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DESIGN CONSIDERATIONS FOR STEEL REINFORCEMENT 
IN CONTINUOUSLY REINFORCED PAVEMENT 

This study concerns the effects of concrete shrinkage and tempera­
ture change on the selection of steel reinforcement for a maximum allow­
able crack opening in continuously reinforced pavements. This report 
does not prescribe any actual design procedure, but rather points out 
some of the factors, and their relationships, which influence' the choice 
of steel reinforcement. Emphasis is placed on the magnitude of crack 
openings in the concrete as a primary consideration affecting design. 

In particular, the discussion involves the influence of the size of 
deformed bars for deformed bar mat reinforcement and crosswire spacing 
for welded wire mesh reinforcement, the effects of the variation of the 
ultimate tensile strength of the concrete, and the variability of climate 
conditions on the selection of the steel ratio. 

The following presentation is concerned with the stresses and defor­
mations in steel reinforcement in continuously reinforced concrete pave­
ments. Both deformed bar and welded wire mesh reinforcement are 
considered. Equations are developed, based on a theoretical stress dis­
tributionin the concrete and the steel due to shrinkage and to temperature 
drop. 

The purpose of the steel reinforcement is to resist the induced 
stresses set up by the restraint of the pavement in resisting deformation 
due to shrinkage and temperature change. It is assumed that in the center 
region of a continuously reinforced pavement--about 300ft from the free 
ends--the steel reinforcement is completely restrained from any move­
ment, and the only deformation taking place is due to concrete slippage 
at the cracks. Further, since these movements are small and restricted, 
subgrade friction is assumed .to be zero. In addition, it is assumed that 
the thermal coefficients of linear expansion for steel and concrete are 
equal, and that temperature is uniformly distributed throughout the slab. 



DEFORMED BAR REINFORCEMENT 

Consider a reinforced concrete slab segment of lengtb L subjected to 
shrinkage aud a temperature drop. If unrestrained, tbis segment would 
shorten by an amount L'lt+ L'l sh , representing tbe temperature and 
shrinkage deformation. If a force were now applied to the steel at tbe 

6 t + L'l sh ends of the segment, causing a deformation 
2 

at each end, tbe 

steel would return to its original position. The concrete, however, be­
cause of slippage, or relative steel-to-concrete displacement, would not 
quite return to its original position. The assumed stress distributions 
and deformations are shown in Figure 1. 

Because tbe. steel is restrained, a stress f SO is produced in the steel 
at tbe ends of the segment, causing tbe concrete to slip an amount S from 
its original position. This sets up a uniform bond stress .}l between tbe 
steel and concrete, which is distributed over some length a. The con­
crete stress and steel stress distribution for botb shrinkage and tempera­
ture drop varies linearly as shown, where fs is tbe steel stress, and 
f c the concrete stress at tbe distance a from tbe face of tbe segment. · 
Witb tbis stress distribution, tbe relative steel-to-concrete deformation 
would vary parabolically from S to zero as shown. 

Considering temperature drop and shrinkage individually, tbe following 
equations are developed. 

Temperature Drop 

Referring to Figure 1, in tbe region L -2a tbe relative steel-to­
concrete deformation is zero, and tbe steel strain f s is equal to tbe 

Es 
concrete strain fc; tbus, Es = Ec or fs = nfc where n = Ec and Es and 

E C are tbe moduli of elasticity for steel and concrete. 

Forequilibrium, fc Ac +fs As= fso As where Ac and As are 
tbe concrete and steel areas, or 

fc f so =- (I p 
f 

+np)=n~ ( l+np) 

where p is tbe steel ratio 
As 

Ac 
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Figure 1. Stress distribution for deformed bars 
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Figure 2. Stress distribution for welded wire mesh 



Also where L o is the bar 

perimeter. 

