when volume or routing calculations are required

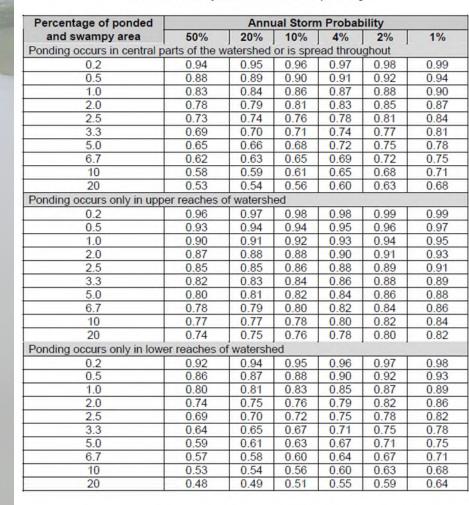
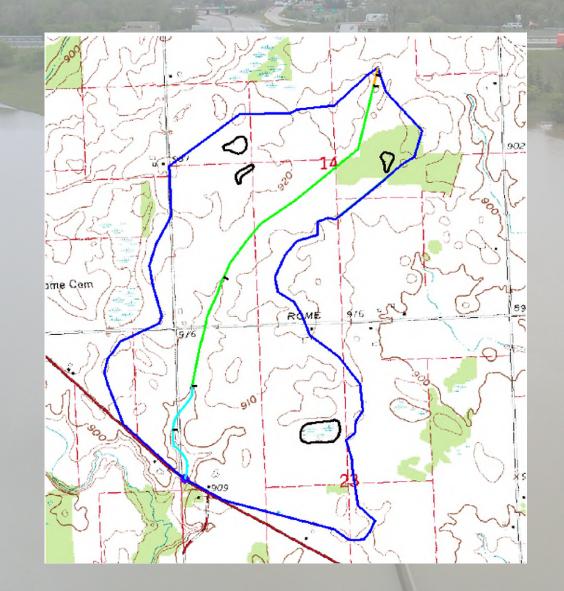
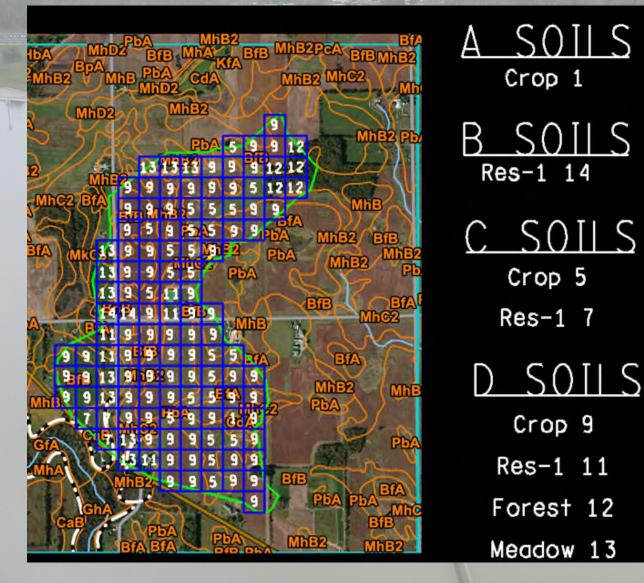




Table 10.1 - Adjustment factors for ponding

WATERSHED & TIME OF CONCENTRATION DELINEATION BREAK-OUT

A S Frank

SCS-92 Method Discharge Calculations:

													_		
Description				Time of Concentration							Curve	Nu	nber		
Watercourse	Unnamed Trib.	to Hazen Co	eek	Flow Type	Length	U/S Elev	D/S Elev	Slope	Velocity	Te	Soils		Land Use		
Drainage Area	0.71	sq. mile			feet	feet	feet	90	ft/s	baurs	Group	90	Type	%	CN
Cont Drainage Area	0.71	sq. mile		Sm Trib	876	890.00	\$\$9.00	0.114	0.710	0.34	A	0.8	Crop	100	65
Basin Number	0			Sm Trib	794	900.00	890.00	1.259	2.357	0.09					
Basin Name				Waterway	1834	910.00	900.00	0.545	0.886	0.57					
Quad	0			Waterway	4042	919.58	910.00	0.237	0.584	1.92					
Section	22/23			Sheet Flow	178	920.00	919.58	0.236	0.233	0.21	B	1.6	Res 1	100	68
Town/Range	T65, R2E			Sheet Flow	122	920.29	920.00	0.238	0.234	0.14					
Latitude	0														
Longitude	0														
County	Lenawee										С	21	Crop	88	84
Township	Rome												Res 1	12	79
Location	0														
Job Number	110627														
By	J. Logsdon										D	77	Crop	79	88
Date	Jul-31-2019			Total	7846			0.399	0.835	3.29			Res 1	5	84
				" Partians of the	Time of Con	centration that a	were cut off to exa	hate alternate :	trasel routes.				Forest	5	79
													Meadow	11	78
Discharge															
Frequency	10%	4%	2%	1%	0.50%	0.20%			1% F	requency	Hydrogra	ph			
Adj Rainfall (inch)	3.13		3.98	4.36			20								
Avg Runoff (inch)	1.71		2.46	2.80			(J)15	0 -	-	-					
Comp Curve Number	85.2		85.2	85.2			and a		/						
Discharge (cfs)	109	136	157	179	200	231	Discharge	°1	/						
Volume (Acre-ft)	65	\$1	93	106	119	137	o jisc	0- /				-			
Ponding: throughout	2	2	2	2	2	2	н						-		
Ponding: upper reaches	0	0	0	0	0	0		0.0	2.8	5.6 8	5 11.	3	14.1	16.9	
Ponding: design point	0	0	0	0	0	0				Time	(hours)				
Ponding Adjustment	0.81	0.83	0.85	0.87	0.55	0.90					1.1		1		
Adjusted Flow (cfs)	88	113	133	155	176	208		Unit Hydr	ograph Pe	ak (cls/sq.	mile-in)		89.8	6	
Flow (cfs) with incr. SRO:	90		134	156											

Hydrologic Analysis Synopsis

By: Justin Logsdon Date: October 13, 2016 Chk: Date:

Job Location Information:

 Control Section:
 46061

 Job Number:
 110627

 Trunkline:
 US-223

 Location:
 Sec. 22/23, T6S, R2E

 Waterourse:
 Umamed trib.

 Tributary to:
 Hazen Creek

 MDEQ Hydro Basin:
 29 (Lenawce)

'Hydrograph Synthesis:

Drainage Area:	0.71 sqmi.
**Tc:	3.29 hr.
Composite CN:	85.19
Percent Ponding:	2%

Peak Flows:

10 year (10%):	90 cfs					
50 year (2%):	135 cfs					
100 year (1%):	155 cfs					

^{*} MDEQ SCS, "Computing Flood Discharges for Small Ungaged Watersheds", Sorrell, June 2010. Soil info from "Soil Survey of Lenawee County, Michigan.". Landuse corroborated w/ Google Earth aerial photos (10/2016).

[†] Discharge Estimates rounded up to the nearest 5 cfs or down if <1 over.

Questions?