In the region a at either end, the relative steel··to-concrete deforma­
tion at a point X would be equal to the steel deformation minus the con­
crete deformation at the point X, or 

Since 

and 

-lxfcxdx. 
o Ec 

fsx = ~ (fso-fs) + fs 

f ex = fc ( a ~ x) , 

the value of 6x at X equal to a would be 

f so a 
s = 2Es 

or by substitution from above 

fso a 
s=--. 2E 5 

From the condition that the steel length remains unchanged, 

where 0( is the coefficient of thermal expansion and t is the temperature 
drop. Integrating. and reducing, one finds 

and 

(np+I)(Esodll 
fso = a+npL 

f _E 5 odlp 
c- a+npl 
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Shrinkage 

Again referring to Figure 1, in the region L -2a the relative steel­
to-concrete deformation is zero, and the concrete strain is Ec = tsh- Es, 

fc fs 
where Csh is the shrinkage strain. Then, = Esh- - or 

Ec Es 

fs = Es Esh -nfc. 

For equilibrium, f so As = f c Ac - fs As 

or 
f c f c 

= P - fs = P ( I+ np) - Es Esh 

Es Esh- fs ( 1 + np) 
= np 

and a as before. 

In the region a at either end 

fsx dx -1x fcx dx 
Es o Ec ' 

where (
f so+ f s) 

= x- fs a 
and 

(a-x) fcx = -a-· fc. 

The value of flx at X =a would be 

a a Esh 
s = 2 E s ( f so - f s ) - 2 

or by substitution from above, s = fso a 
2 Es 

-5-
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Since the steel length remains unchanged, the shortening in the region 

~-a would be equal to the elongation in the region a or 

1~-o fs dx =lo fsx dx 
o Es o Es 

Substituting and integrating, one finds 

( L-a) 
f so = f s a ' 

and by further substitution, 

fso = 
and 

fc = 

EsEshlL-a) 
Lnp +a 

Ec Esh { npl) 
npl+ a 

Combined Temperature Drop and Shrinkage 

Combining the effects of both temperature and shrinkage, one gets 

fso 
Es 

[[ 0( t L{ np +I l] + Esh { L-a ) } = a+ npl 
and 

fc 
Es L p { 0( t + Esh ) 

= a+ npl 

Solving for L in each of the above two equations, one finds 

and 

f c a 
L =--------~~--~~ 

p ( Es 0( t + Es Esh - nf c ) 

a { f so + Es Esh ) 
L = 0( t Es { np +I)+ Es Esh- npfso · 
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Equating the above two equations and solving for p, one finds 

fc 
p = 

f so - n f c -i- E s Es h 

Further, 

a 
Ac fc 

= 
jlLo 

and 

fso a Esh a 
s = 2E5 2 

Since 

fso 
fc 

Esh = p (I +np)- E5 
' then 

fc = 
p 

( fso + Es Esh ) . I +np 

Substituting for fc and a in the above, one gets 

5 
= d { ( fso )2 - ( Es Esh ) 2 } 

( I + np ) 8 jl. E5 

where dis the bar diameter. Since l E5 Esh ) 2 is small compared 

to ( fso )2 and I+ np ~I, s c:. 

WELDED WIRE MESH REINFORCEMENT 

Consider a concrete slab segment containing welded wire mesh rein­
forcement, with transverse wires spaced at a distance b, subjected to 
shrinkage and a temperature drop. If unrestrained, .this segment would 
shorten an amount /j. t + /j. sh , representing the temperature and 
shrinkage deformation. It is assumed that the force in the longitudinal 
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wires is transferred to the concrete only at the anchorages provided by 
tl1e transverse wires, and fuat no bond stress exists along the longitudinal 
wires. The stress distribution and deformations are shown in Figure 2, 
for slab segment L equal to mb where m is fue number of transverse 
wires in fue lengfu L . Furfuer, the first transverse wire is assumed 

to be at a distance ~ from the end face of fue segment as shown. 

As in fue case of the deformed bar reinforcement, fue steel is re­
strained, and a stress f SO is produced in the steel at the ends of the 
segment, causing fue concrete to slip an amount S from its original posi­
tion. This causes fue concrete stress, steel stress, and relative steel­
to-concrete deformation distribution shown in Figure 2. 

Again, considering the effects of shrinkage and temperature drop 
separately, the following equations are developed. 

Temperature Drop 

In fue center region of the segment f1s - 11 c = 0 , Cs = C c , 

or fs = n f c , 

For equilibrium, 

or 

fso = ~~ ll+np) 

fc 
= P l I+ np) . 

In fue region ~ at eifuer end, fue relative steel-to-concrete defor-

fso b 
2Es 

mation at fue end face would be equal to s = 

Since the steel lengfu remains unchanged, 

f5 l m b) 
+ 
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Substituting and reducing 

(l+np)(Esatml 
fso= l+np+mnp · 

and 

Shrinkage 

In the center region 

For equilibrium, 

or 

f _ E5 cxtmp 
c- l+np+mnp 

fso 
fc 

= P ( I + np) - Es Esh 

Es Esh- f5 (I + np) =---==---=--===----np 

In the region ~ at each end, the relative steel-to-concrete deforma-

f b 
tion would be equal to S = SO 

2E5 

Since the steel length remains unchanged, 

or 

fso b 
2E5 

fs mb 
- =0 

2Es 

fso = mfs. 
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Upon substituting from above 

and 

Es Esh m 
fso = mnp+np+l 

f _ Es Esh p(m+l) 
c- mnp+np+ 1 

Combined Temperature Drop and Shrinkage 

Combining the effects of both temperature and shrinkage, 

and 

( ._l_+_n~p..:.)..:.(_E~5..:.a __ tm __ )+ __ E~5_E~s~h_m_ 
fso = - mnp+np+l 

E 5 atmp + E5 Esh p ( m +I) 

mnp+np+l 

L 
Solving the above two equations for m and substituting m =b, one gets 

L = 

and 

b { f c ( n p + I)- Es Esh P} 
p ( E5 ext + E5 Esh - nfc ) 

Equating the above two equations and solving for p , 

p = 
fso + Es Esh:--nfc 

Also, 

fso b 

2E5 
s = 
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DISCUSSION 

If a continuously reinforced concrete pavement is to function satis-' 
factorily, the numerous cracks which occur must be held tightly closed 
by the reinforcing steel under whatever conditions the pavement encounters. 
It would seem more desirable to have closely spaced cracks with minute 
crack openings, rather than greater spacings with large crack openings. 
If the crack openings are small, the continuity of the slab will not be 
sufficiently impaired to affect the strength intended in the design of the 
pavement slab. 

For deformed bar reinforcement, the slippage S at the ends of the 

lfsol2 d 
slab segment L was given by S""' BJ1-Es . This equationreveals S as 

a function of the bar size d as well as the maximum bar stress. In actual 
pull-out bond tests, the bond stress }A varies with the bar size and pro­
bably with the concrete quality as well. It is possible, then, with the 
same steel percentage p and bar stress fso, to get different slippage 
deformations for bars with different diameters. 

Refer ring to bond slip curves found in Design Considerations for 
Distributed Reinforcement for Crack Control, ACI Comm. 325 Report of 
Subcomm. IV (Feb. 1955), the following stresses are shown for an end 
slip of 0. 01 in. , along with bond lengths computed from derived equations: 

Bar Size Steel Stress, psi in. 

#3 70,000 6.3 
#4 54,000 10.0 
#5 41,000 12.8 
#6 36,000 15.0 

On the basis of the above limiting stresses, and assuming E5h = 0. 0002, 
0( = 6 X I 0 -s I F 0 , E s = 30 X I o-s p s i , and n = 6, Figure 3 shows 
the steel ratio p plotted against the ultimate concrete tensile strength 
for the four sizes of deformed bars. Figure 3 also shows minimum crack 
spacing versus temperature drop, based on steel percentages for the 
various bar sizes for an ultimate concrete tensile strength of 400 psi. 
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s = 

For welded wire mesh reinforcement, the slippage S is given by 

fso b 

2Es 
Here, S is a function of the transverse wire spacing bas well 

as the maximum wire stress. Again, it is possible with the same steel 
ratio p and wire stress f so to get different slippage deformations 
with different cross-wire spacings. In this discussion, the deformation 
of the anchorage cross-wires is considered to be zero. Referring again 
to the ACI discussion, the cross-wire is assumed analagous to a beam 
on an elastic foundation. Based on this analysis, and using a value for . 

s psi 
G , the modulus of bearing, of 2 X I 0 ----rn , and an average cross-

wire diameter of 0. 35 in. , the following steel stresses fso and cross­
wire spacings b were deduced which would produce an end siip of 0. 01 
inch: 

Cross-wire spacing, in. 

6 
9 

12 

Steel Stress, psi 

70,000 
54,000 
42,000 

On the basis of these limiting stresses, and again assuming 

Figure 4 shows the steel ratio p plotted against the ultimate concrete 
tensile strength for the three different cross-wire spacings. Figure 4 
also shows the minimum crack spacing plotted against temperature drop, 
based on steel percentages shown for an ultimate concrete tensile strength 
of 400 psi. 

The emphasis of this discussion centers on the magnitude of crack 
opening as the foremost consideration in selecting steel reinforcement 
for continuously reinforced pavements. Since this opening is a function 
of the concrete slippage at the crack, it has been pointed out that greater 
allowable steel stresses, and thus lower steel ratios may be used for the 
smaller deformed bars and for welded wire mesh with closer cross-wire 
spacings. 
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For either type of reinforcement, the resulting equations for the 
minimum steel percentage are the same, and are independent of the tem­
perature drop. In a properly functioning pavement, as the temperature 
falls, the steel stress at the crack will approach the allowable stress, 
based on a limiting slippage value. When this stress is reached, the 
tensile stress in the concrete will just exceed its ultimate tensile strength, 
and a new crack will form. Thus, the effect of temperature will be to 
cause closer crack spacings in areas with large temperature ranges, and 
greater crack spacings in less severe climates, for the same steel per­
centage and crack opening. 

Since the steel percentage is directly proportional to the concrete 
tensile stress, producing weaker concrete with lower ultimate tensile 
strength would be a way of utilizing lower steel percentages, and still 
effect the close crack openings desired. 

In this discussion, a crack opening of 0, 02 in., as well as the values 
of fsh and n were arbitrarily used as representative values in order to 
draw me curves. It should also be pointed out that in the graphs of mini­
mum crack spacing, which were based on the crack occurring at the cen­
ter of the segment, new cracks could form at a spacing equal to a for 
deformed bars, and to the cross-wire spacing b for welded wire fabric. 

Also, this discussion does not consider such factors as reversals of 
stress, temperature gradients in the slab, safety factors, plastic flow, 
and the differences in thermal coefficients of expansion of concrete and 
steel, which would be pertinent to complete design criteria for steel rein­
forcement in continuously reinforced pavements. 

CONCLUSIONS 

On the basis of this analysis it may be stated mat: 

1. The minimum percentage of steel varies with the bar size for de­
formed reinforcement, and with the transverse or cross-wire spacing for 
welded wire mesh. 

2. The minimum steel percentage varies directly with the ultimate 
tensile strengm of the concrete, and providing concrete with lower ulti-
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mate tensile strength would result in a lower steel percentage require­
ment. 

3, The mm1mum steel percentage does not depend upon climatic 
conditions insofar as temperature change is concerned; the more severe 
climates produce closer crack spacings for the same steel percentage. 
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APPENDIX 

NOTATION: 

L uncracked slab segment 

LH temperature deformation 

Ll.sh shrinkage deformation 

S slippage 

0 length over which bond stress is distributed 

fs steel stress at the center of a bar or wire 

f50 steel stress at the end of a bar or wire 

fc concrete tensile stress 

)J. bond stress 

Es steel strain 

€c concrete strain 

Esh shrinkage strain 

E5 steel modulus of elasticity 

Ec concrete modulus of elasticity 

G modulus of bearing 

As steel area 

Ac concrete area 

p steel ratio 

I.o bar perimeter 

d bar diameter 

b transverse wire spacing 

m number of transverse wires in length L 

0( coefficient of thermal expansion 

t temperature drop, deg F 
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